SIGNETICS
2650
II‘IIGROPROGESSOR

CONTENTS

INTRODUCTION

INTRODUCING THE 2650 FAMILY e e i 3

FEATURES OF THE 2600 FAMILY 4
Family Approach | ... e e e e e e e e, 4
Microprocessor Features o v . o oL Lt o e e e 4
Compatible Products e e 5

PROCESS0R HARDWARE DESCRIPTION. e in. 5]
Architectlre L .. . L. e e e e 6
Interfacing 8
Instruction Set 12

SUPPO R T ... e e 11
Documentation -o i 15
Software SUPPOIT . ., . i e e e 15
Prototyping Hardware _............ ettt 16
System Compatible Families . .., oo e e 16

2650 HARDWARE

INTRODUCTION . .. e e e e e e e e e e e e s i 19
General Features, o 18
ApplCations L e e e 20

INTERNAL ORGANIZATION i, 21
Intermal Begisterso i e e 21
Program Status Ward oL L e e 22
Memory Organization 27

INTERFACE . .t e e et e e et e e 28
Snals . . e e 29
Signal Timing ... e e e e e e e e e e e 34
Electrical Characteristios - o o @ v v v i e et e e e e ot e e e e e a7
Imterface Signals . . .o e e e, 29
Pin Configuration e e e 39

FEATURES e 41
Ihput/Qutput Facilities uu.. e 41
Interrupt Mechanism .« . oo oo 43
SUbroUtine LInKaGE - - -« v e e e e e e e e e et e e e 45
Condition Code Usage . . - . .« .. it e e e e e e 45
Start-up Procedure - L 45

INSTRUCTIONS - . o e e i 47
AddressingMades L 47
Instruction Formats e e 51

I 2660 ASSEMBLER LANGUAGE .
INTRODUCTION . . . i e i it e m e o s 93

LANGUAGE ELEMENTS i e e 97
CharBC erS . .t e e e et e e e e e 97
Lo 1T+ 1 - 97
CONStARTS Lt it e e et e e e e e e e 97
Multiple Constant Specifications 98
g w L= T 99
Special Operators . .. oo e e e 140
Lk A0 1 - R 101
= I 101
SYMBONS - v vt e a e 102
Symbolic References vt 102
Symbolic Addressing . .. oo v o e e e 102
PROCESSOR INSTRUCTIONS et aam e e e ana s 105
DIRECTIVES TO THE 2650 ASSEMBLERo ciu oot 108
THE ASSEMBLY PROCESS . . . it it it e e iame e e i e 115
Assernbly Listing e e e 118

IV 2650 SIMULATOR

INTRODUCTION . . e it e e e e e e e e ee e e 123
SIMULATOR OPERATION i i i e i ar e s 124
General . o L i e i wr e e e e e e 124
Simulated Processor State. - . . . L ot it i e e 124
Simulated Memiory . . . e e e 125
Simulated nput/Qutput Instructions oo ... e 125
USER COMMANDS . - ot it e e e i i i e i e 126
LT 3= - | T 126
Command FOFMATS ,0 o cm e m v c e me e 127
Command Dascriptions _ it e et m i 130
SIMULATOR DISPLAY (LISTING} it ia e 139

V APPENDIXES

APPENDIX A MEMORY INTERFACE EXAMPLE--- 147
APPENDIXB 1O INTERFACE EXAMPLE 148
APPENDIXC INSTRUCTIONS, ADDITIONAL INFORMATION 149
APPENDIX D INSTRUCTION SUMMARY 151
APPENDIX E SUMMARY OF 2650 INSTRUCTION MNEMONICS 180
APPENDIX F NOTES ABOUT THE 2650 PROCESSOR 162
APPENDIX G ASCI} AND EBCDIC CODES e vieee e e ennns 163
APPENDIXH COMPLETE ASCII CHARACTERSET -+ v vvvvnn. 164
APPENDIX| POWERSOF TWOTABLE . «vvvvvvvnmneansinn- 165
APPENDIXJ HEXADECIMAL-DECIMAL CONVERSION TABLES ... 166
APPENDIX K COMMAND SUMMARY _ . v vvvene oo 171
APPENDIX . ERRORMESSAGES © v vvvceeneeiaan e, 172
APPENDIXM SIMULATOR RESTRICTIONS .. . ocvuvvurrnnnnnn 174
APPENDIX N SIMULATOR RUNPREPARATION .« -« oo ivnnns 174

‘Copyright 1975—Frinted in LUSA. Signetics Corporation reserves the right to make changes in the
products described in this book in order to improve design or performance, Signetics Corporation
assures no respensibility for the use of any circuits deseribed hergin and makes no representations
that they are free from patsnt infringement.

CHAPTER |

INTRODUCTION

INTRODUCING THE 2650 FAMILY

“6—VOLT SYSTEM REDUCES SYSTEM COSTS”
“2650 PUTS THE INTERFACE ON THE CHIP..NOT ON THE CIRCUIT BOARD”
“POWERFUL INSTRUCTION SET PROVIDES LOWER COST SYSTEMS”

The greatly increased sophistication and rising production costs of today’s
logic systems force the system designer to use every avaijlable resource in
order to economically produce his system. In keeping with this cost reduc-
tion goal, Signetics has developed a powerful general purpose Integrated
microprocessor called the 2650. The first Signetics microprocessor, in con-
junction with Signetics MOS and Bipolar memory and interface product
lines, offers the system designer a viable and attractive alternative to the
hard-wired approach to system design. For many applications, the system
designer can use this general purpose microprocessor and standard memory
and interface circuits to implement systems with lower cost than the hard-
wired logic approach without sacrificing performance.

By using the 2650 and compatible products, the system designer can
obtain two cther major benefits of microcomputer systems. These benefits
are greatly enhanced system flexibility and minimized design or modification
cycles compared with the hard-wired logic approach.

The requirements of the majority of applications for integrated micro-
pracessors (logic replacement and contrel functions) have defined a general
set of processor parameters based on system and device economies, aase of
use, and speed requirements.

These characteristics include:

® Single chip e Hight bit paralle] structure
¢ Fixed instruction set o TTL compatibility

In addition to these characteristics, the design of the 2650 has been
optimized around three generalized objectives:

® Lowest system cost s Capable of a wide range
& Ease of use of applications

The optimum technology choice for implementing these features is the
low threshold ion-implanted N-Channel silicon gate process. This process
has matured in the past few years, providing a combination of high density,
low threshold voltage, moderate speed and good manufacturing yields. Using
this technology, a total of 576 bits of ROM, approximately 250 bits of
register and about 900 logic gates are used to implement the processor
function on the 2650 chip.

The instruction set consists of 75 instructions, of which about 40% con-
sists of arithmetic instructions. This class contains the Boolean, arithmetic,
and compare operations, each of which may be executed using any one of
eight addressing modes. Another 30% of the instruction set consists of
branch instructions which incorporate six addressing modes. The remaining
30% of the instruction set includes, amoung others, I/O instructions, instruc-
tions for performing operations on the two status registers, a decimal adjust
instruction and the HALT instruction.

Utilizing multiple addressing modes greatly increases coding efficiency,
allowing functions to be performed using fewer instructions than less power-
ful machines. The resulting reduction in routine execution time and memory
capacity requirements directly translates into improved system performance
and reduced memory cost. In this way the powerful instruction set and
addressing modes of the 2650 allow a significant reduction in the memory
required to perform a given function, resulting in sizeable system cost savings
without sacrificing performance.

FEATURES OF THE 2650 FAMILY

2650 Processor Architecture

2650 FAMILY APPROACH
Low System Cost

— Low cost N-Channel products

— Intrinsic advantages of single 5V supply
— Uses standard low cost memories

— Low cost interfacing

2 Ease of Use

— FEasy interfacing
— Conventional instruction set
— Ease of programming

Wide Range of Applications

— General purpose capability
— Powerful architecture

— Powerful instruction set

— Flexible

— Expanding family of devices

FEATURES OF THE MICROPROCESSCR
Basic 2650 Processor Characteristics

8
»

[N R I I]

Single chip 8-bit processor

Signetics low threshold double ion-implanted
silicon gate N-Channel technology

Single +5V power supply

Low power consumption: 525 mW maximum
Single phage TTL-compatible clock

Static operation: no minimum clock frequency
Clock frequency: 1.25MHz maximum

Cycle time: 2.4ps minimum

Standard 40 pin DIP

2650 Interfaces

=

1Y

TTL compatible inputs, outputs — no external
resistors required

Tri-state bus outputs for multiprocessor and
direct memory access systems

Asynchronous (handshaking) memory and [/O
interface

Accepts wide range of memory timing

Interfaces directly with industry standard mem-
ories

Powerful control interface

Single-bit direct serial I/O path

Parallel 8-bit IO capability

& B 5 & B &

&

8-bit bidirectional tri-state data bus

Separate tri-state address bus

32,768-byte addressing range

Interna] 8-bit parallel structure

Seven 8-bit addressable general purpose registers
Eight-level on-chip subroutine return address
stack

Program status word for flexibility and enhanced
processing power

Single-level hardware vectored interrupt cap-
ability

Interrupt service routines may be located any-
where in addressable memory

Separate adder for fast address calculation

2650 Instruction Set

&

% 0 % B

fon & W

General purpose instruction set with substantial
capabilities in arithmetic, character manipulation
and control and I/O processing

Fixed instruction set

75 instructions

Up to eight addressing modes

True indexing with optional aute increment/
decrement

One, two or three byte instructions

One- and iwo-byte /O instructions

Selective test of individual bits

Powerful instruction set and addressing modes
minimize memory requirements

FEATURES OF COMPATIBLE PRODUCTS
2602, 2606, 1K RAMs

%
L3
#

Completely siatic operation
N-Channel silicon gate technology
1024 X 1 organization (2602)
256 X 4 organization (2608)

& Single +5V power supply

» B & =

200mW typical power dissipation
Maximum access time:

1us 1 2602

Ta0ns : 2606

6560ns : 2602-2

a00ns : 26021, 2608-1
TTL-compatible

Tri-state outputs

Data I/O bus {2606 only)
Standard 16 pin DIP

2608 8K ROM

& & B o H OB R &

Compietely static operation
N-Channel silicon gate technology
1024 X 8 organization

Bingle +5V power supply

400mW maximum power dissipation
650ns maximum aceess time

TTL compatible

Tri-state outputs

Standard 24 pin DIP

8T26 Quad Transceiver

E

o
&
-
#

o

L4

Schottky TTL technology

Four pairs of bus drivers/receivers
Separate drive and receive enable lines
Tri-state outputs

Low current pnp inputs

High fan ouf — driver sinks 40mA
20ns maximum propagation delay
Standard 16 pin DIP

BT31 §-bit Bidirectional Port

s % 8 & & @

L]

Schottky TTL technology

Two independent bidirectional husses

Eight bit latch register

Independent read, write controls for each bus
Bus A overrides if a write conflict occurs
Register can be addressed as a memory location
viza Bus B Master Enable

30ns maximum propagation delay

Low input current: 5004

High fan out — sinks 20mA

Standard 24 pin DIP

BT95/6/7/8 Hex Buffers/Inverters

®
*
#

& o % &

Schottky TTL technology

Six buffers or inverters per package
Non-inverting (8T95, 8T97) or
Inverting (8T96, 83T98)

Buffered control lines

Tri-state outputs

Low current pnp inputs

Standard 16 pin DIP

825115/1231129 PROMS

#® 8 % B @ 8 #H @ &

%

B

Schottky TTL technology

Single +5V power supply

32 X 8 organization (828123)

256 X 4 organization (828129)

512 X 8 organization (828115)

Field programmable (Nichrome)
On-chip storage latches {828115 only)
Low current pnp inputs

Tri-state ontputs

30ns typical access time

Standard 24 pin DIP (828115)
Standard 16 pin DIP (828123, 828129)

(See Appendix for additional products and data
sheets.)

o

PROCESSOR HARDWARE DESCRIPTION

ARCHITECTURE
GEMERAL DESCRIPTION

A block diagram of the processor is shown in Figure 1, The first, second,
and third bytes of instructions are read into the processor on the data bus
and loaded into the Instruction Register, Holding Register, and Duta Bus
Register, respectively. The instructions are decoded through 2 combination
of ROM and randem logic.

The ALU performs arithmetic, Boolean, and combinatorial shifting func-
tions. It operates on eight bits in parallel and utilizes carry-look-ahead logic.
A second adder is used to increment the instruction address register and to
caleulate operand addresses for the indexed and relative addressing modes.
This separate address adder allows complex addressing modes to be imple-
mented with no increase in instruction execution time.

The General Purpose Register Stack and the Subroutine Return Address
Stack are implemented with static RAM cells. The Register Stack consists
of seven 8-bit resisters. The Subroutine Stack can contain eight 15-bit
addresses, thereby allowing eight levels of subroutine nesting. Placing the
Subroutine Stack on the chip allows efficient ROM-only systems to be
implemented in some applications. Separate 15-bit Instruetion Address and
Operand Address Registers and provided. The 2650 is an 8-bit binary pro-
cessor with BCD capability. See Figure 2 for a diagram of the 2650 registers
as seen by the programmer.

PROGRAM STATUS WORD
The Program Status Word (PSW) is a major feafure of the 2650 with

greatly increases its flexibility and processing power. The PSW is a special
purpose register within the processor that contains status and control bits.

Tt is divided into two bytes called the Program Status Upper (PSU) and
Program Status Lower (PSL). The PSW bits may be tested, loaded, stored,
preset, or cleared using the instructions which affect the PSW. The bits are
utilized as follows:

PSUO, 1,2 — SP — Pointer for the Return Address Stack.

PsUB —II — Used to Inhibit recognition of additional Interrupts.

PEUS —F — Flag is a latch directly driving the flag oufput.

pPSUT —8 — Sense equals the state of the sense input,

PSLO — — Carry stores any carry from the high-order bit of
the ALUL

PSL1 — COM — Compare determines if a logical or arithmetic com-
parison is to be made.

PSL2 — OVF — Overflow is set if a two’s complement overflow
OCCULS.

BSL3 — WC — With Carry determines ie the carry is used in arith-
metic and rotate instructions.

PSL4 — RS — Register Select identifies which bank of 3 OGP regis-
ters is being used.

PSLS — IDC — Inter Digit Carry stores the bit-3-to-bit-4 carry in
arithmetic operations.

PSL6,7 — CC — Condition Code is affected by compare, test and

arithmetic instructions.
INTERRUPT HANDLING CAPABILITY

The 2650 has a single level hardware vectored interrupt capebility. When
an interrupt oceurs, the 2650 finishes the current instruction and sets the

Interrupt Inhibit bit in the PSW. The processor then executes a Branch to
Subroutine Relative to location Zero {ZBSR) instruction and sends out
Interrupt Acknowledse and Operation Request signals. On receipt of the
INTACK signal the interrupting device inputs an 8-bit address, the interrupt
vector, on the data bus. The relative and relative indirect addressing modes
combined with this 8-bit address allow interrupt service routines to begin at

any addressable memory location.

&
=
SUBROLTINE FL TURN z REGISTEN PRDE RAM
ADDIFE 5 5TACK, g STACK ErATUR
. a0 woRw
— 2
ALLL
. ¥
]
2
'E MILTIELLAE B
ADDRESS g
BUS - - \1——&1
E [X CQNDITIN CcaoE
E Iﬂsm UCTION ADDRESS Rsm-rrenl an
£ 5 V| aranch Lo
o
OPER AMD ADBARESE NEGISTER | [
| &
—) § o
T r x 047 BLS
i
g
a
=
ADDRESS ADDER ITERALPT ——N z
— o INSTR LCTIGN c
HEQUEST INTERRUFT HZLOING REGISTER WESISTEA
LOGH:
IRTERRUPT
AR HOWLEDEE _—ﬁy
P W——
— v e oo
I i ::D s - TIMING LOG I
COMTROL LINES LDGIE DECODING AND COMTADL LG
Figure 1. BLOCK DIAGRAM
14 T [i] 7 a
REG ¥ 5 F n &y | arq | sFp |

FUEROUTINE ARTLIRN ALDAESS STACK (8 « 15 R am

PAGE CONTADL

L STACK POINTER

RES 5 Lo
i p— LA LSED
A INTEAHLET :NHIBIT
FLag
3
SENSE
REG 3
7 a
REG 2 ooy | ctg| e | As | we |ove|oom| o frsL
-. T -
REG 1 — Lcnnnvaur

i A LOBICALIARITH CIHAPARE
- OWERFLOMM 2IT

k—.— WITHWITHOUT SamRy

REGISTER BANEK SELECT
INTERDIGIT SakRy

HES B L

CONDITION CODE

JEMERAL PuAPOSE AEGHISTERS

INETALCTION AJDRESS REGISTER

FROGRAM 3TATLS WORD

NOTE: Not alf internal registers are shown,

Figure 2. MAJOR 2650 REGISTERS

INTERFACING

INTROPUCTION TO INTERFACING WITH THE 2650

Five key concepts have been incorporated in the 2650 to make interfacing
easy and inexpensive, The extent to which these concepts have been incor-
porated in the Signetics 2650 provides unique benefits of system density and
low cost to the system designer.

1. SINGLE 5V POWER SUPPLY

Low threshold double ion-implanted Silicon Gate N-Channel MOS tech-
nology is used to allow operation from one +5V power supply with resultant
cost savings and improved reliability. This reduces power consumption signi-
ficantly compared with the multi-power supply approach.

2. INTERFACE CIRCUIT COMPATIBILITY

The 2650 inputs and outputs are specified to be compatible with widely
available, standard, low cost logic families such as TTL, CMOS and Low-
power 8TTL. This includes the single phase clock input which saves the cost
of high level multiphase clock driver circuitry. Bus outputs are tri-state and
capable of driving one 7400 TTL load or four 74LS loads. The 2650 is cap-
able of driving several loads of pup-buffered STTL inputs. Many MSI, Intex-
face and Memory LSI circuits (for example, in Signetics 82500 and 8TQ0
series) have these low current pnp inputs and are recommended for use in
2650 microcomputer systems. See Table 1 for DC characteristics of the 26 B0,

3. USE OF STANDARD MEMORIES

One of the major 2650 design achievements is to operate efficiently in a
system using industry standard memories, for example 1024 X 1 and 256 X 4
N-channel RAMs and 1024 X 8 N-Channel ROMas. These standard memories
are widely available and used in volume with corresponding low cost. Non-
standard memories, particularly those produced by only one manufacturer
will he less available, run in lower volume and often cost 2 to 3 times as
much per bit as industry standard products. The 2650 operates successfully
with memories of any access time, due to the completely asynchronous
interface that is provided for this purpose. Memories which respond in less
than 0.8 microseconds allow the processor to operate at maximum speed.

4. NO SPECIAL INTERFACE PRODUCTS

Similarly, another major achievement is to operate efficiently in a system
using no special I/O products. This approach avoids the problems of a
system requiring high cost specialized components with restricted avail-
ability.

TABLE 1. PRELIMINARY 2650 DC ELECTRICAL CHARACTERISTICS

LIMITS
SYMBOL PARAMETER TEST CONDITIONS MILN MAX UNIT
Iy Input Load Current Vin = 0 to 5.25V 10 A
ILaH Output Leakage Current ADREM, DBUSEN = 2.2V, Vot =4V 10 uh
lLoL Quiput Leakage Current ADREM, DBUSEN = 2.2V, VouT = 0.45V 10 T
I Fower Supply Current Voo = 5.25V, Ta =0°C 100 ma
ViL Input Low -0.5 0.8 v
VIR Input High 2.2 Vo Y
VoL Output Low lgL = 1.6 mA 0.0 0.45 W
VaH Qurtput High IgH = -100 aA 24 Ver-0.5 v
Ci Input Capacitance Vi = OV 10 pF
CouT Output Capacitance Yoyt = 6V 10 pF
Conditions: Ta = 0°C te 70°C, ¥pe = 8V ~5%

5. POWERFUL MEMORY AND {/O INTERFACE
The following features characterize the memory and I/Q interfaces:

¢ Both memory and input/output may operatein a completely asynchronous
fashion. Consequently, devices operating at any speed up to the maximum
data transfer rate may be connected without buffering. External laiching
of data from these interfaces is not required.

¢ Data paths are driven with tri-state buifers, allowing multiprocessor and
Direct Memory Access (DMA) configurations to be designed.

e Light-bit data paths communicate data in paraliel.

® One- and two-byte I/O instructions provide maximum flexibility and
efficiency when interfacing with 1O devices.

SENSE — 1 \._/} 40— FLAG
nLR12 & 2 v
ANRTT 44— 3 B E— CLOCK
AGRIDE {4 37— BRUSE
anre &—{ & 36— OFACK
AURH £—] & 35 K— HunNRAIT
ADR7— 7 HE-—3 INTaCK
ADRE&—] B 22¢—% DRUSO
ADRS e— 8 32— DBUST
apma 10 2650 31— DelLs:
ADRE &—] 11 0 K— pBUSE
ADA2 &1 12 HE— DRSS
ADR1&— 13 2K DeUsS
ADROE— 16 21— peusE
ADREN —3 15 26— oeUS,
RESET —3) 15 25— DRUSEN
TNTREG —A{ 17 i —3 UPRED
ADE4-DIT e—] 12 23— Rew
ADR1Z3-E/EE—] 13 22— WRP
WD ¢ 20 21— GND

Figure 3. PIN CONFIGURATION

PIN CONFIGURATION AND INTERFACE SIGNAL DEFINITION

Refer to Figure 3 for the 2650 pin configuration. Signals are defined as
follows:

ADRO-ADR12 — The low order 13 bits of address for memory access are
oh these pins. ADRO-ADR7 are also uvsed in two-byte I/O
ingtructions. These outputs are tri-state buffers con-
trolled by ADREN.

ADRI1Z-E/NE - This muitiplexed output signal delivers the ADR13
address bit when M/IO is in the M phase or discriminates
between Extended and Non-Extended /O instructions
when M/IO is in the I/Q phase.

ADR14-D/C — Address 14 or Data/Control is a multiplexed output
signal. This pin delivers the ADR14 address bit when
M/IO is in the M phase or discriminates between Data
and Contrel I/O instructions when M/IO is in the IyO
phase. : : o

ADREN ~— Address Bus Enable is an input providing the external
control for the ADRO-ADRI12 tristate buffer drivers.

DBUSO-DBUST — This is the 8-bit, bidirectional tri-state bus over which
most data is communicated into or out of the processor.

DBUSEN — Data Bus Enable is an inpuf that contreols the tri-state
buffer drivers for DBUSO to DBUST.
OPREQ® — Operation Request is an output signal that informs

external devices that the information on other output
pins is valid,

10

OPACK — Operation Acknowledge is an input which is used by
external devices to end an 10 or memory signaling

sequence.

M/I0 — Memory/Input-Output. This output informs external
devices whether Memory or Input/Output functions are
being performed,

R/IW — This output signal describes an 1/O or memory operation

as Read or Write, and defines whether the bidirectional
DBUS is transmitting or receiving.

WRP — This Write Pulse is generated during write sequences and
may be used to strobe memory or IO devices.

SENSE — Is an inpuf, independent of the other IfO signals, that
provides a direct input to the processor.

FLAG — This pin provides a direct output signal that is completely
independent of the other /0 signals.

INTREGQ — Interrupt Request. This input is used by external devices
to force the processor into the Interrupt sequence.

INTACK — Interrupt Acknowledge is the signul used by the pro-

cessor to inform external devices that il bas entered an
interrupt sequence.

PAUSE — Pause is used to temporarily stop the processor at the end
of the current instruction. It may stop processing for an
indefinite length of time and is available to use for DMA
(Direct Memory Access).

RUN/WAIT -~ Informs externeal circuits as to the Run/Wait status of the
2650 processor.

RESET — Is an input used to cause the 2650 to begin processing
from a known state,

CLOCK — This is the only clock input to the processor. It accepts
standard TTL levels.

VCC — +5V power,

GND — The logic and power supply ground for the processor.

2650 TIMING

The clock input to the 2650 provides the basic timing information that
the processor uses for all its internal and external operations. The clock rate
determines the instruction execution time, except to the extent that external
memories and devices slow the processor down. The maximum clock rate of
the standard 265Q is 1.25 Megacycles (one clock period is 800ns minimum).
One unigue feature of the 2650 is that the clock frequency may be slowed
down to DC, allowing complete timing flexibility for interfacing. This feature
permits single stepping the clock which can greatly simplify system check-
out. It also provides an easy method to halt the processor. Each 2650 cycle
is comprized of three clock periods. Direct instructions require either 2, 3, or
4 processor cycles for execution and, therefore, vary from 4.8 to 9.6us in
duration.

A timing diagram for a memory read cycle is shown in Figure 4. OPREQ
{Operation Request) is the master control signal that coordinates all opera-
tions external to the processor. When true, OPREQ indicates that cther
output signals are valid. During a memory read cycle M/IO is in the M
(Memory) state and R/W is in the R (Read) state. The address lines and the
control lines become valid before OPREQ rises. The data to be read may
be returned anytime after OPREQ becomes valid. An OPACK (Operation
Acknowledge) should accompany the read data from the memory. The
Data and OPACK signals should remain valid for 50 ns after OPREQ falls.

INPUT/OUTPUT INTERFACE

The 2650 microprocessor has a set of versatile 1/0 instructions and can
perform IO operations in a variety of ways. One- and two-byte I/O instrue-
tions are provided, as well as a special single-bit IO facility. The I}O modes
provided by the 2650 are designated as Data, Control, and Extended I/Q.

Data or Control I/Q instructions are one byte long. Any general purpose
register can be used as the source or destination. A special control line
indicates if either a Data or Control instruction is heing executed. Extended
I/O 15 a two-byte read or write instruction. Execution of an extended I/0
instruction will cause an 8-bit address, taken from the second byte of the
instruction, t¢ be placed on the low order eight address lines. The data,
which can originate or terminate with any general purpose register, is placed
on the data bus. This type of /O can be used to simultaneously select a
device and send data to it.

Memory reference instructions that address data ocutside of physical
memory may also be used for I/O operations. When an instruction is exe-
cuted, the address may be decoded by the IO device rather than memoty.

MEMORY INTERFACE

The memory interface consists of the address bus, the 8-bit data bus and
several signals that operate in an interlocked or handshaking mode.

The Write Pulse signa! is designed to be used as a memory strobe signal for
any memory type. It has been particularly optimized to be used as the Chip
Enable or Read/Write signal for the Signetics 2602 and 2606 RAMs.

INTERFACING — A MINIMAL SYSTEM EXAMPLE

The 2650 has been designed for low cost, easy Interfacing, which is
dramatically iflustrated by a minimal system configuration shown in Figure 5.
This system has a Teletype interface, 1024 bytes of ROM, and 256 hytes of
RAM, yet requires only seven (7) standard integrated circuit packages. The
ROM can contain a bootstrap loader and IJO driver programs for the Tele-
type. Other programs could reside in ROM or be read into RAM via the
Teletype. An alternative to the 2608 N-Channel MOS ROM is the 825115
Bipolar PROM which offers a 512 X & organization. Only one +3-volt power
supply is required for this system. The advantages of conceptual simplicity
and minimum system costs of the 2650 approach will be obvious to the
system designer, particularly when compared to altemnative MiCroprocessor

products.
 EEE— o mmm--—=- -
r 1 r 1 { \1 Vo 3 LI
o s T 07 I j = '
’ ’ : senme i S T !
2EEIGUCA.TF . 1 i | NI :
i INTERS AL ! ERHLAL L e -
LRI | |"— z “‘L_—b e _[}D_ . : '

14y -5 [- & el A —
LOOTROL |0UrmTs SHE: 1 kY
| AhUREESESI'.'A_Ir: T I Gy R R
R e T -
BGA0-ADG A :X K o1 -
—_ . [
.............. - — 2650 § | <
T e TP - . \ - e D’_‘_ e PR
| X : X o — - =
S L O [), arack [— a3 =% 2606
e e m .- P L PR PR [= P KRR IRE W LmA
RFarkpin '\’\ /' JE—
-

______________ | S CE CE
amaazrizesn Tazs
MEMORY, . . _{} l-l/\

| ! ' . - £ T | |

1 I
nrazse H |_._-_'g;\1m‘.1.| 1 Agrhy . .
Y ADORERS by
'
W m e e Wkt HurES,
eoa ot m ;
L LEERIBLE ME m‘;g:::"’% 5 g GHD CLUCK, 1121 | FMIE -EY SUPPL ¥ SEVER, IC PACK AGES
P, . - FrA0S REZEIVE W LSED FIR ARG A NGISE IMRUSITY
1 T
2 CFEE T ; .5

7 -3TL0CT I % 208 240 Vinm ’ * . 4L
3

BOTER | DEATK custen ke o257 160 3 hafrs e o Jding a8 o] T in rster o o sin duse e e
TDATE MuznaleT i i dm SISE Sl il Ll vige - 2PFEEG,

Figure 4, MEMORY READ CYCLE TIMING Figure 5. SEVEN PACKAGE MINIMAL SYSTEM
11

12

LOAD/STORE

ARITHMETIC

LOGICAL

ROTATE COMPARE

BRANCH

INSTRUCTION SET

It may be seen from examination of the 26850 instruction set that there
are many powerful instructions which are all easily understood and are
typical of larger computers. There are one-, two-, and three-byte instrue-
tions as a result of the multiplicity of addressing modes. See Table 2 for a
complete listing and Figure 6 for instruction formats.

Automatic incrementing or decrementing of an index register is available
in the arithmetic indexed instructions. All of the branch insiructions except
indexed branching can be conditional.

Register-to-register instructions are one byte; register-to-storage instruc-
ticns are two or three bytes long. The two-byte register-to-memory instruc-
tions are either immediate or relative addressing types.

TABLE 2. INSTRUCTION SET

MMNEMONIC QP CODE | FORMAT®* DESCRIPTION QF GFERATION AFFECTS CYCLES
Z | QD0 000 12 Lcad Register Zoro CC iMNate 1] 2
an H Q00 001 2 Load Immediate CC Mo 11 2
L R | 000010 2R taad Relative CC INote 1) 3
I3 oo an 34 Load Absolute CC INDte 1} 4
Z | 110000 12 Store Bemister Zero IrsE O CC iMate 1) 2
TR R 110 010 2R Store Relative - 3
a 1110011 34 Store Absalute — 4
2 100 000 1z Add o Regisier Zera wiwo Carry G, CC imote 11, 10C, OVF 2
ADD | 100 001 2| add tmmediate wivwe Carry ¢, CC {Mate 11, 1DC, OWF 2
R 100 010 2R Add Relative wiwa Carry G, CC iMote 14, 1DC, OVF 3
A | 100011 34 Add Absolute wiwo Carry C, CC {Nate 1), 1DC, OVF 4
d 101 Q00 iz Subtract from Register Zero wiwo Borrow . CC (Mo 10, 1DC, OWF 2
SUB i 101 0M 21 Subtract fmmediate wiwo Borrow C, CC (Mote 11, 1DC, OVF 2
2! 101010 2R Subiraet Relative wiwn Barrow C,CC (Mote 11, tDC, OVF 3
A 101 am kT3 Subtract Absolute wiwo Borraw C, CC {Mate 11,1DC, OVF [}
DAR 108 107 1Z Decirnal Adjust Renister CC iMote 21 3
Z | 010000 12 AMD to Register Zero (rs£O CC Mo 1) 2
AND 1 o1g oo 2l AMND Immediate CC INote 1) 2
R | DigD0 2R AMND Relative CC [(Note 1] 3
A 1010011 A AND Absolute CC (Mote 11 4
Z | 011000 12 Inclusive OF to Register Zaro CC iNote 11 2
VOR 1 011 001 24 Inclusive OR Immediate CC iNote 1} 2
R | 011010 2R tnctusive OR Relative CC {Note 1} 3
A | o11on 3A Inclusive OR Absolute CC Mo 1) 4
Z | D01 000 1z Exclusive DR to Register Zero CC (Note 1) 2
EOR 5 t o031 001 21 Exclusive OR Immediate CC {MNote 1) 2
{ & 001 030 2R Exclusive OR Relative CC {Mote 1] 3
A | 001011 3A Exclusive QR Absotute CC iMote 1t 4
F4 111000 12 Compare w Register Zero Arithmetic/ Logical]l CC {Note 3} g
CcOM I 111 A 21 Cornpare Immediate Arithmetic/Logieal CC (Notw 4) 2
R RE) 2R Compare Relative Arithmetic/Lagical CC (MNote 4) 3
A& 11101 3A Compare Absolute Arithmeric/ Logical CC {Note 4) 4
RRR 010 100 12 Rotate Register Right wiwo Carry C,CC, DG, OvF 2
RRL 110 100 12 Rotate Register Left wiwo Carry C,CC,1DC, OVF 2
BCT VR | 000110 2R Branch On Condition True Relative - 3
tA |0o0011 38 Branch On Condition Trug Absolute - 3
BCE s 110110 2R Branch On Condition False Relative - 3
ta | 100111 38 Branch On Condition False Absolute - 3
BRN R |D10110 2R Branch On Register Non-Zero Relative — 3
A | Qi1 3B Branch On Register Non-Zero Absolute - 3
s R 1110110 2R Brangh On Incrementing Register Relative — k]
' i A 11D 1Y 3B Branch On Incremsnting Register Absolute - 3
EDR R 11110 2R Branch On Decrementing Fegister Relative — 3
A |11 in 3B Branch On Decrementing Register Absolute - 3
ZBRR 00110 1 2ER Zerao Branch Rglative, Unconditional - 3
BXA 1001171 11 3EB Eranch indexed Absolute, Unconditional - 3

[Note bl

TABLE 2. INSTRUCTION SET (CONTINUED)

MMNEMONIC OP CODE | FORMAT* DESCRIPTION OF DPERATION AFFECTS CYCLES
R 0a1 110 2R Branch To Subrouiine On Candition True, SP 3
asT Relative
A 001111 3B Branch To Subroutine On Candition True, 5P 3
= Absolute
g R 141 110 2R Branch To Subroutine On Conditian False, 5F 3
o BSF Relative
x A 1101 111 2B Branch To Subroutine On Condition False, 5p 3
E AbEoh te
E R | 011110 2R Erench To Subroutine On Non-Zero Register,| SP 3
& | ey Relative
& A [0 TN i Branch To Subrouting On Non-2Zero Register,] SP 3
g Absclute
= | zBsk 101 110 1 2ER Zero Branch To Subroutine Relative, 8P 3
g Unconditional
E BEXA 101 111 117 3EB Branch To Subroutine, Indaxed, Absoiute 5P 3
> Ungonditicnal {Note 5)
C 00 101 12 Return From Subroytine, Conditional SP 3
RET E [001 11 12 Return From Subroutine and Enable SP,Ti k]
Interrupt, Conditional
= | WRTD 111 100 1Z Write Data - 2
E REDD 011100 1z Read Dota CC (Note 1} 2
g WRTC 101 100 12 Write Control - 2
E REDC 001 100 1z Read Contro CC (Note 1) 2
% WRTE 110101 21 Write Extendad — 3
= | REDE 01010 2 Read Extended CC (Nate 1) 3
o HALT 010 000 00 1€ Hal1, Entar Wait State - i
g NOF 110 000 00 iE Na Operation — 2
TMI 111101 21 Test Under Mask (mimediate CC {Note 6} 3
LPS U 10010010 1E Load Program Status, Upper F, I, 5P 2
w L 100 100 11 1E Load Program Status, Lower CC,1DC, Rs, WC, OVF, COM, C 2
= sPs U [ooo100 10 1E Store Program Status, Upper CC (Note 1) 2
= L [oo0 10011 € Store Program Status, Lower CC (Note 1) 2
th
= cps u 211107 QG 2E1 Clear Program Status, Upper, Maskad F, 11, 5pP 3
E L 11101 M1 2E1 Clear Program Status, Lower, Masked CC, IDC, RE, WC, OVF, COM, C 3
g PPs oot 10 2El Preset Program Status, Upper, Masked F, I, 5P 3
= L (011101 11 ZEl Preset Program Status, Lower, Masked CC, IDC, RS, WS, OVF, COM, © 3
Trs u 101 101 00 2El Test Program Status, Upper, Masked CC {MNote &) 3
L 1101 101 ¢1 2EI Test Program Status, Lowver, Masked CC {Note 6) 3
*FORMAT CODE: The number indicates the number of bytes. The letter{s) indicate the format type(s). See Fig. 6.
NOTES:
1. Condition code {CC1, CCOJ: 01 if positive, 00 if zero, 10 if negative,
2. Condition code it set to & rnearingless value.
3. Condition cade {CC1, CCO: OF if RO > r,00ifRG=r, 10 f RO < r,
4. Condition code {CC1, CCO: D1 ifr V. 000 r=V, 100 r= V.
5, Index register must he reqgister 3or 3,
B. Condition code {CC1, CCO): 00 if all selected bits are 15, 10 il nart all the selectad bits are 15,
PROGRAM STATUS WORD
PSU PsL
7 53 5 4 3 2 1 0 7 G 5] 4 3 2 1 o
Not | Mot
b F 1] lseet | Used 5P2 | SP1 | SPO CCT| ccd | tDC | RS WC | OvF] Com o
& Bense SF2 Srack Fointer Two CC1 Condition Code One WC With/Without Carry
F Flag SP1 Stack Powter One CCO Conditton Code Zerg OVF Overflow

Interrupt fnhikil

3P0 Stack Pointer Zero

Dc
RS

interdigit Carry
Register Bank Satect [

COM Logicatfarizh. Compare

Carry/Borrow

13

{Z] FFGISTER ADOEESSING

{1} MMENIATE ADDAESSING

LR} rrLeivE anDRCSEING

B}

ADECLUTE AOTIRESSING
LAY MoM-BRANGCH IMETRUCTIONS!

AESOLUTE ADDHESSHG
(SR ANCH INSTRUCTIONS

INOIKECT ADORESSING

{E} misceLLAvEDUS

INSTROCTIONS

OFERATION CODE R
! 1

Figure 6. INSTRUCTION FORMATS

.
SYMEOLS:
A - REGISTEA MUMEBER
W - WAl UT DA CONDITION
7) 1 &4 3 2 1 1] X - INDEX KEGISTER NUMBER
1 - INDIRECT 83T
OPERATIOM SODE n DT A MASE OF BINARY VAL LIE
I 1 1
-~
s 14 13 1z T 10 El & 7 G 1 a4 E] 2 1]
RELATHVE DISPLACEMENT
DPERATION CODE R 1 -S4 DISFLACEMENT %1 83
- /_._.lﬁ /'I'\l L
15 14 13 [ERER 10] 3 7 & B E} 3 z 1 [
YINDEX,
QPERATION CUDE RIX 1 CONYROL HIGHER ORUER ADDRESS LOWER DNDER ADDRESS
1] —] 1
23 ¥ 21 2 18 B 14 18 16 14 13 12 31 10 - & ¥ 3 H] 2 2 1 0
HIGHER ORODER ADDRESE
1
CGPERATION CODE A i PAGE LOWER QRDER AODFARESS
. | - 1 - -
LN f by
73 22 F3l 0 iE 14 17 18 15 t4 13 2 1t RI7)] a ¥] G q E] z 1 o
WISHER (KR DER ADDRESS
1
Vs
LNUSED ®AGE L{WVER OADER ADDRESE
!
T
15 L) 12 iz 1 L] El] 7 B 5 * 3 K 1 L]
a-PEﬁnT1|0N CODE S INDEX CONTROL:
U= MNON-INDEXED
01- {NDEXEDWITH AUTO-INGREMENT
1= INDEXED'WITH AUTQ-DECREMENT
19~ INDEXED DMLY
[& 3 4 3 7 1 [}

SUPPORT

DOCUMENTATION

The complete manual set is available in a durable 3-ring binder. The binder
contains the Hardware Specifications, the Assembler Language Manual, the
Software Simulator Manual, and a section called System Application Notes.
Our update service provides customers with new application notes and
updates to the manual set.

The Hardware Specification Manual includes a detailed description of the
instruction set, the pin-outs, the AC and DC electrical characteristics, the
Input/Output and memory interface signals with timing diagrams, the
internal processor organization, and other useful information.

The Assembler Language Manual describes how to write programs in the
2650 symbolic assembly language, the pseudo-ops, and how to assemble a
2660 program. Additional information is presented on how to use the
assembler program, how to interpret the output listings and how to load
chject modules.

The Simulator Manual describes the nature of the simulation program,
how to write simulation commands and how to interpret the simulation
output.

System Application Notes are included to help the user design with the
2650 processor, These notes present detailed technical information on
various subjects of interest and apply to either programming, hardware con-
figuration, or system concepts. This section will continue to grow.

Examples of Application Notes are:

e Serial I/O for the 26850 ¢ 1/O Device Selection Methods
& Memory Interfaces ¢ A Minimal System Configuration
® How to use the Decimal

Adjust instruction

SOFTWARE SUPPORT

Signetics-developed software is available to both the batch processing user
and the timesharing user. The Batch Assembler and Bateh Simulator are
written in standard FORTRAN and may be compiled and executed on most
medium to large scale computer systems. Because of the modular design TABLE 3. ASSEMBLER FEATURES
used, it is expected that many minicomputer users will also be ahle to utilize

these programs. The main features of the programs are listed in Tables 3 2 Fass Assembler

¥ Diagnostic error messages

angd 4. . S .
. . . % Symbolic addressing including
Signetics has also made the Batch Assembler, Batch Simulator and Inter- forward references
active Simulator available on several internationsl timesharing networks for . Constant generation
those customers who wish to run these programs using a timesharing service, # Pseudo-ops to aid programming

When a customer chooses to follow the timesharing approach, he can also ~ * Free format source cade
make use of the interactive version of the 2650 Simulator. With the Inter-

TABLE 4. SIMULATOR FEATURES

= Cycle Counter for timing estimates % Statistical information generated

% |nstruction fetch break points 4 Easy-to-use command language

% Operand fetch break points # Optionally selected start and end addresses

* Trace facilities % Dynamic changes of sirmulated registers

Snapshot dumps % Optionally simulates ROM-RAM environment
Patching facility

15

16

active Simulator the software designer can utilize his timesharing terminal to
dynamically alter his program and effectively reduce his program develop-
ment time.

The Signetics 2650 Symbolic Assembly Language has been modeled after
ather assembly languages; because ‘of this, the assembler is easy to leatn and
10O use.

The Simulator programs are designed to aid the user in testing and correct-
ing his programs. This approach is an alternative to dedicating hardware
development tocls to one or two programmers or designets for program
development. The Simulator allows users to simulate the execution of pro-
grams without utilizing a processor. The Simulator utilizes the object module
produced by the Assembler as input, and through use of appropriate simu-
lator commands, can display andfor alter the internal registers of the simu-
lated 2650 processor and the simulated memory contents.

The programs are, ustally delivered delivered on IBM compatible magnetic
tape “mini-reeis”. All programs are in FORTRAN source code as card image
records.

A growing Program Library is available to Signetics microprocessor users.
We encourage users to submit all non-proprietary programs to Signetics to
add to the program library so that we may make them available to other
H5eTs.

PROTOTYPING HARDWARE

PROTOTYPING CARD

In order to develop a product using the Signetics 2650 Mmicroprocessor,
both hardware and software must be designed. Recognizing that the hasic
needs of many of our customers for prototyping systems will be similar,
Signetics has designed a prototyping card containing a basic microcomputer
system. This card provides a starting point fer the development of hardware
interfaces while simultanecusly providing a tool for software checkout.

The first Signetics prototyping card consists of a 2650 processor, ROM
memory conitaining a loader and editor, RAM memory for program storage
before committing to PROM or ROM, a TTY interface for easy access, a
crystal-controlled clock and two input and output ports (8 bits each).

SYSTEM COMPATIBLE FAMILIES

The 2650 has been designed to interface directly with industry standard
logic and memory families, particularly 7400 and 741800 logic families,
TTL compatible 5V NMOS memories {Signetics’ 2600 series) and bipolar
memories (Signetics’ 8200 and 82800 series). Many interface cireuits in the
8T00 family are particularly useful for constructing interfaces in 2650
systems.

Other logic families including 8200 TTL, 82500 STTL and 4000 CMOS
are compatible with the 2650. See Table 5.

TABLE 5. SYSTEM COMPATIBLE FAMILIES

Logic 7400, 8200 - TTL

F4LS00 - TTL-LS

B250K) - 37TL

4000 — CMOS
Memory 2500 — PMOS

2600 — NMOS

7404, 8200 - Bipolar TTL

82800 — Bipalar 8TTL
interface 8TGO - TTL, 8TTL

CHAPTER i

2650 HARDWARE

17

18

FEATURES

GENERAL PURPOSE PROCESSOR
SINGLE CHIP

FIXED INSTRUCTION SET

PARALLEL 8-BIT BINARY OPERATIONS
40 PIN DUAL IN-LINE PACKAGE

N-CHANNEL $ILICON GATE MOS TECHNOLOGY
TTL COMPATIBLE INPUTS AND QUTPUTS
SINGLE POWER SUPPLY OF +5 VOLTS

SEVEN GENERAL PURPOSE REGISTERS
RETURN ADDRESS STACK, 8 DEEP, ON CHIP

32K BYTE ADDRESSING RANGE

SEPARATE ADDRESS AND DATA LINES

VARIABLE LENGTH INSTRUCTIONS OF 1, 2, OR 3 BYTES
75 INSTRUCTIONS

MACHINE CYCLE TIME OF 2.4usec

AT CLOCK FREQUENCY OF 1.25 MHz

DIRECT INSTRUCTIONS TAKE 2, 3 or 4 CYCLES
SINGLE PHASE TTL LEVEL CLOCK INPUT
STATIC LOGIC

TRI-STATE OUTPUT BUSSES

REGISTER, IMMEDIATE, RELATIVE, ABSOLUTE
INDIRECT, AND INDEXED ADDRESSING MODES
VECTOR INTERRUPT FORMAT

INTRODUCTION

GENERAL FEATURES

The 2650 processor is a general purpose, single chip, fixed instruction set,
parallel 5-bit binary processor. A general purpose processor can perform any
data manipulations through execution of a stored sequence of machine in-
structions. The precessor has been designed to closely resemble conventional
binary computers, but executes variable length instructions of one to three
bytes in length. BCD Arithmetic is made possible through use of a special
“DAR” machine instruction.

The 2650 is manufactured using Signetics’ N-channel silicon gate MOS
technology. N-channel provides high carrier mobility for increased speed and
also allows the use of a single 5 volt power supply. Silicon gate provides for
better density and speed. Standard 40 pin dual in-line packages are used for
the processor. :

The 2650 contains a total of seven general purpose registers, each eight
bits long. They may he used as source or destination for arithmetic opera-
tions, as index registers, and for 1/O transfers.

The processor can address up to 32,768 bytes of memory in four pages of
8,192 bytes each. The processor instructions are one, two, or three bytes
long, depending on the instruction, Variable iength instructions tend to con-
seTve Memory space since a one-or two-byte instruction may often be used
rather than a three byte instruction. The first byte of each instruction always
specifies the operation to be performed and the addressing mode to be used.
Most instructions use six of the first eighi bits for this purpose, with the
remaining two biis forming the register field. Some instructions use the full
eight bits as an operation code.

The most complex direct instruction is three bytes long and takes 9.6
microseconds to execute. This figure assumes that the processor is running at
its maximum clock rate, and has an associated memory with cycle and access
times of one microsecond or less, The fastest instruction executes in 4.8
microseconds.

The clock input to the processor is a single phase pulse train and uses only
one interface pin. It requires a normal TTL voltage swing, so no special clock
driver is required.

The Data Bus and Address signals are tri-state to provide convenience in
system design. Memory and I/Q interface signals are asynchronous so that
Direct Memory Access (DMA) and multiprocessor operations are easy to
implement.

The 2650 has a versatile set of addressing modes used for locating oper-
ands for operations. They are described in detail in the INSTRUCTIONS
sectlon of this manual.

The interrupt mechanism is implemented as a single level, address vector-
ing type. Address vectoring means that an interrupting device can force the
processor 3o execute code at a device determined location in memory. The
interrupt mechanism is described in detail in the FEATURES section of this
manual,

19

20

APPLICAT!ONS

The ability of the semi-conductor industry to manufacture complete gen-
eral purpose processors on single chips represents a significant technological
advance which should prove to be of great benefit to digital systems manu-
facturers. In terms of chip size and density of transistors, the processors are
simply extensions of the continually evolning MOS technology. But in terms
of function provided, a significant threshold has been crossed.

By allowing designers to convert from hardware logic to programmed
logic, the integrated processor provides several important advantages.

1. Logic functions may be implemented in memoty bits instead of logic gates. The user
then has greater access to the advantages of memory circuits, Memories use patterned
cireuitry and thus provide greater density and therefore greater economy.

2. Random logie implementations of complex functions are highly specialized and cannot
be used in other applications. They are not often used in large volume. Pragrammed
logie, on the other hand, relies on general purpose processor and memory ¢ireuits that
are used in many applications. Thus, economies of volume are available for both the
user and the manufacturer,

3. Because the functional specialization resides in the user’s program rather than the
hardware logic, changes, corrections and additions can be much easier te make and can
ke accomplished in a much shorter time,

4, With the programmed logic approach it is often possible to add new features and
create new products simply by writing new programs.

5. The design cycle of a system using programmed logic can be significantly shorter than
a similar system that attemnpts to use custom random logic. The debugging cycle is also
greaily compressed,

A general purpose processor designed to implement programmed logic has
many characteristics that allow it to do conventional computer operations as
well. Many applications will specialize in programmed logic or in data pro-
cessing, but some will take advantage of both areas. Ina line printer applica-
tion, for example, a processor can act primarily as a controller handling the
housekeeping duties, control sequencing and data interfacing for the printer.
It also might buffer the data or do some code conversions, but that is not its
primaty duty. On the other hand, in a text editing intelligent terminal, the
processor is mainly concerned with data manipulation since it handles code
translations, display paging, insertions, deletions, line justification, hyphena-
tion, ete.

A point-ofsale type of terminal represents an application thai combines
both control and data processing activities for the processor. Coordinating
the activities of the various devices and displays that make up the terminal is
an important part of the job, as are the calculations that are essential to the
operation of the machine.

INTERNAL ORGANIZATION

INTERNAL REGISTERS

The block diagram for the 2650 shows the major internal compenents and
the data paths that interconnect them. In order for the processor to execute
an instruction, it performs the following general steps:

1. The Instruction Address Register provides an address for memoary,
2. The first hyte of an instruction is fetched from memory and stored in the Instruction

Register.

3. The Instruction Register is decoded to Setermine the type of instruetion and the
addressing mode.

4. If an operand from memory is required, the operand address is resolved and loaded
into the Operand Address Regisier.

8. The operand is fetehed frorm memory and the operation is execuied.

6. The first byte of the next instruction is fetchad.

The Instxuction Register (IR) holds the first byte of each instruction and
directs the subsequent operations required to execute each instruction. The
IR contents are decoded and used in conjunction with the timing informa-
tion to control the activation and sequencing of all the other elements on the
chip. The Holding Register (HR) is used in some multiple-byte instructions
to contain further instruction information and partial absolute addresses.

The Arithmetic Logic Unit (ALU) is used to perform all of the data
manipulation operations, including Load, Store, Add, Subtract, And, Inclu-
sive Or, Exclusive Or, Compare, Rotate, Increment and Decrement. It con-
tains and conirols the Carry bit, the Overflow bit, the Interdigit Carry and
the Condition Code Register.

The Register Stack contains six registers that are organized into two
banks of three registers each. The Register Select bit (RS) picks one of the
two banks to be accessed by instructions. In order to accomodate the regis-
ter-to-register instructions, register zero (R() is outside the array. Thus,
register zero is always available along with one set of three registers.

The Address Adder (AA)is used {o increment the instruction address and
to calculate relative and indexed addresses.

The Instruction Address Register (IAR) holds the address of the next
instruction byte to be accessed. The Operand Address Register (QAR) stores
operand addresses and sometimes contains intermediate results during effec-
tive address calculations.

The Return Address Stack (RAS) is an eight level, Last In, First Out
(LIFO} storage which receives the return address whenever a Branch-to-Sub-
routine instruction is executed. When a Return instruction is executed, the
RAS provides the last return address for the processor’s IAR. The stack
contains eight levels of storage so that subroutines may be nested up to eight
levels deep. The Stack Pointer (8P) is a three bit wraparound counter that
indicates the next available level in the stack. It always points to the current
address.

21

] (s

REGTEFLE

T
i
SUBROLTIRL FETURN H i rRozRam Lt n]
ADDAESE ETACK 2 BTAZE FTATI R
x RO WaAR
3
&
aLu
L
o]
I3
£ WULT:PLE XER
ADDRLE z
s § f——— N
£] O I0W CODR
£ _:: 1 AND
—
E Ima\ ULTION ADDRESE asmsrsnl N LHANGH LG
) T
—]
CIFERAND ADDAESS REGISTER 3
H 2 .
i T r £ :ﬁ ¥OATA BB
@
H
El
3
ADORESS ADOEA [X e I
s TN
LOGHE
INTERRUPT
ACKNOWLEDGL 5 L
q: L] n: LMK
Lo ne h— RECODANG AND CONTROL LOGIS Tikahice LG
ONTEOL LINES LG I I

Figure 7. SIGNETICS 2650 BLOCK DIAGRAM

PROGRAM STATUS WORD

The Program Status Word {(PSW) is a special purpose register within the
processor that contains status and control bits. It is 16 hits long and is
divided into two bytes called the Program Siatus Upper (PSU) and the
Program Status Lower (PSL).

The PSW bits may be tested, loaded, stored, preset or cleated using the
instructions which effect the PSW. The sense bit, however, cannot be set or
cleared because it is directly connected to pin 1.

PSL 7 6 5 4 3 2 i 0
Not Mot
P B P
S F 1I Used Used §P2 SP1 SPO
5 Sense
F Flag
IT Interrupt Inhibit
SP2 Stack Pointer Two
SP1 Stack Pointer One
8PP0 Stack Pointer Zero
PSL 7 8 5 4 3 2 1
CC1 CCOD 1oC RS wC OvF | COM C
CCl1 Condition Code Gne
CC0O Condition Code Zero
IDC Interdigit Carry
RS Register Bank Select
WC With/Without Carry
OVF Overflow
COM Logical/ Arithmetic Compare
C Carry/Borrow

SENSE (S)

The Sense bit in the PSU reflects the logic state of the sense input to the
processor at pin 1. The sense bit is not affected by the LPSU, PPSU, or
CPSU instructions. When the PSU is tested (TPSU) or stored into register
zero (SPSU), bit #7 reflects the state of the sense pin at the time of the

instruction execution.

FLAG (F)
The Flag bit is a simple latch that drives the Flag output (pin #40) on the
processor.

INTERRUPT INHIBIT (I}

When the Interrupt Inhibit (II) bit is set, the processor will not recognize
an incoming interrupt. When interrupts are enabled (I1=0}, and an interrupt
signal occurs, the inhibit bit in the PSU is then automatically set. When a
Return-and-Enable instruction is executed, the inhibit bit is automatically
cleared,

STACK POINTER (5P}

The three Stack Pointer bits are used to address locations in the Return
Address Stack (RAS). The SP designates the stack level which contains the
current return address, The three SP bits are organized as a binary counter
which is automatically incremented with execution of Branch-to-Subroutine
instructions, and decremented with execution of Return instructions.

CONDITION CODE (CC}

The Condition Code is a two bit register which is set by the processor
whenever a general purpose register is loaded or modified by the execution
of an instruction. Additionally, the CC is set to reflect the relative value of
two bytes whenever a compare instruction is executed.

The following table indicates the setting of the Condition Code whenever
data is set into a general purpose register. The data byte is interpreted as an 8-
bit, two’s complement number,

Register Contents cch cCo

Positive 0 1
Zero 0 o]
MNegative 1 0]

For compare instructions the following table summarizes the setting of
the CC. The data is compared as two 8-bit absolute numbers if bit #1, the
COM bit, of the Program Status Lower byte is set to indicate “logical”
compare (COM=1). If the COM bit indicates ‘‘arithmetic’ {COM=0), the
comparison instructions interpret the data bytes as two 8-bit two's com-
plement binary numbers.

Register to Storage Register to Registar
Compare Instruction Compare Instruction CC1 CCO
Reg X Greater Than Storage Reg 0 Greater Than Reg X 0 1
Req X Equal to Storage Reg O Equal 10 Reg X O 0
Reg X Less Than Storage Reg 0 Less Than Reg X 1 [

23

24

The CC is never set to 11 by normal processor operations, but it may be
explicitly set to 11 through LPSL or PPSL instruction execution.

INTERDIGIT CARRY {DC)
For BCD arithmetic operations it is sometimes essential to know if there

was a carry from bit #3 to bit #4 during the execution of an arithmetic
instruction.

The IDC reflects the value of the Interdigit Carry from the previous add or
subtract instruction. After any add or subtract instruction execution, the
IDC contains the carry or borrow out of bii #3.

The I[DC is also set upon execution of Rotate instructions when the WC
bit in the PSW is set. The IDC will reflect the same information as bit #5 of
the operand register after the rotate is executed. See Figure 8.

REGISTER SELECT (RS}

There are two banks of general purpose registers with three registers in
each bank. The register select bit is used to specify which set of three general
purpose registers will be currently used. Regisier zero is common and is
always available to the program. An individual instruction may address only
four registers, hut the bank select feature effectively expands the available
on-chip registers to seven. When the Register Select Bit is “07, registers 1, 2,
& 3 in register bank #0 will be accessable, and when the bit is “1%, registers
1.2 & 3 in register bank #1 will be accessable.

WITH/WITHOUT CARRY (WC)

This bit controls the execution of the add, the subtract and the rotate in-
structions.

Whenever an add or a subtract instruction executes, the following bits are
either set or cleared: Carry/Borrow (C), Overflow (OVF), and Interdigit Carry
(IDC). These bits are set or reset without regard to the value of the WC bit.
However, when WC=1, the final value of the carry bit affects the result of an
add or a subtract instruction, i.e., the carry bit i either added (add instruc-
tion) ot subtracted (subtract instruction) from the ALY,

Whenever a rotate instruction executes with WC=0, only the eight bits of
the rotated register are affected. However, when WC=1, the following bits
are also affected: Carry/Borrow (C), Overflow {OVF) and Interdigit Carry
(iDC). The carry/borrow bit is combined with the 8-bhit register to make g
nine-bit rotate (see Figure 8). The overfiow bit is set whenever the sign
bit (bit 7) of the rotated register changes its value, 1., from a zero (0)toa
one (1) or from a one {1) to a zero (0). The interdigit carry bit is set to the
new velue of hit 5 of the rotated register.

OVERFLOW (OVF)

The overflow bit is set during add or subtract instruction executions
whenever the two initial operands have the same sign but the result has a
different sign. Operands with different signs cannot cause overflow. Ex-
ample: A binary +124 (01111100) added to a binary +64 {01000000) pro-
duces a result of (10111100) which is interpreted in two’s complemeni form
as a —68. The true answer would be 188, but that answer cannoi be con-
tained in the set of 8-bit, two’s complement numbers used by the processor,
s0 the OVF bil is set.

Rotate instructions also cause QVF to be set whenever the sign of the
rotated byte changes.

[~}
a

. -~ —t - -t —
. B T —T
7 6 5 4 3 2 1 0

ROTATE REGISTER RIGHT WITH CARRY

(NOT CHANGED)

E — - —T — -

- — -
(NOT CHANGED)
7 6 5 4 3 2 1 0

ROTATE REGISTER RIGHT WITHOUT CARRY

-] ;(— -] |

g ol - -
7 & 5 4 3 2 1 0
ROTATE REGISTER LEFT WiTH CARRY

(NOT CHANGED)

m - ~— -
- - — -
{NOT CHANGED)
7 6 5 4 3 z 1 0
Figure 8. ROTATE REGISTER LEFT WITHOUT CARRY

COMPARE (COM)

The compare control bit determines the type of comparison that is ex-
ecuted with the Compare instructions, Either logical or arithmetic com-
parisons may be made. The arithmetic compare assumes that the comparison
is between 8-bit, two’s complement numbers. The logical compare assumes
that the comparison is between 8-bit positive binary numbers, When COM is
set to 1, the comparisons will be logical, and when COM is set to 0, the
compzrisorns will be arithmetic. See Condition Code (CC).

25

28

CARRY (C)

The Carry bit is set by the execulion of any add or subtraci instruction
that results in a carry or borrow out of the high order bit of the ALU. The
carry bit is set to 1 by an add instruction that generates a carry, and a
subtract instruction that does not! generate a borrow. Inversely, an add that
does not generate a carry causes the C bit to be cleared, and a subtract
instruction that generates a borrow also clears the carry bit.

Even though a borrow is indicated by a zero 1n the Carry bit, the pro-
cessor will correctly interpret the zero during subtract with borrow opera-
tions as in the following table.

Low Order bit Low Order bit Carry bit
Minuend Suhbtrahend Borrow bit Low Order Bit Result
G 0 0] 1
0 0 1 0
0 % 0 0
o 1 1 1
1 0 0 0
1 V] 1 1
1 1 0 1
i 1 1 0

The carry bit may also be set or cleared by rotate instructions as described
earlier under “With/Without Carry™.

To perform an Add with Carry or a Subtract with Borrow, the WC bit
must be set,

MEMORY ORGANIZATION

The 2600 has a maximum memory addressing capability of 049
—32,76710 locations. As may be seen in the INSTRUCTIONS section of this
manual, most direct addressing instructions have thirteen bits allocated for
the direct address. Since thirteen bits can only address locations Q1o
—8,19110, a paging system was implemented to accomodate the entire
address range.

The memory may be thought of as being divided into four pages of 8,192
bytes each. The addresses in each page range as in the following chart:

START ADDRESS _ENG ADDRESS
page 0 | 00000D000000000 [001111111111111] 059818119

page T | 010000000000000 [017111111 1111111 819219—16,38314
page 2 | 10000000000000C [101111111111111 | 16,384 10—24,575 19
page 3 | 110000000000000 {11 1111111111111 24,576 10—32.767 10

The low order 13-bits in every page range through the same set of num-
bers. These 13-bits are the same 13-bits addressed by non-branch instructions
and are also the same 13-bits which are brought out of the 2650 on the
address lines ADRO — ADR12.

The high order two hits of the 15-bit address are known as the page bits.
The page bits when examined by themselves also represent, in binary, the
number of the memory page. Thus, the address 010000001101101 is known
as address location 10910 in page 1. The page bits, corresponding to
ADRI13 and ADR14 are brought out of the 2650 on pins 19 & 18. These bits
may be used for memory access when more than 8,192 bytes of memory are
connected,

There are no instructions to expiicitly set the page bits. They may be set
through execution of direct or indirect, branch or branch-to-subroutine in-
structions. It may be seen that these instructions (see INSTRUCTION
Section) have 15-bits allocated for address and when such an instruction is
executed, the two high order address bits are set into the page bit latches in
the 2650 processor and will appear on ADR13 and ADR14 during memory
accesses until they are specifically changed.

For memory access from non-branch instructions, the 13-bit direct add-
ress will address the corresponding location within the current page only.
However, the non-branch memory access instruction may access any byte in
any page through indirect addressing which provides the full 15-bit address.
In the case of non-branch instructions, the page bits are only temporarily
changed to correspond to the high order two bits of the 15-bit indirect add-
ress used to fetch the argument byte, Immediately after the memory access,
ADR13 & ADR14 will revert to their previous value.

27

The consequences of this page address system may be summarized by the
following staterments.

1, The RESET signal clears both page latches, i.e., ADR13 & ADR14 are cleared o zero.

2. All nonbranch, direct memory access instructions address memoty within the eurrent
page.

3. All non-branch, memary access instructions may access any byte of addressable mem.
ary through use of indirect addressing which temporarily changes the page biis for the
argument access, but which vevert back to their previous state immediately following
insiruction execution,

4. All direct and indirect addressing branch instructions set the page bits to correspond to
the high order two bits of the 15 bit address.

5. Programs may not flow across page boundaties, they must branch to set the page bits.

6. Inierrupts always drive the processor to page zero,

INTERFACE

SIGNALS

RESET

The RESET signal is used to cause the 2650 to begin processing from a
known state. RESET will normally be used to initialize the processor after
power-up or to restart a program. RESET clears the Interrupt Inhibit control
bit, clears the internal interrupt-waiting signal, and initializes the IAR, o zero.
RESET is normally low during program execution, and must be driven high
to activate the RESET function. The leading and trailing edges may he
asynchronous with respect to the clock, The RESET signal must be at least
three clock periods long. [f RESET alone is used to initiate processing, the
first instruction will be fetched from memory location page zero byte zero
after the RESET signal is removed. Any instruction may be programmed for
this location including a Branch to some program located elsewhere.

Processing can also be initiated by combining an interrupt with a reset. In
this case, the first instruction to be executed will be at the interrupt address,

CLOCK

The clock signal is a positive-going pulse train that determines the instruc-
tion execution rate. Three clock periods comprise a processor cycle. Direct
ingtructions are 2, 3, or 4 processor cycles long, depending on the specific
type of instruction. Indirect addressing adds two processor cycles to the
direct instruction times.

PAUSE

The PAUSE input provides a means for temporarily stopping the execu-
tion of a program. When PAUSE is driven low, the 2650 finishes the instruc-
tion in progress and then enters the WAIT state. When PAUSE goes high,
program execution continues with the next instruction. if PAUSE is turned

on then off again before the last cycle of the current instruction begins,
program execution continues without pause. If both PAUSE and INTREQ
oceur prior to the last cycle of the current instruction, the interrupt will be
recognized, and an INTACK will be generated immediately following release
of the PAUSE. The next instruction to be executed will be 2 ZBSR to ser-
vice the interrupt,.

If an INTREQR oceurs while the 2650 is in a WAIT slate due to a PAUSE,
the interrupt will be acknowledged and serviced after the execution of the
next normal instruction following release of the PATSE.

INTREQ

The Interrupt Request input (normally high) is a means for external
devices to change the flow of program execution. When the processor recog-
nizes an INTREQ), i.e., INTREQ is driven low, it finishes the instruction in
progress, inserts a ZBSR instruction into the IR, turns on the Interrupt
Inhibit bit in the PSU, and then responds with INTACK and OPREQ signals.
Upon receipf of INTACK, the interrupting device may raise the INTREQ
line and present a data byte to fthe processor on the DBUS. The required
byte takes the same form as the secand byte of a ZBSR instruction. Thus,
the interrupt initiated Branch-to-Subroutine instruction may have a relative
target address anywhere within the first or last 64 bytes of memory page 0.
[f indirect addressing is specified, a branch to any location in addressable
memory is possible.

28

5]
o)

For devices that do not need the flexibility of the multiple target address-
es, a byte of eight zeroes may be presented and will cause a direct subroutine
branch to memory location zero in page zero. The relative address presented
by the interrupting device is handled with a normal 1/0 read sequence using
the usual interface control signals. The addition of the INTACK signal distin-
guishes the interrupt address operation from other operations that may take
place as part of the execution of the interrupted instruction. At the same
time that it acknowledges the INTREQ, the processor automatically sets the
bit that inhibits recognition of further interrupts. The Interrupt Inhibit bit
may be cleared anytime during the interrupt gervice routine, or a Re-
tum-and-Enable instruction may be used fo enable interrupts upon leaving
the routine. If an INTREQ is waiting when the Interrupt Inhibit bit is
cleared, it will be recognized and processed immediately without the execu-
tion of an intervening instruction.

OPACK

The Operation Acknowledge signal is a reply from external memory or
1/O devices as a response to the Operation Request signal from the processor.
OPREQ is used to initiate an external operation. The affected external de-
vice indicates to the processor that the operation is complete by turning on
the OPACK signal. This procedure allows asynchronous functioning of exter-
nal devices.

If a Memory operation is initiated by the processor, the memory system
will provide an OFPACK when the requested memory data is valid on the
Datz Bus. If an IO operation is initiated by the processor, the addressed [/{}
device may respond with an OPACK as soon as the write data is accepted
from the Data Bus, or after the read operation is completed. However, in
order to avoid slowing down the processor when using memories or I/0
devices that are just fast enough to keep the processor operating at full speed
the OPACK signal must be returned before the external operation is com-
pleted. Any OPACK that is returned within 600 nsec. following an OPREQ
will not delay the processot. Data from a read operation can return up to
1000 nsec. after an OPREQ is sent and still be accepted by the processor
without causing delays. If all devices will always respond within these time
limits, the OPACK line may be permanently connected in the ON (low)
state. Whenever an OPACK is not available within that time, the processor
will delay instruction execution until the first clock foliowing receipt of the
OPACK. All output line conditions remain unchanged during the delay and
the processor does not enter the WAIT state. OPACK is true in the low state
and false in the high state.

SENSE

The SENSE line provides an input line to the 2650 that is independent of
the normal 1/0 Bus structures. The SENSE signal is connected directly to one
of the bits in the Program Status Word. It may be stored or tested by an
executing program. When a store {SPSU) or test (TPSU) instruction is exe-
cuted, the SENSE line is sampled during the last cycle of the instruction.

Through proper programming techniques the SENSE signal may be used
to implement a direct serial data input channel, or it may be used to present
any bit of information that the designer chooses.

The SENSE input and FLAG output facilities provide the simplest method
of communicating data in or out of the 2650 Processor as neither address
decoding nor synchronization with other processor signals is necessary.

ADREN

The Address Enabie signal allows external control of the tri-state address
outputs (ADR0-ADR12). When ADREN is driven high, the address lines are
switched o their third state and show a high output impedance. This feature
allows wired-OR connections with other signals, The ADR13 and ADR14
lines which are multiplexed with other signals are not affected by this signal.

When a system is not designed to utilize the feature, the ADREN input
may be connected permanently to a low signal source.

DBUSEN

The Data Bus Enable signal allows external control of the tri-state Data
Bus outpul drivers. When DBUSEN is driven high, the Data Bus will exhibit a
high output impedance. This allows wired-OR. connection with other signals,

When a system is not designed to utilize this feature, the DBUSEN input
may be permanently connected to a low signal source. :

DBUS .

The Data Bus signals form an 8-bit bi-directional data path in and out of
the processor. Memory and /0 operations use the Data Bus to transfer the
write or read data to or from memory.

The direction of the data flow on the Data Bus is indicated by the state of
the B/W line. For Write operations, the output buffers in the processor out -
put data to the bus for use by memory or by external devices. For Read
operations, the buffers are disabled and the data condition of the bus is
sensed by the processor. The output buffers may also be disabled by the
DBUSEN signal.

The signals on the data bus are true signals, i.e., a one is a high level and a
zero is low.

ADR
The Address signals form a 15 bit path out of the processor, and are used

primarily tc supply memory addresses during memory operations. The ad-
dresses remain valid as long as OPREQ is on so that no externa! address
register is required. For extended I/O operations, the low order eight bits of
the ADR lines are used to output the immediate byte of the instruction
which typically is interpreted as a device address.

The 13 low order lines of the address are used only for address informa-
tion. The two high order address lines are multiplexed with 1/O control
information. During memory operations, the lines serve as memory address-
es. During [/O operations they serve as the D/C and E/NE control lines.
Bemultiplexing is accomplished through use of the Memory/IO Control line.

The line ADRO carries the low order address bit, and ADR12 carries the
high order address bit. The output drivers may be disabled by the ADREN

signal.,
The signals on the address bus are true, i.e., a one is a high level and a zero
is low.

OPREC

The Operation Request output is the coordinating signal for all external
operations. The M/IO, R/W, E/NE, D/C and INTACK lines are operation
control signals that describe the nature of the external operation when the
OPREQ line is true. The DBUS and ADR bus also should not be considered

31

valid except when OPREQ is in the high, or on state,

No output signals from the processor will change as long as OPREQ is on,
with the exception of WRP, OPREQ will stay on until the external operation
is complete, as indicated by the OPACK input. The processor delays all
internal activity foliowing an OPREQ until the QOPACK signal is received.

INTACK

The Interrupt Acknowledge signal is used by the processor to respond 1o
an external interrupt. When an INTREQ is received, the current instruetion
is completed before the interrupt is serviced. When the processor is ready to
accept the interrupt it sets the INTACK to the high, ot on, state along with
OPREQ. The interrupting device then presents a relative address byte to the
DBUS and responds with an OPACK signal. INTREQ may be turned off
anytime following INTACK. INTACK will fall after the processor receives
the OPACK signal.

M0

The Memory/IO output is one of the operation control signals that de-
fines external operations. M/IO indicates whether anoperation is memory or
1/O and should be used to gate Read or Write signals between memory or IO
devices.

The state of M/IO will not change while OPREQ is high.

The high state corresponds to Memory operation, and the low state cor-
responds to an I/O operation.

R/W

The Read/Write output is one of the operation control signals that defines
exfernal operations. R/W indicates whether an operation is Read ox Write. 11
controls the nature of the external operation and indicates in which direc-
tion the DBUS is pointing, R/W should not be considered valid untii OPREQ
is on and the state of the R/W line does not change as long as OPREQ is on.

The high state corresponds to the Write operation, and the low state
corresponds to the Read operation.

D/C

The Data/Control Output is an 1/O signal which is used to discriminate
between the execution of the two types of one byte I/0 instructions. There
are four one byte /O instructions; WRTC, WRTD, REDC, REDD. When
Read Control or Write Control is executed, the D/C line takes on the low
state which indicates Control (C). When Read Data or Write Data is exe-
cuted, the D/T line takes on ihe high state, indicating Data (D).

D/C should not be considered valid until (a) OPREQ is on and (b) M/IO
indicates an 1/O operation and {¢) E/NE indicates a non-extended {(one byte)
operation. D/C is multiplexed with a high order address line. When the M/I0
line is in the I/O state, the ADR14-D/C line should be interpreted as
«p)C”, (When the M/TO line is in the M state , the ADR14-D/C line shouid
be interpreted as mermory address line #14.)

E/NE

The Extended/Non-Extended output is the operation control signal that
is used to discriminate between two byte and one byte 1/0 operations. Thus,
E/NE indicates the presence or absence of valid information on the eight low
order address lines during I/0 operations.

E/NE should not be considered valid until (a) OPREQ is on and (b) M/IO
indicates an 1/O operation. E/NE is multiplexed with a high order address
line, When the M/IO line is in the IO state , the ADR13-E/NE line should be
interpreted as “E/NE”. (When the M/IO line is in the M state, the
ADR13-E/NE line should be interpreted as memory address bit #13.)

There are six IfO instructions; REDE, WRTE, REDC, REDD, WRTC,
WRTD. When either of the two byte IJO instructions is executed (REDE,
WRTE), the E/NE line takes on the high state or “Extended’” indication,
When any of the one byte 1/O instructions is executed, the line takes on the
low state or “non-extended™ indication.

RUN/WATT

The RUN/WAIT output signal indicates the Run/Wait Status of the pro-
cessor. The WAIT state may be entered by executing a HALT instruction or
by turning on the PAUSE input. At any other {ime the processor will be in a
RUN state.

When the processor is executing instructions, the line is in the high or
RUN state; when in the WAIT state, the line is held low.

The HALT initiated WAIT condition can be changed to RUN by a RE-
SET or an interrupt. The PATUSE initiated WAIT condition can be changed
te RUN by removing the PAUSE input.

If a RESET occurs during a PAUSE initiated WAIT state and the PAUSE
remains low; the processor will be reset, fetch cne instruction from page zero
byte zero and return to the WAIT siate. When the PAUSE is eventually
removed, the previously fetched instruction will be executed.

FLAG

The FLAG output indicates the state of the Flag bit in the PSW. Any
change in the Flag bit is reflected by a change in the FLAG output. A one
bit in the Flag will give a high level on the FLAG output pin. The LPSU,
PESU, and CPSU instructions can change the state of the Flag bit.The FLAG
output is always a valid indication of the state of the Flag bit without regard
for the status of the processor or conftrol signals. Changes in the Flag bit are
synchronized with the last cycle of the changing instruction.

WRP

The Write Pulse output is a timing signal from the processor that provides
a positive-going pulse in the middle of each requested write operation
(memory or I/0O) and a high level during read operations, The WRP is
designed to be used with Signetics 2606 R/W memory circuits to provide a
timed Chip Enable signal. For use with memory, it may be gated with the
M/IO signal to generate a Memory Write Pulse.

Because the WRP pulse occurs during any write operation, it may also be
used with 1/O write operations where convenient.

33

34

SIGNAL TIMING

The Clock input to the 2650 provides the basic timing information that
the processor uses for all its internal and external operations. The clock rate
determines the instruction execution raie, except to the extent that external
memories and devices slow down the processor. Each internal processor
cycle is composed of three ciock periods as shown in Figure 9, 2650 TIMING

DIAGRAMS.

N

ke
e

tpe

)
|

cLoeK JT1_JT2_JTU\ A Y /

{tan

Il-‘ccm
OPREQ ___.JtOAD ;

SPREK :l ' -1 F-‘OAH

Ceus N e e e
BUS - SIGNALS VALID
1 |
DBUS OUT | F_ DOA —
Y SIGNALS VALIDY
- E*csn I
CONTROL }

SIGNALS SIGNALS VALID
{M/10, RAW, fwepy
E/NE, D/C) |

- —-

e N g

GENERAL TIMING

LAST CYCLE
OF CURRENT .
INSTHUCTION

CLOCK To T

T2 TQ T! T2 TQ m

OPREQ

INTREQ B

INTACK

==

INTERRUPT TIMING

ADREN \

| oo

|
—)I l(— tABD

HIGH IMPECANCE x
ADR STATE

HIGH TMPEDANCE
SIGNALS VALID j AMPED

—x k-toRT

DBUSEN —,___\

7

—>‘| F"DBD

—!| Il—tbsn

HiGH IMPEDANCE
DBUS STATE x

SIGNALS VALID x HIGH IMPEDANCE

=3 [ORT

TRI-STATE BUS TIMING

Figure 9, 2650 TIMING DIAGRAMS

UPREQ 1s the master control signal that coordinates all operations
external to the processor, Many of the other signal interactions are related to
OPREQ. The timing diagram assumes that the clock periods are constant and
that OPACK is returned in time to avoid delaying instruction execution. In
that case, OPREQ -will be high for 1.5 clock periods (1/2 of tpe) and then
will be low for ancther 1.5 clock periods.

The interface control signals have been designed to implement asynchro-
nous interfaces for both memory and input/output devices. The control
signals are relatively simple and provide the following advantages: no
external synchronizing is necessary, external devices may run at any data
rate up to the processor’s maximum I/O data rate, and because data signals
are furnished with guard signals the external devices are often relieved of the
necessity of latching information such as memory address.

MEMORY READ TIMING
The following signals are involved in the processor’s memory read
sequence, g5 shown in Figure 10.

OPREQ = Operation Request
DEUSO-DBUST* = Daia Bus
ADRO-ADR12 = Address Bus

ADR12 = Address bit 13

ADRI14 = Address hit 14

MTO = Memory /Input-Qutput
R/W = Read;Write

OPACK* = Operation Acknowledge

The signals marked with an asterisk are sent from the memary device to
the processor, The other signals are developed by the processor.

OPREQ is a guard signal which must be valid (high) for the other signals
to have meaning, When reading main memory the 2650 simultaneously
switches OPREQ to a high state, M/IO to M (memory), R/W to R (Read),
and places the memory address on lines ADRO-ADR14. Remember that

CLOCK ‘

2EEQ OTPUTS:

INTERNAL

Y o INTERNAL Y]
! DELAY =E00nS \
CONTHOL DUTPUTS AND |
AODORESSERWVALID

OFREQ

ADRO-ADR1A
memoryaa [T T T T T T oo~ = A -- =
S R . b . JOF [PRRR —— y - —
= = " m oEm om m — — m E E e ey m em e em roam - e i - -y - a—
READAYRITE
b — . e - = - T - —

FROW ACCESSED MEMOHY:

TFACK - ~e0ins AT Y 1! :
2445 CYELE | .

ALLOWABLE MEMORY
RCCESS TIME |3

CATA IN

ZEED CYCLE TIME
=3 GLOGK PERIQDS=2, 45 MINIM LM |

WOTES: i8] OPAGK must ga low at least 100 nS before the trading edge of T2 in order not m slow down the 2650,
13 DATA |N signads mtust be valid for S0nS afler the trailing edge of DPREQ,

131 Allewahin meamory scoes time is 1us with 2.40s sycle tme.

Figure 10. MEMORY READ SEQUENCE

38

ADR1S8 & ADR14 are multiplexed with other signals and must be logically
ANDed with OPREQ and M to he interpreted. Of course, ADR13 & ADR14
may be ignored if only page zero (8,192 bytes} 1s used.

Once the memory logic has determined the simultaneous existance of the
signals mentioned above, it places the true data corresponding to the given
address location on the data bus (DBUS0 to DBUST), and returns an QPACK
signal to the processor. The processor, recognizing the OPACK, strobes the
data into the receiving register and lowers the OPREQ. This compietes the
memory read sequence,

i the OPACK signal is delayed by the memory device, the processor waits
until it is received. OPREQ is lowered only after the receipt of OPACK. The
memory device should raise OP OPACK after OPREQ falls.

MEMORY WRITE TIMING

The signals involved with the processor’s memory write sequence are
similar to those used in the memory read sequence with the following
exceptions: 1} the R/W signal is in the W state and, Z) the WRP signal
provides a positive going pulse during the write sequence which may be used
as a chip enable, write pulse, etc.

Figure 11 demonstrates the signals that occur during a memory write.

JfT

4 IHTERR AL
NELAY * EdDaR

CLOCK

265 DUTRLITS:

INTFRbAL

CRRED

CORTROL [OUTPLTS, GATA
ALD ADORFSS ! VALID

AO0RD-AD0%14

e = — e ————— ——

memor i p---——— == 3 \ - =
) I U S | W

AEADAIRITE : T
i :
b e — — —— ———— b — e — i ——— ———

e i o — — — —— ——

DELR0-0EUS

e e — — _‘ JE T
FRDMF ACCESSED
WIE LI
u
* EDn%
AT 3 ,EEC
C¥RLF Tahig
260 GYCLE TLWE

3 CLOCK FEF|ODE = 2 4USEC MIMIRALM

OFagE

HOTES, 111 OPAGK mun 4o low ¢t ozl 10005 befeira the Wail-ng edge od T2 m urdir not 10 slow 0asn Lhs 2550,

Figure 11. MEMORY WRITE SEQUENCE

INPUT/QUTPUT TIMING

The signal exchanges for 1/O with external devices is very similar to the
signaling for memory read/write, See the Features Section, INPUT/OUT
PUT FACILITIES.

CRITICAL TIMES

Figure 9 describes the fiming relationship between the various interface
signals. The critical times are labeled and defined in the table of AC
characteristics.

ELECTRICAL CHARACTERISTICS

PRELIMINARY AC CHARACTERISTICS

TA=D°C te 709C Vo =BY15% unless othenwise specified, see notes 1,23 & 4.

LipnTe
SYMBOL PARAMETER AT AKX UnNITS
teH Clock High Phase 400 10,000 nsec
teL Clock Low Phase 400 @ nsec
icp Clock Period 800 wa nsec
tpcB Pracessor Cycle Time 2,400 o nsec
1oR OPREQ Pulsg Width 2tcy + 1oL ~100 e nsec
icoR Clock to OPREQ Time 100 700 nsec
Toan? OPACK Delay Time 0 o= nsec
tOAH OPACK Hotd Time 0 oo nsec
icsa Control Signal Available 50 nsec
tooa Data Qut Available 50 nsac
tpin® Data in Delay 0 1000{8} nsec
igy? Data in Hold 150 PI5eC
Twep Write Pulse Delay T 100 teL—90 nsec
LwpPw Write Pulse Width Lo teL nsec
tABD Address Bus Deiay 80 nsec
iDBED Data Bus Delay 120 nsSec
tIrg1® INTREQ Set up Time 0 nsec
typH10 INTREQ Hold Time] nsec
torTd Output Buffer Rise Time 150 nsec

NOTES O AC CHARACTERISTICS

N@E W

. See preceding timing diagrams for definition of timing terms.

Input levels swing between 085 volt and 2.2 valts,
Input signal transition times are 20ns,

Timing reference level is 1.5 valts.

Load is -100xA at 20pF.

. A Processar Cyele time consists of three clock periods,
- In order to avoid slowing down the processor, GPACK must be lowered 100ns before the trailing edge of

T2 clock, if OPACK is delayed past this point, the processor will wait in the T2 state and sarnple OPACK
on each subsequent negative clock edge until OPACK is lowered,

In order to avoid slowing the processor down, input data must be returned to the processor in lps or

less time from the OPREQ edge, at a cycle time of 2410,

Input data must be held until 50ns after OPREQ falls,

. fnorder to interrupt the current instruction, INT REC rrust £all priot to the first clock of the last cycle

of the currentinstruction, INTREQ must remain iow untii INTACK goes high,

37

MAXIMUM GUARANTEED RATINGS!T

Operating Ambient Temperature 09C o +70°C
Storage Temperature B59C to + 150°C
All Input. Output, and Supply Voltages

with respect to ground pint3} 05V to +BY
Package Powver Dissipation!2!=|WPkg, 1 .6W

PRELIMINARY 2650 DG ELECTRICAL CHARACTERISTICS

LIMITS
SYWVBOL PARAMETER TEST CONDITIONS AR MAX UNIT
L1 Input Load Current Wiy = 0 io 5,28V 10 HA
LoH Output Leakage Current ADREN, DBUSEN = 2.3V, VoyT = 4V 10 s
ILoL Output Leakage Current ADREN, DBUSEN = 22V, VouT = 0.45Y 10 HA
oo Powear Supply Current Voo =528V, Ta = 0°C 109 A
WL input Low -0.8 0.8 W
VIH Input High 272 Voo W
VoL Output Low Im = 1.6 mA 0.0 .45 W
YOh Ouiput High toy = 100 A 24 V06 W
Cin Input Capacitance Vin = OV 10 pF
CoyT Qutput Capacitance VouT = 0V 10 pF

Conditions: Tg = 0°C te 70°C, Voo = BV =5%

NOTES:

1. Stresses abowe those listed under “Maximum Guaranteed Ratings” may cause permaneant damage 1o the device. This is a stress rating
anly and functional operation of the device at these or at any other condition above those indicated in the operation sections of this
specification is not implied.

2. For operating at elevated temperatures the device must be darated based op a +1500C maximum junction temperature and & thermal
resistance of BOCC/W junction 1o ambient {40 pin 1W package).

3. Ths product includes circuitry specifically designed for the pratection of its internai devices from the damaping effects of excessive

static charge. Monetheless, it is suggested that conventional precautions be taken o avoid applying any voitages |arger than the rated maxima,

Parameter valid over operating temperature range Unless otherwise specified.

. All yoltage measurements are referenced 1o graund,

. Manufacturer reserves the right to make design and process changes and improvemants,

. Typical vatuas are at +25°C, nominal supply voltages, and pominal processing parameters.

= RN

38

INTERFACE SIGNALS

TYPE PINS ABBREVIATION FUMCTION SIGNAL SENSE

VNPT 1 GKb Groand GhD=0
INPLYY H Ve -5 Wolts 5% Yioo=1
INPUT i RESET Chip Reser FRESET-11pu 58], pauses rese!
TNPLT i CiGCH Chip Ciack
INPUT 1 PAUSE Tema. Hat exeoutian PAUSE-, temporarily halts exacution
INPUT 1 INTBEC[interrupt Regaes: INTREQ=0, requests interrupt
INPUT 1 DPACK Operatior: Ackrowledge OPACK =0, acknowledges operation
ABPLIT 1 SEMSE Sensn SENSE=0 (low| of SENSE=1 [high)
IMPUT 1 ADREN Address Erable ADREN=1 drives into third state
INPUT 1 OELUSEN Ctala Bus Enake DBUSEN=1 drives irto third state
OUT g DEUSD-DBLST Data Bus D26 n=0 flow), DBLFSn-1 (hight
QUTPUT 13 ADRO-ADRTZ Address O through 12 Adm - lawl, ADRr=1 (high;
OUTPUT H ALR13 or E/NE Addres 13 ar

Extended/Mon-Extendrd| Non-Extended=0, Extended=1
COUTPUT 1 ADR1S or (1T Address 14 or

Data Canleol Coatrel=D, Data 1
QUTPUT 1 OPRED Cperation Regusst OPREZ0- 1, requests operation
SOUTPUT 1 I"ﬂ_-"ﬁ) Mermary 1S 15=0, M=1
OUTPUT 1 R Head/\irite
SUTPUT 1 FLAG Flag Cucput
OUTPUT 1 INTACK 1 1iErTups Ackiow wige IMTACK =1, acknowledges interrupt
SUTPUT 1 RUNAVAIT Run/Wait I ndicator RUMN=T, WAIT =0
QUTPUT 1 WREP Witite Pulss WERP=1 {pulss), czuses writing

PIN CONFIGURATION

SENSE 1 U a0 FLAG
ADR 12 2 a9 Ver
ADA 11 3 33 CLBCK
ADR 10 a 37 PAUSE.
ADR 2 5 36 aFacK
ADR § s RUNNAIT
ADR T ? 4 INTACK
ADR 6 8 53 DEUS 0
ADK 5 4 2650 32 DBUS 1
ADR 4 10 2] DEUS 2
ADR3 1" 20 ’I DBUS 3
ADR 2 12 29 DEUS 4
ADR 1 13 o DELS §
ADR G 14 @7 DBUS B
ADREN 15 6 DEUS T
RESET % = DELUSEN
INTREQ 17 24 OFREQ
ADR 18-D/T 18 3 A
ADR 12-E/HE 12 22 WRP
WG 20 L GNED

TOP VIEW

40

FEATURES

INPUT/QUTPUT FACILITIES

The 2650 processor provides several mechanisms for performing input/
output functions. They are flag and sense, non-extended 1;O Instruetions,
extended I/0 instructions, and memory 1/O. These four facilities are
described below.

FLAG & SENSE /O
The 26580 has the ability to directly output one bit of data without
additional address decoding or synchronizing signals.

The bit labeled *“Flag™ in the Program Status Word is connected through a
TTL compatible driver to the chip output at pin £40. The Flag output always
reflects the value in the Flag hit,

When a program changes the Flag bit through execution of an LPSU,
PPSU, or CPSU, the bit will be set or cleared during the last cycle of the
instruction that changes it.

The Flag bit may be used conveniently for many different purposes, The
following is a list of some possible uses:
1. Aserial outpui channel
2. An additional address bit to increase addressing range.
3. A switch or toggle cuiput to control external logie.
4. The origin of a pulse for polling chains of devices.

The Sense bit performs the complementary function of the Flag and is a
single bit direet input to the 2650, The Sense input, pin #1 is connected to a
TTL compatible receiver and is then routed directly to a bit position in the
Program Status Word. The bit in the PSW always represents the value of the
external signal. It may be sampled anytime through use of the TPSU or
SPSU instructions.

This simple input to the processor may be used in many ways. The
following is a list of some possible uses:
1. A serial input channei
2. A sense switch input
3. A break signal to a processing program
4, An input for ves/no signaling from external devices.

NON-EXTENDED I/0

There are four one byte /O instructions; REDC, REDD, WRTC, and
WRTD. They are all referred to as non-extended because they can
communicate only one byte of data, either into or out of the 2650,

REDC and REDD causes the input transfer of one byte of data. They are
identical except for the fact that the D/C Signal is in the D state for REDD
and in the C state for REDC. Similarly, the instructions WRTC and WRTD
cause an output transfer of one byte of data. The D/C line disctim-
inates between the two pairs of input{/output instructions. The D/C line
can be used as a 1-bit device address in simple systems.

The read and write timing sequences for the one byte IO instructions are
the same as the memory read and write sequences with the following
exceptions: the M/IO 51gna.1 is switched to IO, the D/C line becomes valid,

E/NE is switched to NE {non-extended), and the Address bus contains no
valid information.

41

42

The NE signal informs the devices outside the 2650 that a one byte [JO
instruction is being executed. The D/ line indicates which pair of the one
byte 1jO instructions are being executed; D implies either WRTD or REDD,
and C implies either WRTC or REDC. Finally, to determine whether it is a
read or a write, examine the R/W signal level.

Table 6 illustrates the sense of the interface signals. The “Signal Timing”
section should be referenced for the exact timing relationships. It should
he remembered that the control signals are not to be considered valid ex-
cept when the OQPREQ signal is valid.

TABLE 6. 1/O INTERFACE SIGNALS

OPREQ | M/IO | RAW | ADRIZ-E/NE | ADR14-D/C
MEMORY READ T % "R ADR13 ADR14
MEMORY WRITE T M W ADR13 ADR14
2 BYTE READ T G | R E Don't Care
2BYTE WRITE T o | w E Don't Care
1 BYTE CONTROL READ T 0| R NE C
1 BYTE CONTROLWRITE| T G | w NE c
1 BYTE DATA READ T 0 | R NE D
1BYTE DATA READ T o | w NE D

EXTENDED I/O

There are two, two byte I/O instructions; REDE and WRTE. They are
referred to as extended because they can communicate two bytes of data
when they are executed. The REDE causes the second byte of the
instruction tc be output on the low order address lines, ADRO-ADR7, which
is intended to be used as a device address while the byte of data then on the
Data Bus will be strobed into the register specified in the instruction. The
WRTE also presents the second byte of the instruction on the Address Bus,
but a byte of data from the register specified in the instruction is
simultanecusly cutput on the Data Bus.

The two byte IfO instructions are similar to the one byte I/O instructions
except: the D/C line is not considered, and the data from the second byvie of
the I/0Q instruction appears on the Address Bus all during the time that
OPREQ is valid. The data on the Address Bus is intended to convey a device
address, but may he utilized for any purpose.

Table 6 illustrates the sense of the interface signals for extended 1O in-
structions. Refer to “Signal Timing' section for exact timing relationships.

MEMORY 1/0

The 2650 user may choose to transfer data into or out of the processor
using the memory control signals. The advantage to this technigue is that the
data can be read or written by the program through ordinary instruction
execution and data may be directly operated upon with the arithmetic
instructions.

To make use of this technique, the designer has to assign memory
addresses to devices and design the device interfaces to generate the same
signals as memory.

A disadvantage to this method is that it may be necessary to decode more
address lines to determine the device address than with other 1/O facilities,

iNTERRUPT MECHANISM

The 2650 has been implemented with a conventional, single level, address
vectoring interrupt mechanism. There is one interrupt input pin. When an
external device generates an interrupt signal (INTREQ), the processor is

determined by an 8-bit vector supplied by the interrupting device.

Of special interest is that the deviece may return z relative indirect address
signal which causes the processor to enter an indirect addressing sequence
upon receipt of an interrupt. This enables a device to direct the processor to
exeente code anywhere within addressable memory.

Upeon recognizing the interrupt signal, the processor automatically sets the
Interrupt Inhibit bit in the Program Status Word. This inhibits further
interrupts from being recognized until the interrupt routine is finished
executing and a Return-and-Enable instruction is execuled or the inhibit bit
is explicitly eleared,

When the inhibit bit in the PSW is set, the processor will not recognize an
interrupt input. The Interrupt Inhibit bit may be set under program control
(LPSU, PPSU) and is automatically set whenever the processor accepts an
interrupi. The inhibit bit may be cleared in three ways:

1. By a RESET operation
2. By execution of an appropriale clear or load PSU instruction; {CPSU, LPSU)
3. By execution of a Return-and-Enable instruction.

The sequence of events for a normal interrupt operation is as follows:

. An executing program enables interrupts.

. External device initiates interrupt with the INTREQ line.

. Processor finishes executing current instruetion.

. Processor sets inhibit bit,

- Processor inserts the first byte of ZBSR (Zero Branch-to-Subroutine, Relative)
instruction into the instruction register instead of what would have been the next
sequential instruction.

. Processor accesses the data hus to fetch the second byte of the ZBSR instruetion.

. Interrupting device vesponds te the Processor generated INTACK (Interrupt Acknow-
ledge) by supplving the requested second byte.

8. The processor executes the Zero Branch-to-Subroutine instruction, saving the address
of the instruction following the interrupted instruction in the RAS, and proceeds to
execute the insiruction at page 0, byte 0, or the address relative to page 0, hyte 0 as
given by the interrupting device.

9. When the interrupt routine is complete, a return instruction (RETC, RETE) pulls the

address from the RAS and execution of the interrupted program resumes.

[(I S TL R X

=1 Gz

Since the interrupting device specifies the interrupt subroutine address in
the standard relative address format, it has considerable flexibility with
regard to the interrupt procedure. It can point to any location that is within
+63 or —64 bytes of page zero, byte zero of memory. (Negative relative
addresses wrap around the memoty, modulo 8,1921p bytes.) The inter-
rupting device also may specify whether the subroutine address is direct or
indirect by providing a zero or one to DBUS £7 (pin #26). If the external
device is not complex enough to exercise these options, it may respond to
the INTACK operation with a byte of all zeroes. In such a case, the
processor will execute a direct Branch-to-Subtoutine to page zero, byte zero
of memory,

The timing diagram in Figure 12 will help explain how the interrupt
system works in the processor. The execution of the instruction labeled “A”
has been proceeding before the start of this diagram. The last cycle of
instruction “A" is showm. Notice that, as in gll external operations, the
OPREQ output eventually causes an OPACK input, which in turn allows
OPREQ to he turned off. The arrows show this sequence of events. The last
cycle of instruction “A” fetches the firsi byie of instruction “B" from
Memory and inserts it info the Instruction Register.

Assume that instruction “B™ is a two cycle, two byte instruction with no
operand fetch (e.g., ADDI). Since the first byte has already been fetched by
ingtruction ““A™, the first cycle of instruetion “B” is used to fetch the second
byte of instruction ‘B, Had instruction “B’" not been interrupted, it would
have fetched the first byte of the next sequential instruction during its
second (last) eycle, The dotted lines indicate that operation.

Since instruction “B’ is interrupted, however, the last cycle of B is used
to insert the interrupt mstruction (ZBSR} inte the instruction register.
Notice that the INTREQ input can arrive at any time. Instruction B is in-
terrupted since INTREQ occured prior to the last (2nd) cycle of execution.

Instead of being the next sequential instruction following “B”", instruction
“C” is the completion of the interrupt. The first eyele of “C” is used to
fetch the second byte of the ZBSR instruction from the DBUS as provided
by the interrupting device. This fact is indicated by the presence of the
INTACK control signal. The INTREG may then be removed. When the
device responds with the requested byte, it uses a standard operation
acknowledge procedure (OPACK) to so indicate to the processor. During the
second cycle of instruction “C” the processar executes the ZBSR instruction,
and fetches the first byte of instruction “D" which is located at the
subroutine address,

FNST INST INST INST

Sle Sle

e 8 e ¢ T
LASTCYCLE ' CYCLE1 [_..p_YELE 2 CYCLE1 | CYCLE2 CYCLE 1

OPREC

I . ‘

GPACK | R W A U A U A

DBUS { \ { LY é s i A\ — F
1STEVTE 2NDBYFE =+ L—_'.u ISTBYTE

_ INST B INST B INST D

INTREQ — f

INTACK I—‘—\

+ PROCESSOR INSERTS 18T BYTE OF ZBESR INSTRUCTION, ADDRESS
DF 15T BYTE OF INSTC IEPUSHED INTC RETURN ADDRESS STACK.

%+ 2ND BYTE OF ZBSR {INTERRUPT VECTOR)

Figure 12. INTERRUPT TIMING

SUBROUTINE LINKAGE

The on-chip stack, aleng with the Branch-to-Subroutine and Return
instructions provide the facility to transfer control to a subroutine. The
subroutine can refuwrn control to the program that branched to it via a
Return instruction.

The stack is eight levels deep which means that a routine may branch to a
subroutine, which may branch to another subroutine, etc., eight times before
any Return ingtructions are axecuted.

When designing a system that utilizes interrupts, it should be remembered
that the processor jams a ZBSR into the IR and then executes it. This will
cause an entry to be pushed into the on-chip stack like any other
Branch-to-Subroutine instruction and may limit the stack depth available in
certain programs.

When branching to a subroutine, the following sequence of events occurs;

1. The address in the IAR is used to fetch the Branch-to-Subroutine instruction and is
then incremented in the Address Adder so that it points to the instruction following
the subroutine branch.

2. The Stack Pointer is incremented by one so that it points to the next Return Address
Stack loeation,

3. The contents of the IAR are stored in the stack at the lacation designated by the Stack
Fointer,

4. The operand address contained in the Branch-to-Subroutine instruction (the address of
the first instruction of the subroutine) is inserted inta the [AR.

When returning from a subroutine, this sequence of events occurs:
1. The address in the IAR is used to fetch the return (RETC, RETE) instruetion from
memory,
2. When the return instruction is recognized by the processor, the contents of the stack
entry pointed to by the Stack Pointer is placed into the IAR.
. The Siack Pointer is decremented by one.
4. Instruction execution continues at the address now in the IAR.

=]

CONDITION CODE USAGE

The two-bit register, called the Condition Code, is incorporated in the
Program Status Word. It may be seen in the description of the 2850
instructions, that the Condition Code (CC) is specifically set by every
instruction that causes data to be transferred into a general purpose register
and it is also set by compare instructions,

The reason for this design feature is that after an instruetion executes, the
CC contains a modest amount of information about the byte of data which
has just been manipulated. For example, a program loads register one with a
byte of unknown data and the Condition Code setting indicates that the
byte is positive, negative or zero. The negative indication implies that bit #7
is set to one.

Consequently, a data manipulation operation when followed by a
conditional branch is often sufficient to determine desired information
without resorting to a specific test, thus saving instructions and memory
space,

46

In the following example, the Condition Code is used to test the parity of
a byte of data which is stored at symbolic memory location CHAR.

EQ EQU 0 THE EQUAL CONDITION CODE
CHAR DATA 2 UNKNOWN DATA BYTE
W EQU H'04' THE WITH CARRY BIT
NEG EQU 2 CC MASK
CPSL WwC CLEAR CARRY BIT
LODIL,R2 -8 SET UP COUNTER
SUBZ RO CLEAR REG 0

LODR.,R1 CHAR GET THE CHARACTER (cc is set)
LOOF BCFR,NEG GO1 IF NOT SET, DON'T COUNT (cc is

tested)
ADDLRO +1 COUNT THE BIT
G01 RRL,R1 MOVE BITS LEFT (cc is set)

BIRR,RZ LOOP LOOP TILL DONE

FINISHED,TEST IF REG 0 HAS A ONE IN LOW ORDER
* IF BIT #0 =1, ODD PARITY. [F BIT #0 = 0, THEN EVEN.

TMLRO H'01'
BCTR,EQ ODD
EVEN HALT
ODD HALT

START-UP PROCEDURE

The 2650 processor, having no internal start-up procedure must be started
in an orderly fashion to assure that the internal control logic begins in a
known state.

Assuming power is applied to the chip and the clock input is running, the
easiest way to start is to apply a Reset signal for at least three clock periods.
When the RESET signal is rernoved the processor will fetch the instruction at
page 0, byte 0 and commence ordinary instruction execution.

To start processing at a specific address, a more complex start-up proce-
dure may be employed. If an Interrupt signal is applied initially along
with the Reset, processing will commence at the address provided by the
interrupting device. Recall that the address provided may include a bit to
specify indirect addressing and therefore the first instruction executed may
be anywhere within addressable memory. The Reset and Interrupt signal
may be applied simultaneously and when the Reset is removed, the processor
will execute the usual interrupt signal sequence as described in INTERRUPT
MECHANISM. There is an example of a start-up technique in the System
Application Noetes,

INSTRUCTIONS

ADDRESSING MODES

An addressing mode is 2 method the processor uses for developing
argument addresses for machine instructions. '
The 2650 processor can develop addresses in eight ways:
Register addressing
Immediate addressing
Relative addressing
Relative, indirect addressing
Absolute addressing
Absolute, indirect addressing
Absolite, indexed addressing
Absolute, indirect, indexed addressing
However, of these eight addressing modes, only four of them are hasic.
The others are variations due to indexing and indirection. The basic
addressing mode of each instruction is indicated in parentheses in the first
line of each detailed instruction deseription. The following text describes
how effective addresses are developed by the processor,

REGISTER ADDRESSING
All register-to-register instructions are one byte in length. Instructions
utilizing this addressing mode appear in this general format.

Operation Code Register

?PEBH 43210

Since there are only two bits designated to specify a register, tegister zero
always contains one of the operands while the other operand is in one of the
three tregisters in the currently selected hank. Register zero may also he
specified as the explicit operand giving instructions such as: LODZ RO.

In one byte register addressing instructions which have just one operand,
any of the currently seiected general purpose registers or register zero may
be specified, e.g., RRL,R0.

IMMEDIATE ADDRESSING

All immediate addressing instructions are two bytes in length. The first
byte containg the operation code and register designation, while the second
byte contains data used as the argument during instruction execution.

Two’s complement binary number
Qperation Code Register or 8-bitJIogic mask

Y e N

76543210 16543210
Byte O Byte 1

The second byte, the data byte, may contain a binary number or a logic
mask depending on the particular instruction being executed. Any register
may be designated in the first byte,

47

48

RELATIVE ADDRESSING

Relative addressing instructions are all two bytes in length and are
memory reference instructions. One argument of the instruction is a register
and the other argument is the contents of a memory location. The format of
relative addressing instruetions i1s:

Operation Code Register | Relative Displacement
1
~

210 76643210
yte 0 Byta t

The first byte contains the operation code and register designation, while
the second byte contains the relative address. Bits 0—=6, byte 1, containa 7-
bit two’s complement binary number which can range from —64 to +63. This
number is used by the processor to calculate the effective address. The
affective address is calculated by adding the address of the first byte
following a relative addressing instruction to the relative displacement in the

. second byte of the instruction.

If bit 7, byte 1 is set to “1”, the processor will enter an indirect addressing
cycle, where the actual operand address will be accessed from the effective
address location. See Indirect Addressing.

Two of the branch instructions (ZBSR. ZBRR) allow addressing relative
to page zero, byte 0 of memery. In this case, values up to +63 reference the
first 63 bytes of page zero and values up to - 64 reference the jast B4 bytes
of page zero,

ABSOLUTE ADDRESSING FOR NON- BRANCH INSTRUCTIONS

Absolute addressing instructions arve all three bytes in length and are
memory reference instructions. One argument of the instruction is a register,
designated in bits 1 and 0, byte 0; the other argument is the contents of a
memory location. The format of absolute addressing instructions is:

Index
Register
ar
. Argument |ndex High-Order
Operation Code Register | Control Adt;ress Low—Ordrlar Address
NS AN

7665643210 76543210 766843210
Byte 0 Byte 1 Byte 2

Bits 4—0, byte 1 and 70, byte 2 contain the absolute address and can
address any byte within the same page that the instruction appears.

The index control bits, bits #6 and 25, byte 1 determine how the
effective address will be calculated and possibly which register will be the
argument during instruction execution. The index control bits have the

following intetpratation:

Indax Control

Bit 6 Bit & Meaning
0 0 Non-indexed address
0 1 indexed with auto-increment
1 0 Indexed with auto-decrement
1 i indexed only

When the index control bits are 0 & 0, bits #1 and #0 in byte 0 contain
the argument register designation and bits 0 to 4, byte 1 and bits 0 to 7, bhyte
2 contain the effective address. Indirect addressing may be specified by
setiing bit #7, byte 1 to a one.

When the index control bits are 1 & 1, bits #1 and #0 in byte 0 designate
the index register and the argument register implicitly becomes register zero.
The effective address is calculated by adding the contents of the index
register (8-bit absolute integer) to the address field. If indirect addressing is
specified, the indirect address is accessed and then the value in the index
register is added to the indirect address. This is commonly called post
indexing.

When the index control bits contain 0 & 1, the address is calculated by the
processor exactly as when the control bits contain 1 & 1 except a binary 1 is
added to the contents of the selected index register before the calculation of
the effective address proceeds. Similarly, when the index control bits contain
1&0, a binary 1 is subtracted from the contents of the selected index register
before the effective address is calculated.

ABSOLUTE ADDRESSING FOR BRANCH INSTRUCTIONS
The three byte, absolute addressing, branch instructions deviate slightly in
format from ordinary absolute addressing instructions as shown below:

Register
or
Condition
Code
Operation Code Mask i High-Drdelr Addressing Low-Order Addressing
A/ N/ N

76043210 766843210 76543210
Byte 0 Byte 1 Byte 2

The notable difference is that bits & and 5, byte 1, are no longer
interpreted as Index Control bits, but instead are interpreted as the high
order bits of the address field. This means that there is no indexing allowed
on most absolute addressing branch instructions, but indexed branches are
possible through use of the BXA and BSXA instructions. The bits #6 and
#3, byte 1, are used to set the current page register, thus enabling programs
to directly transfer control to another page.

See the MEMORY ORGANIZATION, BXA and BSXA instructions, and
INDIRECT ADDRESSING.

49

&0

INDIRECT ADDRESSING

Indirect addressing means that the argument address of an instruction is
not specified by the instruction itself, but rather the argument address will
be found in the two bytes peinted to by the address field or relative address
field, of absolute or relative addressing instructions. In the case of absolute
addressing, the value of the index register is added to the indirect address hot
to the value in the address field of the instruction. In both cases, the
processor will enter the indirect addressing state when the bit designated
“[” {5 set to one. Entering the indirect addressing sequence adds two cycles
{6 clock periods) to the execution {ime of an instruction.

[ndirect addresses are 15-bit addresses stored right justified in twoe
contiguous bytes of memory. As such, an indirect address may specify any
location in addressable memory (0—32,767). The high order bit of the two
byte indirect address is not used by the processot.

Only single level indirect addressing is implemented. The following
examples demonstrate indirect addressing.
Example 1.

Poocoii110looo00000[0c1010001]|LODAR2 «H'51"

Address 104g 1118 1215
Mooooo00 10010100 0]ACON H"128"
Address Bl1g 5218
17100111 DATA H'87'
Address 12818

The LODA instruction in memory locations 10, 11, and 12 specifies
indirect addressing (bit 7, byte 1, is set). Therefore, when the instruction is
executed, the processor takes the address field value, H' 51", and uses 1t to
access the two byte indirect address at 51 and 52. Then using the contents of
51 and 52 as the effective address, the data byte containing H' 67" is loaded
into register 2.

Example 2.
foooi1o0z:to0][T0o0D00 101 LODR,R2 #H17'
Address 1045 111g
Joocooooo 10010100 0] ACON H'128’
Address 1718 184
01100111 DATA H's7'
Addrass 12815

In a fashion similar to the previous example, the relative address is used to
access the indirect address which points to the data byte. When the LODR
instruction is executed, the data byte contents, H' 67", will be loaded into
register 2,

INSTRUCTICNS FORMAT EXCEPTIONS

There are several instructions which are detected by decoding the entire 8
bits of the first byte of the instruction. These instructions are unique and
may be noticed in the instruction descriptions. Examples are: HALT, CPSL,
CPSL.

Of this type of instruction, two operation codes were taken from
otherwise complete sets thus eliminating certain possible operations. The

cases are as follows:

(NOT OKAY) STRZ © Storing register zero into register zero is not imple-
(OKAY) NOP = mentefi, the operation code is used for NOP (no
operation).
(NOT OKAY) ANDZ 0 | AND of register zero with register zero is not im-
(OKAY) HALT plemented, the operation code is used for HALT.
CPERATION CODE Riv
1 1
(2) RECISTER suMBOLS:
ADDRESSlNG K - AEGISTEA NUMBER
¥ - WaLHE Of CONDITION
T 4 3 F] 2 2 1 o ® - INDEX REGISTER NUMHER
| - IMC'AECT 81T
OFERATION CODE R DATA MAEK OR BINARY WALUE
s :
{l) IMMEDIATE
ADDRESSING
15 4 13 2 1 0 9 E] T [E 4 3 z 1 L)
RELATIVE DISFLACEMENT
OF‘FRHT:ON COOE R | 640 15 ACEMEN TS 163
. Ly — s -
{R) RELATIVE
ADDRESSING
kL] 14 12 12 Rkl 0% q ® 7] g 4 E] 2 1 o
*INDEX
OPERAT:ON [=als]3 RiX | CONTROL HIGHER ORDEA ADDRESS LOUYWER ORDER ADDRESS
s s : !
{A} ABSOLUTE
ADDRESSING
{NON-BRANCH 2% 21 o 1@ | 7 I & 1 ® 12 n] ' B A ERE]
INSTH UCTlONs] HHEHER OHIDER ADDRESE
Y
GPERATION CODE RV 1 PAGE LOWER QADEA ADDRESS
P L s - "\ /'R/‘_'_\ -
(B} aBsoLuTE
ADDRESSING
{BRQNCH 2 2) RE] 14 1 16 15 14 12 12 " 10 9 g [5 4 X 2
INSTRLUCTIONS) HIGHER DRDER ADDRESS
s
UMUSED PAGE LOMWER OADEA ADDRESS
.)
INDIRECT
ADDRESSING
15 14 13 2 1 10] # 7 o 5 4 I a2 1 i
CPERATION CODOE
i 1 INGEX CON TAOL:
{E} g?:_ INBESED e AUTE- NG REMENT
MISCELLANEOUS i e
7 %] EY 4 k| 2 1]

Figure 13. INSTRUCTION FORMATS

DETAILED PROCESSOR INSTRUCTIONS

LOAD REGISTER ZERO {Register Addressing)
Mnemanic LCDZ r
Binary Coding

L2

ojojolojojo] r

76643210
Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction transfers the contents of the specified register, r,
into register zero. The previous contents of register zerc are lost. The
contents of register r remain unchanged.

When the specified register, r, equals 0, the operation code is changed to 6016

by the assembler. The instruction, 00000000, yields indeterminate results,

Processor Registers Affected cC
Candition Code Setting Register Zero CG1 Ccco
Positive 0 1
Zero o 0
Negative 1 Q
LOAD IMMEDIATE {Immediate Addressing)
Mnemenic LODI,r v
Binary Coding
¥ r 11T 101 [1
0 0 0 D 0 1 r 1 1 L \I! 1 1

76543210 76543210
Execution Time 2 cycles {6 clock periods)

Description
This two-byte instruction transfers the second byte of the instruction, v,
into the specified register, r. The previous contents of r are lost.

Processor Registers Affected CC

Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0
Megafive 1 0

LOAD RELATIVE {Relative Addressing)

Mnemonic LCDR,r {=)a
Binary Coding

T 1 L
OO0 Q| 10 II' | . Ia

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction transfers a byte of data from memory into the
specified register, r. The data byte is found at the effective address formed
by the addition of the a field and the address of the byte following this
ingtruction, The previous contents of register r are lost. Indirect addressing
may be specified,

Processor Registers Affected cc
Condition Code Setting Register CC1 CCo
Pasitive 0 1
Zero 0)]
Negative 1 0
LOAD ABSOLUTE {Absolute Addressing)
Mnemoanic LODA - {=lal,X)
Binary Coding
T T T T T 1 I T T T 1
clolololt1 |1k oer L | 1€ | a high order , 38 Ilcuw.order
1 1 i 1 J 1 1

1
768843210 76543210 76543210

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction transfers a byte of data from memory into the
specified register, r. The data byte is found at the effective address. If
indexing is specified, bits 1 and 0, byte 0, indicate the index register and the
destination of the operation implicitly becomes register zero. The previous
contents of register r are lost.

Indirect addressing and/or indexing may be specified.

Processor Registers Affected cC

Condition Code Setiing Hegister r CC1 CCo
Positive 0 1
Zaro 0 0
Megative 1 0

63

z

STORE REGISTER ZERO {Register Addressing!

Mnermonic STRZ r
Binary Code

il1[o]alalo} T

765432120
Execution Time 2 cycles {6 clock periods)

Deseription

This one-byte instruction transfers the contents of register zero into the
specified register x. The previous contents of regisier r are lost. The contents
of register zero remain unchanged. '

Note: Register r may not be specified as zero. This operation code,
*11000000°, is reserved for NOP.

Processor Registers Affected CcC
Condition Code Setting Register r cC1 CGo
Positive 0 1
Zero 0 0
Negative 1 G
STORE RELATIVE {Relative Addressing)
Mnemonic STRR,x {*)a
Binary Code
T S I I AL
1 1 0 0 1 0 [‘ I 1 Ia L 3 L
76643210 76543210
Execution Time 3 cycles {9 clock periods)
Description)

This two-byte instruction transfers a byte of data from the specified
register, 1, into the byte of memory pointed to by the effective address, The
contents of register T remain unchanged and the contents of the memory
byte are replaced.

Indirect addressing may be specified.

Processor Registers Affected None

Condition Code Satting NSA

STORE ABSOLUTE {Absolute Addressing)

Mnemonic STRAx (=}al, X}
Binary Code

T T LI L oL T T T 1
1(1|0]0]1]1 P 1| IC Iilhilgh.DrJer) Ialpwlorcller‘

L A
76543210 7868543210 76543210

Execution Time 4 cycles {12 clock periods)

Description

This three-byte instruction transfers a byte of data from the specified
register, r, into the byte of memory pointed to by the effective address. The
contents of register r remain unchanged and the contents of the memory
byte are replaced.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Processor Registers Affected None

Condition Code Setting N/A

ADD TO REGISTER ZERQ {Register Addressing)
Mnemonic ADDZ r

Binary Code

T
Tio|ajojo|O| r

765432170

Execution Time 2 cycles {6 clock periods)

Description

This one-byte instruction causes the contents of the specified register, r,
and the contents of register zero to be added together in a true binary adder.
The 8-bit sum of the addition replaces the contents of tegister zero. The
contents of register r remain unchanged.

Note: Add with Carry may be effected. See Caxty bit.

Processor Registers Affected C,CC,IDC, OVF

Condition Code Setting Register Zero CC1 CCO
Positive 0 1
Zero o 0
Negative 1 0

b5

[4]

=21

ADD IMMEDIATE fImmediate Addressing)

Mnemaonic ADDI,r %
Binary Coding

T T T 1T T T 11
11010101011 r "

i 1 1 1 i L

H
765643210 76643210

Execution Time 2 cycles (6 clock perieds)
Descrijtion

This two-byte instruction causes the contents of register r and the contents
of the second byte of this instruction to be added together in a true binary
adder. The eight-bit sum replaces the contents of register r,

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC,IDC, QVF
Condition Code Setting Register r CCi1 cco

Positive 0 i

Zare a 0

Negative 1 4]
ADD RELATIVE {Relative Addressing)
Mnemonic ADDR,r {+]a
Binary Coding

T 1
tofofo}1o] * 1

766543210 785432140
Exeeution Time 3 cycles {9 clock periods)

Description

This two-byte instruction causes the contents of register r and the contents
of the byte of memory pointed to by the effective address to be added to-
gether in a true binary adder. The eight-bit sum replaces the contents of
register r.

Indivect addressing may be specified.
Mote: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C, GC, IDC, OVF

Condition Code Setting Register r CC1 cCo
Positive a 1
Zero 0 0
Negative 1 0

ADD ABSOLUTE {Absolute Addressing}

Mnemonic ADDA r fedal X}
Binary Coding

T T T T T T T T T 1
1{0{040(1(1 r | IIC alhilghlorder . Ia|I‘cnn.rlr:-rcllerl .
76543210 76543210 76543210
Execution Time 4 cycles {12 clock petiods)
Description

This three-byte instruction causes the contents of register r and the
contents of the byte of memory pointed to by the effective address to be
added together in a true binary adder. The eight-bit sum replaces the
contents of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affectad C,CC, IDC, OVF
Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero c 0
Negative 1 [H
SUBTRACT FROM REGISTER ZERO {Register Addressing)
Mnemonic SUBZ r
Binary Coding

Tjgjr|o|e|{o] r

P6b43 210

Execution Time 2 cycles (6 clock periods)
Description
This one-byte instruction causes the contents of the specified register r to

be subtracted from the contents of register zerc. The result of the subtraction
replaces the contents of registar zero.

The subtraction is performed by taking the binary two’s complement of
the contents of register r and adding that result to the contents of register
zerc. The contents of register r remain unchanged.

Note: Subtract with Borrow may be effected. See Carry bit,

Processor Registers Affected C.CC,IDC, OVF

Condition Code Setting Register Zero CC1 CCo
Positive 0 1
Zero 0]
Megative 1 ¢

57

b8

SUBTRACT IMMEDIATE {immediate Addressing}

Mnemonic SUBI,r v

Binary Code

1 17T 1 U 1
L'

L]

tlof1]o]of1] r
1 E 1t 11
76543210 76543210

Execution Time 2 cycles {6 clock periods}
Diagorintion
This two-byte instruction causes the contents of the second byte of this

instruction to be subtracted from the contents of register r, The result of the
subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two’s complement of
the contents of the second instruction byte and adding that result to the
contents of register r.

Note: Subtract with Berrow may be effected. See Carry bit.

Processor Registers Affected C,CC,1DC, OVF

Condition Code Setting Register r CC1 cCo
Pasitive 0 i
Zero 0 0
Negative 1 1]

SUBTRACT RELATIVE {Relative Addressing)

Mnemonic SUBR,r {«)a

Binary Code

1 0 1 0 1 0 E l L L L a L 1 1

76543210 76543210

Execution Time 3 cycles {9 clock periods)

Description

This two-byte instruction causes the contents of the byte of memory
pointed to by the effective address to be subtracted from the contents of
register r. The result of the subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two’s complement of
the contents of the byte of memory and adding that result to the contents of
register r.

Indirect addressing may he specified.
Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected €. CC.IDC, OVF

Caondgition Code Setting Registerr cc CCco
Positive o 1
Zero 0 0
MNegative 1 0

SUBTRACT ABSOLUTE {Absolute Addressing)

Mnemonic SUBA r (=)a{,X}
Binary Code

T T r 171 N S SR S B B
T1o1(g|1)1 r ! I.C’ alhlgh ?rdler . a low order

76543210 768543210 78543210

Execution Time 4 cycles {12 clock periods}

Descriptian

This three-byte instruction causes the contents of the byte of memory
pointed to by the effective address to be subfracted from the contents of
register r. The result of the subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two’s complement of
the contents of the memory byte and adding that result to the contents of
register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and @, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Note: Subtract with Borrow may be effected, See Carry bit.

Processor Registers Affected C, CC, iDC, OVF
Condition Code Setting Register r ce CCo
Positive a 1
Zero 0 0
Negative 1 0
AND TO REGISTER ZERD {Register Addressing)
NMnemonic ANDZ r
Binary Cade

t
ol1|0(a|{Oola] r

1
76543210
Execution Time 2 cycles |6 clack periods)
Description

This one-byte instruction causes the contents of the specified register, r,
to be logically ANDed with the contents of register zero. The result of the
operation replaces the contents of register zero. The contents of register r
rerain unchanged,

The AND operation treats each bit of the argument bytes as in the truth
table below:

Bit. (0-7) Bit {0) | ANDResun
0
0 0
1 1
1 0

Note: Register r may not be spemfled as zero. This operation code,
‘010000007, is reserved for HALT.

Processor Registers Affected cG

Condition Code Setting Register Zero CcC1 cCo
Positive Q 1
Zero 0 0
MNagative 1 0

59

g0

AND IMMEDIATE {Immediate Addressing}

Mnemonic ANDI ¢ v
Binary Code

T T T T T
a{i1{ojojo|1] r "

L 1 1 i 1 1 L 1

76543210 766543210

Execution Time 2 cycles {6 clock periods)
Description

This two-byte instruction causes the contents of the specified register x 1o
be logically ANDed with the contents of the second byte of this instruction.
The result of this operalion replaces the contents of register r,

The AND operation treats each bit of the argument bytes as in the truth
table helow:

Bit (0-7) Bit (U -7)] | AND Result
0
0 0
1 1
1 0
Processor Registers Affected
Condition Code Setting Register Zero cC1 CCo
Positive 0 1
Zeto 0 0
Megative 1 0
AND RELATIVE {Relative Addressing}
Mnemanic ANDR,r (#)a
Binary Code
1 T T T 0T 1

] a

——

0(13010491]0
76543210 765643210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be logically ANDed with the contents of the memory byte pointed to by the
effective address. The result of this operation replaces the contents of

register I.

The AND operation treais each bit of the argument bytes as in the truth
tabie below:

Bit (0-7) Bit {0-7) | | AND Result
0 0 | ‘ 0
0 1 O 0
1 1 1 | 1
1 0 | 0
Processor Registers Affected cC
Condition Cotle Setiing Register Zero CC1 cco
Positive 0 1
Zero §] 0
Negative 1 0

AND ABSOLUTE {Absolute Addressing)

Mnamanic ANDA, r {=}al X)
Binary Code
T 1 T T T T
or1|ojolt|1 r 1| IC | a high order allr,v.u'u,rc:nn:;lerI
1 1 I3 1 1 1 1 1 1 1 | 1

1
7858543210 765432110 7686543210

Execution Time 4 eycles {12 clock periods)
Descriptian
This three-byte instruction causes the contents of Register r to be logically
ANDed with the contents of memory byte pointed to by the effective
address. The result of the operation replaces the contents of register r.
The AND operation treats each bit of the argument byles as in the truth
table below:

Bit (0-7) Bit (0-7) {| AND Result
0 0 0
0 1 0
1 1 1
1 0 0

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zerc.

Processor Registers Affected cC
Condition Code Setiing Register Zero CC1 CCo
Positive b 1
Zero 0 0
MNegative 1 0
INCLUSIVE OR TO REGISTER ZERO (Register Addressing)
Mnemonic {DRZ r
Binary Code

oj1]1(0]0/(0 f
768543210

Execution Time 2 cycles (B clock periods)

Description '

This one-byte instruction causes the contents of the specified register, r,
to be logically Inclusive ORed with the contents of register zero, The result
of this operation replaces the contents of register zero, The contents of
register r remain unchanged.

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-T) Bit (0-7) ! ’ Inclusive OR Result
0 0 0
0 1 1
1 1 1
1 0 1
Processor Registers Affected cC
Condition Code Setting Register Zero cCl CCo
Positive 0 1
Zero 0 0
MNegative 1 1]

61

62

INCLUSIVE OR IMMEDIATE {Immecdiate Addressing)

Mnemonic I10RI,r v

Binary Cade

T 1 T T 13
o|1{1f0|0f1] * v
L1 L L1

1 1
F 6 b 43210 768543210

Execution Time 2 cycles |6 clock periods)

Pescription

This two-byte instruction causes the contents of the specified register r to
be logically Inclusive ORed with the contents of the second byte of this
instruction. The result of this operation replaces the contents of register r,

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-7) Bit (0-7)] \ Inclusive OR Result
0 0 0
] 1 1
1 1 1
1] 1
Processor Registers Affected cC
Condition Code Setting Register r CCi CcCOo
Positive 0 1
Zero 0 Q
MNegative 1 0
INCLUSIVE OR RELATIVE {Relative Addressing)
Mnemonic iIORR,r {+)a
Binary Code
T 1 1 1 1T 1
O 1 1 0 1 O r I i L Ia L l 1
765643210 76543210
Execution Time 3 cycles {9 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically Inclusive ORed with the contents of the memory byte pointed
to by the effective address. The result of this operation replaces the previous
contents of register r.

Indirect addressing may be specified.

The Inclusive OR operation treats each bit of the argument byte as in the
truth table below:

Bit (0-7) Bit (0-7) 1 1 Inclusive OR Result
0 0 ‘ 0
0 1 | 1
1 1 | i
1 Q 1
Processor Registers Affected cc
Condition Cede Setting Register r cC1 cco
Positive O 1
Zera 0 a
Negative 1 0

INCLUSIVE OR ABSOLUTE {Absoiute Addressing)

Mnemonic IORA,r {+)al, X}
Binary Cade
T T T T T 1 T T T T 17T
Ot opity o F1 1€ & high order 8 jow order
1 1 | i 1 1 i i | H 1 1 1

76043210 /8543210 765043210

Execution Time 4 gycles |12 clock periods)

Description

This three-byte mstruction causes the contents of register r to be logically
Inclusive ORed with the contents of the memory byte pointed to by the
effective address. The result of the operation replaces the previous contents
of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The Inclusive OR operation treats each bit of the argument bytes a3 in the
truth table below:

Bit (0-7) Bit (0-7) [Inclusive OR Result
0 0 Q
H 1 1
1 1 1
1 0 1
Processor Registers Affected cc
Condition Code Setting Register Zero cc1 Cco
Paositive a 1
Zero 0 0
Megative 1 0
EXCLUSIVE OR TO REGISTER ZERO {Register Addrassing)
Mnemonic ECQRZ r
Binary Code

olol1]ololo f

76543210
Execution Time - 2 cyclss (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of register zero. The result of
this operation replaces the contents of register zero. The contents of register
r remain unchanged.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (3-7) Bit (0-7) | | Exclusive OR Result
1] 1 i
1 . 1 Q
1 0 1
Processor Registers Affected cc
Condition Code Setting Register Zero cCi CCo
Positive] 1
Zero a ¢
Negative 1 1]

63

EXCLUSIVE OR IMMEDIATE {Immediate Addressing}

Mnemonic EORI,r y

Binary Code

- o
o e]

olo|1i0i0q1

76543210 76543210
Execution Time 2 cycles (6 clock periods)

Description

This $wo-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of the second byte of this
instruction. The result of this operation replaces the previous contents of
register r.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) Bit (0-7) || Exclusive OR Result
it 0]
0 1 1
1 1 0
1 0 1
Processor Registers Affected CC
Condition Code Setting Reqister r CCh cco
Paositive 0 1
Zero 0 0
Magative 1 4]
EXCLUSIVE OR RELATIVE { Relative Addressing}
Mnemonic EORR,r {#)a
Binary Code

0joi1 (0|1 a illll:a::l
76642210 76543210
Execution Time 3 cvcles {9 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of the memory byte pointed
to by the effective address. The result of this operation replaces the previous
contents of register r.

Indirect addressing may be specified.

The Exclusive OR operation treats each bit of the argument bytes as in

the truth table below:

|- - —]

Bit {0-7) Bit (0-7) | Exclusive OR Result
0 0 ‘ | 0
0 1 | 1
1 1 | | 0
1 0 1
Processor Registers Affected CC
Condition Code Setting Register r cch CCco
Positive 0 1
Zero 1] O
Negative 1 0

EXCLUSIVE OR ABSOLUTE {Absolute Addressing)

Mnemonic EQRA,r {=ta(,X)
Binary Code

F T T T T T T T T T 4 T
glaofi1jo] 1|1 r I} IC [ahigh order a low arder

I 1 [R R | | T N R [T N |

FT6 543210 768543210 76543210
Execution Time 4 eyeles {12 clock periods)

Description

This three-byte instruction causes the contents of register r to be
Exclusive ORed with the contents of the memory byte pointed to by the
effective address. The result of the operation replaces the previous contents
of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The Exclusive OR. operation treats each bit of the argument bytes as in
the truth table below:

Bij: (0-73 Bit (0-7) l | Exclusive OR Result
0 0 0
0 1 1
1 1 0
1 0 1
Processor Registers Affected cC
Condition Code Setting Register r we | CCo
Positive 0 1
Zero 0)
Negative 1 0
COMPARE TO REGISTER ZERO {Register Addressing)
Mnemonic COMZ r
Binary Code

1‘!‘[000;

76543210
Execution Tirne 2 cycles (B clock periods)
Description

This one-byte instruction causes the contents of the specified register r
to be compared to the contents of register zero. The comparison will be
performed in either “arithmetic” or *logical” mode depending on the setting
of the COM bit in the Program Status Word.

When COM=1 (logical mode) the values will be interpreted as 8-bit
positive binary numbers; when COM=0, the values will be interpreted as 8-bit
two’s complement numbers.

The execution of this instruction only causes the Condition Code to be set
as in the following table.

Pracessor Registers Affected cc

Condition Code Setting CC1 CcCi
Register zero greater than Register r a 1
Register zero equal to Register r 0 0
Register zero less than Register r 1 Q

65

66

COMPARE IMMEDIATE {Immediate Addressing)

Mnemonic COMI,r v
Binary Code

i LI
(1190 !

i i1 4
76543210 765432140

- —]

Execution Time 2 eyeles (G clock periods)

Description

This two-byte insiruction causes the contents of the specified register r to
be compared to the contents of the second byte of this instruction. The
comparison will be performed in either the “arithmetic” or “logical” mode
depending on the setting of the COM bit in the FProgram Status Word.

When COM=1 (logical mode), the values will be treated as 3-bit positive
binary numbers; when COM=0, the values will be treated as 8-bit two’s
complement numbers,

The execution of this instruction omly causes the Condition Code to be set
as in the following table.

Processor Registers Affected ce
Condition Code Setting Cc1 Cco
Register r greater than v 0 1
Register ¢ equal to v o 0
Register r less than v 1 ¥
COMPARE RELATIVE {Relative Addressing}
Mnemaonic COMR . r {*la
Binary Code
T 1T 1T _ 1T 1T 1
1(1]5]001|0| T 1 a
] 1 | 1 L | 1

76543210 76543210

Execution Time 3 eyeles {9 clock periods)
Description

This two-byte instruction causes the contents of the specified reglster r Lo
be compared to the contents of the memory byte pointed to by the effective
address. The comparison will be performed in either the “arithmetic” or
“logical” mode depending upon the setiing of the COM bit in the Program
Status Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive
binary numbers; when COM=0, the values will be treated as 8-bit, two’s
complement numbers.

The execution of this instruction only causes the Condition Code to be et
as in the following table.

Processor Registers Affected CG
Condition Code Setting cCc1 CcCo

Register 1 greater than memory byte 0
Register r equal to memory byte 0 0
Register r less than memeory byte 1

COMPARE ABSQOLUTE {Absolute Addressing}

Mnemonic COMA r (+}al, X}
Binary Code

| — T
111 1101111] |:':, a Ih!gh order [a lonwy l
| 1] 1 1 1 | 1

7868684 32140 765432140 76543210
Execution Time 4 cycles (12 clock periods)
Description

This three-byte instruction causes the contents of register r to he
compared to the contents of the memory byte pointed to by the effective
address. The comparison will be performed in either the “arithmetic” or
“logical’® mode depending on the setting of the COM bit in the Program
Status Word,

Where COM=1 (logical mode), the values will be treated as 8-bit, positive
binary numbers; when COM=0 (arithmetic mode), the values will be treated
as 8-bit, two’s complement numbers.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bils 1 and O, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The execution of this instruction onrly causes the Condition Code to be set
as in the following table.

1 T
ardar
11

o

Processor Registers Affacted cC

Condition Code Setting CCi CCo
Register r greater than memory byts] 1
Register r equal to memary byte 0 0
Register r less than memory byte 1 a

ROTATE REGISTER LEFT {Register Addressing)

Mnemonic RRL.r

Binary Code

1|1|ol1|o]a] *

76543210

Execution Time 2 cyeies (B clock periods)

Description

This one-byte instruction causes the contents of the specified register r to
be shifted left one bit. If the WC bit in the Program Status Word is sef to
zero, bit #7 of register r flows into bit #0; if WC=1, then bit #7 flows into
the Carry bit and the Carry bit flows into bit 20,

Register bit #4 flows into the IDC if WC=1.

[ioc]ivoT cHANGED)
- e - -
st = —1_ WC=0
7 6 5 4 3 2 1 0
IDC
- prm .y -1 -
=1 - it WC=1

7 G 5 4 3 2 1 0
Note: Whenever a rotate causes hit #7 of the specified register to change
polarity, the OVF bit is set in the PSL.

Processor Registers Affected C,CC,IDC, OVF

Condition Code Setting Register r CC1 CCO
Positive 0 1
Zero 0 ¢
Negative i O

67

ROTATE REGISTER RIGHT {Register Addressing}

Mnemonic RRR,r
Binary Code

alijog1joi10y «
76543210

Execution Time 2 cycles [6 clock periods)
Description

This one-byte instruction causes the contents of the specified register r to
be shifted right one bit, If the WC bit in the Program Status Word is set to
zero, bit 0 of the register r flows into bit #7; if WC=1, then bit #0 of the
register r flows into the Carry hit and the Carry bit flows info bit #7.

Register bit #6 flows into the IDC if wC=1.

(NOT CHANGED)

- e B —- o
o n B

wec=0
7 6 &5 4 3 2 1 0
. —--A = al e
Bl —tn- -t We=1

Note: Whenever a rotate causes bit #7 of the specified vegister to change
polarity, the OVF bit is set in the PSL.

Processor Registers Affected C,CC,IDC, OVF

Condition Code Setting Register r cCi Ccco
Positive 0 1
Zero] 0
MNagative 1 0

LOAD PROGRAM STATUS, UPPER

Mnemanic LPSU
Binary Code

1|0|o|1io|c|1]0
78543210

Execution Time 2 eycles [6 clock pariods)

Description
This one-byte instruction causes the current contents of the Upper
Program Status Byte to be replaced with the contents of regisier zero.

See Program Status Word description for bit assignments. Bits #4 and #3
of the PSU are unassigned and will ailways be regarded as containing zZeroes.

Processor Registers Affected F UL SP
Condition Code Setting NiA

LOAD PROGRAM STATUS, LOWER

Mnemonic LPSL
Binary Code

T|O|0j1|0]Of1]1i
76543210

Execution Time 2 cyeles (6 clock periods)
Description
This one-byte instruction causes the current contenis of the Lower
Program Status Byte to be replaced with the contents of register zero.
See Program Status Word description for bit assignments.
Processor Registers Affected CC, 1DC, RS, WC, OVF, COM, C

Condition Code Setting
The CC will take on the value in bits #7 and #6 of register zaro.

STORE PROGRAM STATUS, UPPER

Mnemonic 5P5U
Bimary Code

ojojof{i{afo]1lo
76543210

Execution Time 2 ¢cycles {6 clock periods)

Description
This one-byte instruction causes the contents of the Upper Program Status
Byte to be transferred into register zero.

See Program Status Word description for bit assignments. Bits #4 and #3
which are unassigned will always be stored as zeroes.

Processor Registers Affected cC

Condition Code Setting Register Zero CcC cco
Paositive 0 1
Zero 0 0
Negative [0

69

=
L=

STORE PROGRAM STATUS, LOWER

Mremonic

Binary Code

SPSL

gjofe(1jo|o|l

5

756843210

Execution Time

Description

‘2 cycles (6 clock periods)

This one-byte instruction causes the contents of the Lower Program
Status Byte to be transferred into register zero.

See Program Status Word description for bit assignments,

Processor Registers Affected ce
Condition Code Setting

Register Zera cch CcCo

Positive 0 1
Zero Q]
MNegative 1 0

PRESET PROGRAM STATUS UPPER, SELECTIVE (Immediate Addressing)

NMnemonic PPSU v

Binary Gode

ol1|1{1]al1]|1]0 ililvi1l
1

7654321

Execution Time

Description

0

1l b1 E
76643210

3 cycles (9 clock periods)

This two-byte instruction causes individual bits in the Upper Program
Status Byte to be selectively set to binary one. When this instruction is
executed, each bit in the v field of the second byte of this instruction is
tested for the presence of a one and if a particular bit in the v iield contains
a one, the corresponding hit in the status byte is set to binary one. Any bits
in the status byte which are not selected are not modified.

Processor Registers Affected F. 1, 5P
Condition Code Setting

N/A

PRESET PROGRAM STATUS LOWER, SELECTIVE

{immediate Addressing)

Mnemonic FPSL v
Binary Code
ol 1| 1i1fal1]1]1 SV

76543210 76543210
Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Lower Program
Status Byte to be selectively set to binary one, When this instruction is
executed, each bit in the v field of the second byte of this instruction is
tested for the presence of a one and if a particular bit in the v field containg
a one, the corresponding bit in the status byte is set to binary one. Any bits

in the status byte which are not selected are not modified.
Processor Registers Affected CC, IDC, BS, WC, OVF, COM, C

Condition Code Setting
The CC bits may be set by the execution of this instructian.

CLEAR PROGRAM STATUS UPPER, SELECTIVE

(Immediate Addressing)

Mnemonic CP3U v
Binary Code

oj1/1(1]o|+{ofo] [T T W T
768543210 7I6I5‘4.312I1ID

Execution Time 3 eycles (9 clock periods)
Description

This two-byte instruction causes individual bits in the Upper Program

Status Byte to be selectively cleared, When this instruction is executed, each
bit in the v field of the second byte of this instruction is tested for the

presence of 2 one and if a particular bit in the v field contains a one, the
corresponding bit in the status byte is cleared to zero. Any bits in the status

byte which are not selected are not modified.
Processor Registers Affected F,I,sP
Condition Code Setting N/A

71

CLEAR PROGRAM STATUS LOWER, SELECTIVE {Immediate Addressing)

Mnemonic CPSL v
Binary Code

o1 [felafol} L v
76543210 7656432160
Execution Time 3 cyeles {9 clock periods)
Description

This two-byte instruction causes individual bits in the Lower Program
Status Byte to be selectively cleared. When this instruction is executed, each
bit in the v field of the second byte of this instruction is tested for the
presence of a one and if a particular bit in the v field contains a one, the
corresponding bit in the status byte is cleared to zero. Any bits in the status
byte which are not selected are not modified.

Frocessor Registers Affected CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting
The CC bits may be cleared by the execution of this instruction,

TEST PROGRAM STATUS UPPER, SELECTIVE {Immediate Addressing)

Mnerionic TRSU v
Binary Code
o] 1]1]o]1]0]0 R

1 i L L 1 1 L
7658432140 76543210
Execution Time 3 cycles {9 clock periods)
Description

This two-byte instruction tests individuat bits in the Upper Program Status
Byte to determine if they are set to binary one. When this instruction is
executed, each bit in the v field of this instruction is tested for the presence
of a one, and if a particular bit in the v field contains a one, the corresponding

bit in the status byte is tested for a one or zero. The Condition Code is set
to reflect the result of this operation.

If a bit in the v field is zero, the correspending bit in the status byte s
not tested.

Processor Begisters Affected cC

Condition Code Setting €C1 CCo
All of the selected hits in PSU are 1s 0 o
Mot all of the sslected bits in PSU are 1s 1 2

TEST PROGRAM STATUS LOWER, SELECTIVE {Immediate Addressing}

Mnemoenic TPSL W
Binary Code

| L 1 T T 1 1
11011]11g)1)0}1 v

768543210 86543210

Execution Time 3 cyeles {9 clock periods)

Description

This two-byte instruction tests individual bits in the Lower Program
Status Byte to determine if they are set to binary one. When this instruction
is executed, each bit in the v field of this instruction is tested for a one, and
if a particular bit in the v field contains a one, the corresponding bit in the
status byte is tested for a one or zero. The Condition Code is set to reflect
the result of this operation.

Processor Hegisters Affected cC
Condition Code Setting CC1 Cco

All of the sglected bits in PSL are 1s 0 0

Mot all of the selected bits in PSL are 1s 1 ¢
ZERQ BRANCH RELATIVE {Relative Addressing)
Mnemonic ZBRR {«)a
Binary Code

1 I L 1
T1ojo11|ol1(| L a

76543210 7685437210

Execution Time 3 cycies (9 clock periods)

Description

This two-byte unconditional relative branch instruction directs the
processor to calculate the effective address differently than the usual
caleulation for the Relative Addressing mode,

The specified value, a, is interpreted as a relative displacement from page
zero, byte zero. Therefore, displacement may be specified from - 64 to +63
bytes. The address calculation is modulo 8192,,, so the negative dis-
placement actnally will develop addresses at the end of page zero. For
example, ZBRR -8, will develop an effective address of 81844, and a
ZBRR +b2 will develop an effective address of 52:n.

This instruction causes the processor to clear, address bits 13 and 14, the
page address bits; and to replace the contents of the Instruction Address
Register with the effective address of the instruction, This instruction may
be executed anywhere within addressable memory.

Indirect addressing may be specified.
Processor Registers Affected MNone
Condition Code Setting N/A

73

74

BRANCH ON CONDITION TRUE, RELATIVE

{Relative Addressing}

Mnemaonic BCTR,v f«}a
Binary Code

ofclo[t[tfe] V] (] T 77 Tal !
76543210 766643210
Execution Time 3 cycles (9 clock periods)

Description

This two-byte conditional branch instruction causes the processor to feteh
the next ingtruction to be executed from the memory location pointed to by
the effective address only if the two-bit v field matches the current
Condition Code field (CC) in the Program Status Word,

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction.

Indirect addressing may be specified.

If the v field is set to 344, an unconditional branch is effected.

Processor Registers Affected Norg
Condition Code Setting N/A

BRANCH ON CONDITION TRUE, ABSOLUTE

{Absclute Addressing)

Mnemonic BCTAY [#}a
Binary Code
T T T T 1 1 T 1 I 3 1 I 1 1
0io:0f1s1 1] ¥ i & high order g low order
1 1 1 FI 1 1 1 1 1 1 1 1 1 1

76543210 766543210 76543210

Execution Time 3 eyeles {9 clock periods)

Drescription

This three-byte conditional branch instruction causes the processor to
fetch the next instruction to be executed from the memory location peinted
to by the effective address only if the two-bit v field matches the two-bit
Condition Code field (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction.

Indirect addressing may be specified.

IT the v field is set to 315, an uncenditional branch is effected,

Processor Registers Affected Monre

Condition Code Setting N/A

BRANCH ON CONDITION FALSE RELATIVE {Relative Addressing)

Mnemonic BCFR v f+)a
Binary Code

T T T !a! H
10/0]1[1]0 \; I | I O I A

7685432140 76543210

Execution Time 3 cycles {9 clock periods)

Description

This two-byte branch instruction causes the processor to fetch the next
instruction to be executed from the memory location pointed to by the
effective address only if the two-bit v field does not match the two-bit
Condition Code field (CC) in the Program Status Word. If there is no match,
the contents of the Instruction Address Register are replaced by the
effective address.

If the v field and CC field match, the next instruction is fetched from the
location following the second hyte of this instruction.

Indirect addressing may be specified.

The v field may not be set to 3. as this bit combination is used for the
ZBRR operation code.

Processar Registers Affected Nane
Condition Code Satting N/A
BRANCH ON CONDITION FALSE, ABSOLUTE {Absolute Addressing)
Mnemonic BCFA v {+)a
Binary Code
T 1 7 1 1 1 17T T 17T T 11
Holo)1i1|1 ‘-lf |]alhilgh' olrder LA '10“'; Jr:rrclierI

765423210 P 6b 43210 76b 43210

Execution Time 3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to fetch the next
mstruction to be executed from the memory location pointed to by the
effective address only if the two-bit v field does not match the two-bit
Condition Code field (CC} in the Program Status Word, If there is no match,
the contents of the Instruction Address Register are replaced by the
effective address,

If the v field and CC field match, the next instruction is fetched from the
location following the second byte of this instruction,

Indirect addressing may be specified,

The v field may not be set to 3,g as this bit combination is used for the
BXA operation code.

Processor Begisters Affected MNaone
Condition Code Setting N/A

75

76

BRANCH ON INCREMENTING REGISTER, RELATIVE (Relative Addressing}

Mnemonic BIRR,r {*)a

Binary Code

1 T 1 T 1T 711
il1lol1]1l0] ¢ | " a]
e 543210 76543210

Execution Time 3 oycles {9 clock periods)

Description

This two-bybe branch nstruction causes the processor to increment the
contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effeciive address, ie., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value in register r is zero, the next instruction to be executed follows
the second byte of this instruction,

Indirect addressing may be specified.
Processor Registers Affected None
Condition Code Setting N/A

BRANCH ON INCREMENTING REGISTER,ABSQLUTE{Absotute Addressing)

Mnemonic BiRA,r {+}a
Binary Code

T 1 1 1 1 1 L) H 1 T T 1 T Lj
Tlrfopy)ryy) o | 2 Ihigh order a low torder

76543210 78543210 76542210

Execution Time 3 eycles {9 clock periods)

Description

This three-byte branch instruetion causes the processor to increment the
contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effective address, i.e,, the effective address
replaces the previous contents of the Instruction Address Register. If the
new value of register r is zero, the next instruction to be executed follows
the second byte of this instruction.

Indirect addressing may be specified.
Pronessor Registers Affected None
Cendition Code Setting N/A

BRANCH ON DECREMENTING REGISTER,RELAT!VE (Relstive Addrassing)

Mnamonic BDRR,r {«)a
Binary Code

T LS L L A

t1j1]|1]viof r] a |

i 1 1 1 1 1

768643210 6543210

Execution Time 3 cycles (8 clock periods)

Description

This two-byte branch instruction causes the processor to decrement the
contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effective address, ie., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value in register r is zero, the next instruction to be executed follows
the second byie of this instruction.

Indirect addressing may be specified.
Processor Registets Affected None
Condition Code Setting N/A

BRANCH ON DECREMENTING REGISTER,ABSOLUTE{Absotute Addressing)

Mnemenic BDRA,r {«}a
Binary Code

I LI 1 T 1 T 1 1 4 I T
a high order a low order
1 i L 1 A1 1 1 1 1 1 1

i A

i)+

i

76543210 76543210 6568643210

Execution Time 3 eyeles (9 clock periods)

Description

This three-byte instruction causes the processor to decrement the contents
of the specified register by one, If the new value in the register is non-zero,
the next instruction to be executed is taken from the memory location
pointed to by the effective address, i.e., the effective address replaces the
previous contents of the Instruction Address Register. [f the new address in
register r is zero, the next instruction to be executed follows the second hyte
of this instruction.

Indirect addressing may be specified,
Processor Registers Affected None
Condition Code Setting N/A

77

78

BRANCH ON REGISTER NON-ZERO, RELATIVE {Relative Addressing)

Mnemeonic BANAr {#}a
Binary Code

1 1 1 1 I] T
af1|lolil1]O r | a

76543210 76543210

Execution Time 3 cycles (9 clock periods}
Descripticn

This two-byte branch instruction causes the contents of the specified
register r to be tested for a non-zero value. If the register contains a non-zero
value, the next instruction to be executed is taken from the location pointed
to by the effective address, i.e., the effective address replaces the current
contents of the Instruction Address Register.

Tf the specified register contains a zero value, the next mstmction is
fetched from the location following the second byte of this instruction.

Indirect addressing may he specified.
Processor Registers Affected None
Condition Code Setting N/A

BRANCH ON REGISTER NON-ZERO, ABSQLUTE {Absalute Addrassing)

Mnemonic BRANAT {+}a
Binary Code

I 1 1 L T
& high order a low

1 1
o[t1iaf1]vj1] r e | |
76543210 76543210 76543210

Execution Tirme 3 cycles {9 clock periods)

Description

The three-byte branch instruction causes the contents of the specified
vegister 1 1o be tested for a non-zero value, if the register coritains a non-zero
value, the next instruction fo be executed is taken from the location pointed
to by the effective address, i.e., the effective address replaces the contents of

the Instruction Address Register.

If the specified register contains a zero value, the next nslruction is
fetched from the location following the third byte of this instruction.

Indirect addressing may be specified.
Processor Redisters Affected Nong
Condition Code Setting NfA

BRANCH INDEXED, ABSOLUTE {Absolute Addressing)

Mnemaonic BXA {=]a,X
Binary Code

oot/ 1;11
765243210 765643210 76543210

a high order a Iow order
1 1 | Il 1 L L

Execution Time 3 cycles {9 clock periods}

Description

This three-byte branch instruction causes the processor to perform an
‘unconditional branch. Indexing is required and register #3 must be specified
as the index register because the entire first byte of this instruction is
decoded by the processor, When executed, the content of the Instruction
Address Register (TAR) is replaced by the effective address.

If indirect addressing is specified, the value in the index register is added
to the indireet address to calculate the effective branch address,

Processor Registers Affected MNone
Condition Code Setting N/A
ZERO BRANCH TO SUBROUTINE, RELATIVE {Relative Addressing)
Mnemonic ZBSR {x)a
Binary Code
T 1
1ol 1{1joj1 |1 | L2

768543210 765432170

Execution Time 3 cycles {9 clock periods)

Description

This two-byte unconditional subroutine branch instruction directs the
processor to calculate the effective address differently than the usual
caleulation for the Relative Addressing mode.

The specified value & is interpreted as a relative displacement from page
zero, byte zero. Therefore, displacement may be specified from - 84 to +63
bytes. The address calculation is modulo 81925, so the negative displace-
ment will develop addresses at the end of page zero. For example, ZBSR
-14, will develop an effective address of 81824y, and ZBSR 31 will develop
an effective address of 3144.

This instruction causes the processor to clear the page address bits, address
bits 14 and 13, and may be executed anywhere within addressable memory.

Indirect addressing may be specified.

When executed, this instruction causes the Stack Pointer to be incre-
mented by one, the address of the byte following this instruetion is pushed
into the Retum Address Stack (RAS), and control is transferred to the
effective address.

Processor Registers Affected SP
Condition Code Setting N/A

79

|20

{Relative
BERANCH TO SUBROUTINE ON CONDITION TRUE, RELAT|VEAddressing}

Mnemonic BSTR.,v {+)a
Binary Code

T T T T T 1
alof1(111|0] v | a

L L 1 1 L L L
76643210 76543210
Execution Time 3 gycles {9 clock perieds)
Description

This two - byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field matches
the current Condition Code field (CC) in the Program Status Word. If the
fields match, the Stack Pointer is incremented by one and the current
contents of the Instruction Address Register, which points to the byte
following this instruction, is pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction and the SP is
unaffected.

Indirect addressing may be specified.

If v is set to 345, the BSTR instruction branches unconditionally.
Processor Registers Affected SP
Condition Code Setting N/A

Absoluts
BRANCH TO SUBROUTINE ON CONDITION TRUE,ABSOLUTE oo

Mnemenic BSTAv {r)a

Binary Code

olol 1111111] v | [T % high onger | { 1o low orcer
76543210 76643210 76543210
Execution Time 3 cycles {9 clock perinds)

Description

This three-byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the iwo-bit v field matches
the current Condition Code Field (CC) in the Program Status Word. If the
fields match, the Stack Pointer is incremented by one and the current
contents of the Imstruction Address Register, which poinis to the byte
following this instruction is pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and the CC field do not maich, the next instruction is
fetched from the location following the third byte of this instruction and the
Stack Pointer is unaffected.

Indirect addressing may be specified.

If v is set to 844, the BSTA instruction branches unconditionally.
Processor Registers Affected 5P
Condition Code Setting N/A

BRANCH TO SUBROUTINE ON CONDITION FALSE, RELATIVE Relative

Addressing)
Mnemonic BSFR,v [+}a
Binary Code
T 1 I | ral =T
1 0 1 1 T 0 \‘f i 1 1 L i i

76543210 765843210

Execution Time 3 cycles {9 clock periods)

Description

This two-byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field does not
match the current Condition Code field (CC) in the Program Status Word. If
the fields do not match, the Stack Pointer is incremented by one and the
current content of the Instruction Address Register, which peints to the
location following this instruction, is pushed into the Return Address Stack,
The effective address replaces the previcus contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the
location folloewing this instruction and the SP is unaffected.

Indirect addressing may be specified.,

The v field may not be coded as 315 because this combination is used for
the ZBSR operation code,

Processor Registers Affected SP
Condition Code Setting MNSA

BRANCH TO SUBROUTINE ON CONDITIONFALSE, ABSOLUTE (450

Mnemonic BSFA,v {*)a
Binary Code

T 1 1 1 1 1 rrrr 1T F 1
T(o) 1 1]1] v a high order a low order
1 A 1 L L L 1 L L L L 1

76543210 76543210 76543210

Execution Time 3 cyeles (9 clock pariods)

Description _

This three-byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field does not
match the current Condition Code (CC) in the Program Status Word. If the
fields do not match, the Stack Pointer is incremented by one and the current
content of the Instruction Address Register, which points to the location
following this instruction, i pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the
location following this instruction and the SP is unaffected.

Indirect addressing may be specified.

The v field may not be coded as 345 8s this combination is used for the
BSXA operation code.

Processor Registers Affected SP
Condition Code Setting N/A

82

BRANCH TO SUBROUTINE ON NON-ZERQ REGISTER, RELATIVE

{Relative Addressing)

Mnemonic BSNR,¢ {+}a
Binary Code

L] 1 1 T 1 1 L]
ai1i1311]0] | a

1 1 I T T |
76543210 765643210
Execution Time 3 cycles {9 clock periods)
Description

This two-byte subroutine branch instruction causes the contents of the
specified register r to be tested for a non-zero value. If the register contains a
non-zero value, the next instruction to be executed is taken from the
location pointed to by the effective address. Before replacing the contents of
the Instruction Address Register with the effective address, the Stack Pointer
(SP) is incremented by one and the address of the byte following the
instruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction is
fetched from the location following this instruction.

Indirect addressing may be specified.
Processor Registers Affected 5P
Condition Code Satting N/A

BRANCH TO SUBROUTINE ON NON-ZERO REGISTER, ABSOLUTE

{Absolute Addressing}

Mnemanic BSNAr {+)a
Binary Code
T T 1 1 1 1 I 1 I 1) I |
gi1|111]1171 r 11 a high order a low order
1 11 1 1 LI - | L1 L1 1

76543210 76543210 76543210

Execution Time 3 cycles {9 clock periods)

Description

This three-byte subroutine branch insiruction causes the contents of the
specified register r to be tested for a non-zero value. If the register contains a
non-zero value, the next instruction to be executed is taken from the
location pointed to by the effective address. Before replacing the current
contents of the Instruction Address Register (IAR) with the effective
address, the Stack Pointer (SP)is incremented by one and the address of the
byte following the instruction is pushed into the Retum Address Stack (RAS).

If the specified register contains a zerc value, the next instruction is
fatched from the location following this instruction.

Indirect addressing may be specified.
Processor Registers Affected sp
Condition Code Setting NSA

BRANCH TC SUBROUTINE INDEXED,ABSOLUTE, UNCONDITIONAL

{Absolute Addressing)
Mneronic BSXA {=}a,X

Binary Code

1ol 1i1{1]1 a 'higlhc:rdslzr' ’_:a 'Im'm 'or'der")
L L L L L [[l L L 1 L L

76543210 76543210 78686843210

Execution Time 3 cycles {9 clock periods)

Description

This three-byte instruction causes the processor to perform an uncondi-
tional subroutine branch. Indexing is required and register #8 must be
specified as the index register because the entire first byte of this instruction
is decoded hy the processor,

Execution of this instruction causes the Stack Pointer (SP) to be
incremented by one, the address of the byte following this instruction is
pushed into the Return Address Stack (RAS), and the effective address
replaces the contents of the Instruction Address Register.

If indirect addressing is specified, the value in the index register is added
to the indirect address to calculate the effective address.

Processor Registers Affected SP
Condition Code Setting N/A

RETURN FROM SUBROUTINE, CONDITIONAL

Mnemonic RETCwv
EBinary Code

giololrogt v

7656543210

Execution Time 3 cycies {9 clock peripds)

Description

This one-byte instruction is used by a subroutine to conditionally effect a
return of control to the program which last issued a subroutine branch
instruction.

If the two-bit v field in the instruction matches the Condition Code field
{CC) in the Program Status Word, the following action is taken: The address
confained in the top of the Return Address Stack replaces the previous
contents of the Instruction Address Register (IAR), and the Stack Pointer is
decremented by one.

If the v field does not match CC, the return is not effected and the next
instruction to be executed is taken from the location following this
instruction.

If v is specified as 345, the return is executed unconditionally.
Processor Registers Affected 5P
Condition Code Setting N/A

83

RETURN FROM SUBROU-TINE AND ENABLE INTERRUPT,CONDITIONAL

Mnemonic RETE v
Binary Code

I
plogl1|1{o]1| v

76543210

Execution Time 3 eycles {2 clock periods)
Description

This one-hyte instruction is used by a subroutine to conditionally effect a
return of control to the program which last issued a subroutine branch
instruction. Additionally, if the return is effected, the Interrupt Inhibit (II)
bit in the Program Status Word is cleared to zero, thus enabling interrupts.
This instruction is mainly intended to he used by an interrupt handling
routine because receipt of an interrupt causes a subroutine branch to be
effected and the Interrupt Inhibit bit to be set to 1. The interrupt handling
routine must be able to return and enable simultaneously so that the
interrupt routine cannot be interrupt unless that is specifically desired.

If the two-bit v field in the instruction matches the Condition Code field
(CC) in the Program Status Word, the following action is taken: The address
contained in the top of the Return Address Stack (RAS) replaces the
previous contents of the Instruction Address Register (IAR), the Stack
Pointer is decremented by one and the II bit is cleared to zero.

If the v field does not match CC, the return is not effected and the next
instruction to be executed is taken from the location following this instruction.

If v is specified as 34, the return is executed unconditionally.

Processor Registers Affacted sPLIL

Condition Code Setting N/A

READ DATA {Registar Addressing)
Mnemonic REDB,r

Binary Code

al1|1]11]0]|0 :
765432140
Execution Time 2 cycles {6 clock periods)

Description

This one-byte inpwt instruection causes a byte of data to be transferred
from the data bus into register r. Signals on the data bus are considered to be
true signals, i.e., a high level will be set intc the register as a one.

When executing this instruction, the processor raises the Operation
Request (OPREQ} line, simultaneously switching the M/IO line to 10 and
the R/W to R {Read). Alsc, during the OPREQ signal, the DJC line swifches
to ! {Data) and the E/NE switches to NE (Non-extended}.

See Input/Output section of this manual.

Processor Registers Affected cC

Condition Code Setting Register r cc1 Ccco
Positive 0] 1
Zero 0 o
Negative 1 0

READ CONTROL (Register Addressing)

Mnemonic REDC,r
Binary Code

T
giof1ifojal r

76543210

Execution Time 2 cycles (6 clock periods)

Deseription

This one-byte input instruction causes a byte of data to be transferred
from the data bus into register r, Signals on the data bus are considered to be
true signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operation
Request (OPREQ®) line, simultaneously switching the M/IO line to {0, the
R/W line to R (Read), the D/C line to C (Control), and the E/NE line to NE
(Nen-extended).

See Input/Output section of this manual.

Processar Registers Affected ccC
Condition Cocde Setting Register r CCi CCo
Positive 0 1
Zero] 0
MNegative 1 0
READ EXTENDED {Immeadiate Addressing)
Mnemonic REDE.r v
Binary Code
T I ! LI)
aj1jel1{oj1 r v
1 1

L1
32140

Execution Time 3 cycles (9 clock periods)

L
78543210 7654

Description

This two-byte input instruction causes a byte of data to be transferred
from the data bus into register r. During the execution of this instruction,
the content of the second byte of this instruction is made available on the

address bus, Signals on the data bus are true signals, i.e., a high level is
interpreted as a one.

During execution, the processor raises the Operation Request (OPREQ)
line, simultaneously placing the contents of the second byte of the
instruction on the address bus. During the OPREQ signal, the M/IO line is
switched to IO,the R/W line to K (Read), line and the E/NE line to E
(Extended).

See Input/Outpui, section of this manual.

Processor Registers Affected cC

Condition Code Setting Register r cCi coo
Positive ¢ 1
Zero 0 0
Negative 1 0

86

26

WRITE DATA {Register Addressing)

Mnemonic WRTD,r
Binaty Code

1|1 11lelo| +

76543210

Execution Time 2 cyeles [B clock periods}

Description

This one-byte output instruction causes a byte of data to be made
available to an external device. The byle to be output is taken from register r
and made available on the data bus. Signals on the data bus are irue signals,
1.e., high levels are ones.

When executing this instruction, the processor raises the Operation Request
(OPREQ) line and simultanecusly places the data on the Data Bus. Along
with the OPREQ, the M/IO line is switched to 10O, the R/ /W signal is switched
to W (Write), and a Write Pulse (WRP) is generated. Also, during the valid
OPREQ signals, the D/C line is switched to D (Data) and the E/NE line is
switched to NE (Non-extended).

See Input/Output section of this manual.

Processor Registers Affected MNong

Condition Code Setting N/A

WRITE CONTROL {Register Addressing}
Mnemonic WRTC,r

Binary Code

Tra(1p1(olo) +

765423210

Execution Time 2 cycles {6 clock perinds)

Description
This one-byte output instruction causes a byte of data to be made
avzilable to an external device.

The byte to be output is taken from register r and made available on the
data bus. Signals on the data bus are true signals, i.e., high levels are ones

When executing this instruction, the processor raises the Operation
Request (OPREQ) line and simultanecusly places the data on the Data Bus.
Along with the OPREQ signal, the M!IO line is switched to IO, the R/W

- signal 1s switched to W {Write), the D/C line is switched io C {Centrol), the
E/NE.is switched to NE (Non-extended), and a Write Puise (WRP) is
generated,

See the Input/Qutput section of this manual.
Processor Registers Affected None
Condition Code Setting N/A

WRITE EXTENDED {tmmediate Addressing}

Mnemanic WRTEr v
Binary Code

T T T T 117
il1]ofi1jof1] r v

1 I TR TR R B |

1
765 4321¢0 76543210

Execution Time 3 cycles (8 clock periods)

Description

This two-byte outpul instruction causes a byite of data to be made
available to an external device. The byte to be output is taken from register r
and is made available on the data bus. Simultaneously, the data in the second
byte of this instruction is made available on the address bus. The second
byte, v, may be interpreted as a device address.

Signals on the busses are true levels, i.e., high levels are ones.

When executing this instruction, the processor raises the Operation
Request (OPREQ) line and simultaneously places the data from register r on
the data bus and the data from the second byte of this instruction on the
address bus. Along with OPREQ), the M/IO line is switched to 10, the R/W
line is switched to W (Write), the E/NE line is switched to E (Extended), and
a Write Pulse (WRP) is generated.

Bee the Input/Output section of this manual.

Processor Registers Affected None

Condition Code Setting A

NO OPERATION

Mnemeonic NOP
Binary Code

Til)ojof(o|0|0|0
78b43210

Execution Time 2 cycles {6 clock periods)

Description

This one-byte instruction causes the processor to take no action upon
decoding it. No registers are changed, but fetching and executing a NOP
Instruction requires two processor cycles.
Processor Registers Affected MNone

Cendition Code Setting N/A

87

88

TEST UNDER MASK IMMEDIATE {Immediate Addresiing)

Mnemanic TMI,r v
Binary Code

T T T T
1 1 1 1 D 1 r 1) |VI 1 1 1
76543210 76543210
Execution Time 3 eycles (9 clogk periods)
Description

This two-byte instruction tests individual bits in the specified register r to
determine if they are set to binary one. During execution, each bit in the v
field of the instruction is tested for a one, and if a particular bit in the v field
contains a one, the corresponding bit in register r is tested for a one or zero.
The conditioh code is set to reflect the result of the operation.

If a bit in the v field is zero, the corresponding bit in register r is not tested.

Processor Registers Affected cC

Condition Code Setting CC1 CCD
All of the selected bits are 1s 0 0
Mot all of the salected bits are 1s 1 0

DECIMAL ADJUST REGISTER {Register Addressing)

Mnemaonic DAR,r

Binary Code

1Melol1jol1] r

76543210

Execution Time 3 eycles {9 clack periods)

Description

This one-byte instruetion conditionally adds a decimal ten (two’s
complement negative six in a four-bit binary number system) to either the
high order 4 bits and/for the low order 4 bits of the specified register r,

The truth table below indicates the logical operation performed. The
operation proceeds based on the contents of the Carry (C) and Interdigit
Carry (IDC) hits in the Program Status Word. The C and IDC remain
unchanged by the execution of this instruction.

This instruction allows BCD sign magnitude arithmetic to be performed on
packed digits by the following procedure.

BCD Addition: 1. add 664 to augend

2. perform addition of addend and augend
3. perform DAR instruction

BCD Subtraction: 1. perform subtraction (2’s complement of subtra-
hend is added to the minuend)
2. perform DAR instruction

Since this operation is on sign-magnitude numbers, it is necessary to establish
the sign of the result prior to executing in order to properly control the defi-
nition of the subtrahend and minuend.

Interdigit Added to
Carry Carry | I Register r
0 0 Al
0 1 Al g
1 1 00 g
1 0 0A .5
Progessor Registers Affected cC

Condition Code Setting
The Condition Code is set to a meaningless value.

82

a0

HALT, ENTER WAIT STATE

Mnemonic HALT
Binary Code

ol1l0|0|0o|0i0]0
76843210
Execution Time 2 cycles {6 clock periods)

Description
This one-byte instruction causes the processor to stop executing instruc-
tions and enter the WAIT state. The RUN/WAIT line is set to the WATIT state,

The only way to enter the RUN state after a HALT has been executed, is
to reset the 2650 or to interrupt the processor.

Processor Registers Affected Nonre

Condition Code Setting N/A

CHAPTER HI

2650 ASSEMBLER LANGUAGE

9

a2

INTRODUCTION

The assernbly language described in this document is a symbolic language
designed specifically to facilitate the writing of programs for the Signetics
2650 processor. The 2650 Assembler is 3 program which accepts symbolic
source code as input and produces alisting andjor an object module as cutput,

The assembler is written in standard FORTRAN IV and is availahle either
through a timesharing service or in batch form directly from Signetics. This
is done to assure compatibility and ease of installation on a user’s own
computer equipment. [t is modular and may be executed in an overlay
mode should memory restrictions make that necessary. The program is approx-
imately 1,260 FORTRAN card images in length.

An attempt was made in the design of the language to make it similar to
other contemporary assembler languages because it was felt that such
similarity would reduce the learming time necessary to become proficient in
this language. The 2650 assembler features forward references, self-defining
constants, free format source code, symbolic addressing, syntax error
checking, load module generation, and source statement listing.

In order to understand the 2650 instruction set, architecture, timing, inter-
face requirements and electrical characteristics, the reader is referred to the
Signetics 2650 Hardware Specification section,

The assembler is a two pass program that builds a symbol table, issues
helpful error messages, produces an easily readable program lsting and
outputs a computer readable object (load) module,

The assembler features symbolic and relative addressing, forward refer-
ences, complex expression evaluations and a versatile set of Pseudo-
Operations. These features aid the programmer/engineer in producing wel|-
documented, working programs in a minimum of time. Additionally, the
assembler is capable of generating data in several number based systems as
well as both ASCII and EBCDIC character codes,

ASSEMBLER LANGUAGE

The assembler language provides a means to create a computer program,
The features of the Assembler are designed to meet the following goals:

® Programs should be easy to create

¢ Programs should be easy to modify

® Programs should be easy to read and understand

® A machine readable, machine language module to be output

This assembler language has been developed with the following features:

Symbolic machine operation codes (op-codes, mnemonics)
Symbolic address assignment and references

Relative addressing

Data creation statements

Storage reservation statements

Assembly listing control statements

Addresses can be generated as canstants

Character codes may be specified as ASCII or EBCDIC
Comments and remarks may be encoded for documentation

As Assembly language program s a program written in symbolic machine
language. It is comprised of statements. A statement is either a symbolic
machine instruction, a pseudo-operation statement, or a comment.

93

94

The symbolic machine instruction is a written specification for a particu-
lar machine operation expressed by symbolic operation codes and some-
times symbolic addresses or operands. For example:

LOC2 STRR, RO SAV

Where:

LOC2 is a symbol which will represent the memory address of the
ingtruction,

STRR is a symbolic op-code which represents the bit pattern of the

“store relative” instruction.

RO is a symbol which has been defined as register 0 by the
“EQU pseudo-op™.

SAV is a symbol which represents the memory location into
which the contents of register 0 are to be stored.

A pseudo-operation statement is a statement which is not franslated into
a machine instruction, but rather js interpreted as a directive to the
assembler program. Example:

SCHD ACON REDY
Where:
ACON is a pseudc-op which directs the assembler program to

allocaie two bytes of memory.

REDY is a symbol, representing an address. The assembler is directed
to place the equivalent memory address into the hyte
allocated space.

SCHD is a symbol. The assembler is to assign the memory address
of the first byte of the two allocated to this symbel.

STATEMENTS

Statements are always written in a particular format. The format is
depicted below:

LABEL FIELD OPERATION FIELD OPERAND FIELD COMMENT FIELD

The statement is always assumed to be written on an 80 column data
processing card or an 80 column card 1mage.

The Label Field is provided to assign symbolic names to bytes of memory.
If present, the Label Field must begin in logical column one.

The Operation Field is provided to specify a symbolic operation code or
a pseudo-operation code. If present, the Operation Field must etther begin
past column one or be separated from logica! column one by one or more
blanks.

The Operand Field is provided to specify arguments for the operation in
the Operation Field. The Operand Field, if present, is separated from the
Operation Field by one or more blanks.

The Comment Field is provided to enable the assembly language program-
mer to optionally place an English message stating the purpose or jntent
of a statement or a group of statements. The Comment Field must be
séparated from the preceding field by one or more blanks.

COMMENT STATEMENT

A Comment Statement is a statement that is not processed by the
assembler program. It is merely reproduced on the assembly listing. A
Comment Statement is indicated by encoding an asterisk in logic column
one. Example:

*THIS IS A COMMENT STATEMENT

Logical columns 72-80 are never processed by the assembler, they are
always reproduced on the assembly listing without processing. This field
is a good place for sequence numbers, if desired.

SYMBOLIC ADDRESSING

When writing statements in symbolic machine language, i.e., assembler
language, the machine operation code is usually expressed symbolicaily.
For example, the machine instruction that stores data from register 0 into a
memory location named SAV, may be expressed as:

8TRA,RO SAV

The assembler, when translating this symbolic operation code and its
arguments into machine language for the 2650, defines three byvtes contain-
ing H'CC0020’, where ‘0020’ is the value of SAV.

The address of the translated bytes is known because the Assembly
Program Counter is always set to the address of the next byte to be assembled.

The user can attach a label to an instruction:
SAVR STRR,RO SAV

The assembier, upon seeing a valid symbol in the label field, assigns the
equivalent address to the label. In the given example, if the STRR instruction
is to be stored in the address H'0127’, then the symbol SAVR would be made
equivalent to the value H'0127' for the duration of the assembly.

The symbol could then be used anywhere in the scurce program to refer
to the address value or, more typically, it could be used to refer to the
instruction location, The important concept is that the address of the instruc-
tion need not be known; only the symbol need to be used to refer to the
instruction location., Thus, when branching to the STRR instruction, one
could write:

BCTA,S SAVR

When the three byte branch instruction is translated by the assembler,

95

g6

the address of the STRR instruction is placed in the address field of the
branch instruction.

Tt is also possible to use symbolic addresses which are near other locations
to refer to those locations without defining new labels. For example:

BCTR,3 BEG
BCTR,0 BEG+4
ANDZ 3
BSTR,3 S+48

BEG LODAZ PAL
HALT
SUBL,2 3

In the above example, the instruction “BCTR,3 BEG" refers to the

1.0DAZ PAL instruction. The instruction “BCTR,0 BEG+4” refers
io the SUBIL2 3 instruction,

BEG+4 means the address BEG plus four bytes. This type of expression 18
called relative symbolic addressing and given a symbolic address; it can be
used as a landmark to express several bytes before or after the symbolic
address. Examples:

BCTR,3 PAL+23
BSTA,Q STT-18

The arguments are evaluated like any other expression and cannot exceed
in value the maximum number that can be contained in a FORTRAN
integer constant.

PROGRAM COUNTER

During the assembly process the assembler maintains a FORTRAN Integer
cell that always contains the address of the next memory location to be
assembled. This cell is called the Program Counter. It is used by the assembler
to assign addresses to assembled bytes, put it is also available to the
programmer.

The character “$” is the only valid symbol containing a special character
that the assembler recognizes without exror. “@* ig the symbolic name of the
Program Counter. It may be used like any other symbol, but it may not
appear in the label field.

When using the 8§, the programmer may think of it as expressing the idea
g7 = “address of myself”’. For example,

108, BCTR,3 $

This branch instruction is in location 108,4. The instruction directs the
microprocessor to “branch to myself’. The Program Counter in this
example contains the value 1084,.

LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters combined to
form assembly language elements. These language elements include symbols,
instruction mnemonics, constants and expressions which make up the
individual program statements that comprise a source program.

CHARACTERS

Alphabetic: A through 2

Numeric: G through 9

Special characters: blank
{ left parenthesis
) right parenthesis
+ add or positive value
- subtract or negative value
* agterisk

single quote

, eomma

/ slash

% dollar sign

< less than sign

> greater than sign

SYMBOLS

Symbols are formed from combination of characters. Symbols provide a

convenient means of identifying program elements so they can be referenced
by other elements.

1. Symbols may consist of 1 to 4 alphanumeric characters: A through Z,
0 through 9.

2, Symbols must begin with an alphabetic character.

3. The character § is a special symbol which may be used in lhe argument
field of a statement to represent the current value cf the Location
Counter,

4. The character * is a special symbol which is used as an indirect address
indicator.

5. The characters + and - are also used as auto-increment;auto-decrement
indicators.

The following are examples of valid symbols;

DOP1 RAV3
AA TEMZ

The following are examples of invalid symbols:

1LAR begins with numeric
PA N imbedded blank

CONSTANTS

A constant is a self-defining language element. Unlike & symbol, the value
of a constant is its own “face” value and is invariant. Internal numbers are
represented in 2’s complement notation. There are two forms in which
constants may be written: the Self-Defining Constant and the (General
Constant,

97

98

SELF-DEFINING CONSTANT

The self-defining constant is a form of constant which is written directly
in an instruction and defines a decimal value. For example;

LODARS BUFF+65

In this example, 65 is a self-defining constant. The maximum value of the
integer constant expressed by a self-defining constant is that which, when
expressed in binary, will fit within the hasic arithmetic unit of the host
computer (typicaily 1 word).

GENERAL CONSTANT

The general constant is also written directly in an instruction, but the
interpretation of its value is dictated by a code character and delimited by
gquotation marks.

LODA,R3 BUFF+H'3E’

In this example, the code letter H specifies that 3E 15 a hexadecimal con-
stant equivalent to decimal value 62,

The maximum size of 2 number generated by a general constant form
(B, O, D, H} may be no larger than the size of the FORTR AN integer cell of the
host computer, However, the most important concept to understand when
using constant forms is that the final value of a resolved expression must fit
the constraints of the actual field destined to contain the value. For example:

LODA,R2 PAL+H'SEE2"- ' 3EEQ’

In this case, the argument, when resolved, must fit into the 13 bits in the
actual machine instruction. Even though each of the two hexadecimal
constants are larger than can fit into 13 bits, the fmal value of the expression
is containable in 13 bits and therefore the constants are permitted. Similarly,
the statemeni DATA H'3FE' is not allowed, as the DATA statement defines
one hyte quantities and H'3FE' specifies more than 8 bits. Summarily, the
size of the evaluated expressions must be less than or equal to their corre-
sponding data fields. There are 6 types of General Constants:

Code Type

Binary Constani

Octal Constant

Decimal Constant
Hexadecimal Conslant
ERCDIC Character Constant
ASCII Character Constant

EHIQOW

B8: BINARY CONSTANT

A hinary constant consists of an optionally signed binary number of up to
8 bits enclosed in single quotes and preceded by the letter B, e.g., B'1011011",
Binary information is stored right justified.

O: OCTAL COMETANT
An octal constant consists of an optionally signed octal number enclosed

by single quotation marks and preceded by the letter O, e.g., O'352". The
value will be right justified.

D: DECIMAL CONSTANT

A decimal constant consists of an optionally signed decimal number
enclosed by single quotation marks and preceded by the letter D, eg.,
D'249". The value will be right justified.

H: HEXADECIMAL CONSTANT

A hexadecimal constant consists of an optionaily signed hexadecimal
number enclosed in single quotation marks and preceded by the letter H,
e.g., H'3F'. The value will be right justified.

E: EBCDIC CHARACTER CONSTANT

An EBCDIC character consists of a string of EBCDIC characters enclosed
by single quotation marks and preceded by the letter E, e.g., EARE YOU
THERE?'. Each character will be encoded in 8-bit EBCDIC and stored in
successive bytes. The maximum number of characters which may be
specified in one character string constant is 18.

A: ASCII CHARACTER CONSTANT

An ASCII character constant consists of a string of ASCII characters
enclosed by quotation marks and preceded by the letter A. For example:
A'HELLO THERE'. Each character will be encoded in 7-bit ASCII and
stored in successive bytes. The high order bit is always set to zero in each
allocated byte., Up to 16 characters may be specified in one statement.

Note: See Appendix C for permissibie characiers and their equivajent ASCII and
EBCDIC codes, To specify asingle guotation mark as a character constant
it must appear twice in the character string, e.g., A'TYPE' 'HELF' 'NOW'
will appear in storage as TYPE FELP'NOW.

MULTIPLE CONSTANT SPECIFICATIONS

General constant forms, except A and E, allow multiple specifications
within the constant expression. For example: D'52, 21, 208, 27'. A comma
separates each byte specification and successive specifications determine
successive bytes of storage. Only 16 bytes of information may be specified
in any one general constant form and each byte may be optionally signed.
For example:

H'03,-F2,+11,-8,23,0'
Q'271,133".

EXPRESSIONS

An expression is an assembly language element that represents a value.
[t consists of a single term or & combination of terms separated by arithmetic
operators. A term may be a valid symbolic reference, a self-defining constant
or a general constant, T Cooor o e

It is important to understand that although individual terms in a expression
may exceed the number size restriction of the 2650 (one or two bytes), they
may not cause the number size of the host computer’s integer FORTRAN
constant to be exceeded.

29

Examples of valid expressions:

LOOP PAL-$
LOOP+5 $-PAT+3
SAM+3 LOOP BIT- 3+H'3H’

Note: The special symbol "$ represents the current value of the location
caunter,

SPECIAL OPERATORS

There are two special operators that are recognized by the assembler.
They are:

< less than sign
> greater than sign

The assembler interprets these operators in a special way!

< perform a modulo 256 divide (use high order byte)
> perform a divide by 256 {use low order byie}

These operators, when used, must appear as the first character in the
argument field. If they are imbedded in an expression, the results are
unpredictable.

These special operators are intended to be used to access a two byte
address in one byte parts using a minimum of storage. For example, if it is
desired to get the high order bifs of an address {ADDB) into register 2 and the
low order bits into register 1 it could be done as follows:

LODR,R2 APAL
LODR,R1 APAL+1
&« & &

LN

. 8 »

APAL ACON ADDB
or, by utilizing the special operators, it could be done as follows:

LODL,R2 <ADDB
LODLR1 >ADDB

The first method uses 6 bytes to accomplish what the second methed can do
in 4 bytes.

The special operaiors care most often used to facilitate the passing of an
address in registers.

SYNTAX

Agsembly language elements may be combined to symbolically express
both 26560 instructions and assembler directives, There are specific rules for
writing these instructions. This set of rules is known as the Syntax of the
symbolic assembler language. The following description assumes a logical
input of an 80-column data processing card, but since the host assembler is
written in Forfran, the input media may be magnetic tape, magnetic disk,
paper tape, etc. Only the format statement for input need be changed to
accommodate the various input media.

FIELDS

A statemnent prepared for processing by the assembler is logically divided
into four fields: the Name Field, the Operation Field, the Argument Field
and the Comment Field. Each field is separated by at least one blank
character. No continuation cards are allowed, and only logical columns
1 through 72 are scanned by the assembler. Logical columns 73 through
30 inclusive may be used for any desired purpose.

NAME FIELD

The name (or label) field optionally contains a symbolic name which the
assembler assigns to the instruction specified in the remaining part of the
line, If 2 name is specified, it must begin in logical column 1. The assembler
assures that there is no name if logical column 1 is blank. The name field,
if present, must contain only a valid symbol,

OPERATION FIELD

The operation field contains a mnemonic code which represents a 2650
processor operation or an assembly directive. The operation field must be
present in every non-comment line. See Appendix A for a list of the valid
mnemonic codes. Additionally, depending on the instruction type, the
operation field may also specify a general purpose register or a condition
code.

ARGUEMENT FIELD

The argument field contains one or more symbols, constants or expres-
sions separated by commas. The argument field specifies storage locations,
constants, register specifications and any other information necessary to
completely specify a machine operation or an assembler directive. Embedded
blanks are not permitted as they are considered field terminators.

COMMENT FIELD

The comment field contains any valid characters in any combination.
The comment field is not processed by the assembler, but is merely repro-
duced on the listing next to the accompanying instruction. Tt is usuaity
used to explain the purpose or intention of a particular instruction or
group of instructions.

COMMENT CARD

An entire 72 column line may be utilized to print comments by coding
an asterisk (+} in column 1. This entire card is merely reproduced on the
assembly listing without processing by the assembier.

101

102

SYMBOLS

Symbols are used in the name field of a symbolic machine instruction
to identify that particular instruction and to represent its address. Symbols
may be used for other purposes, such as the symbolic representation of
some memory address, the symbolic representation of # constant, the
symbolic representation of a register, etc,

No matter how the symbol is used, it musi be defined. A symbol is defined
when the assembler knows what value the symhol represents. There is only
one way to define a symbol. The symboel must at some time appear either
i1 the name fHeld of an instruction or of an assembler divective. The symbaol
will be assigned the current value of the Location Counter when it appears
in the name field of a machine instruction, or it may be assigned some other
value through nse of the EQU assembler directive. A symbol may not appear
in the name field more than once in a program, because this would cause the
assembler to try to redefine an aiready defined label. The assembler will
not do this and will flag the second appearance of a particular label as an
error,

SYMBOLIC REFERENCES

Symbols may be used to refer to storage designations, register assignments,
constants, etc. For example:

Address Name Operation Argument
101 MAZE DATA H'F5'
102 LODA3 MAZE

The symbolic label “MAZE” represents the address 101. It is used in the
machine instruction at address 102 to tell the assembler to build an instruc-
tion LODA,3 101. The symbotlic label, in this case, is a way for the
programmer to specify an address without knowing exactly what the address
should be when he writes the program. In this example, assume there was 2
need to modify this sequence of code: a data statement was inserted between
the original two statements.

Address Name Operation Argument
99 MAZE DATA H'¥5"
9A 9B DATA H'FE,34A'
AC LODA3 MAZE

Even though there was a program change which caused the data at MAZE
to be located at address 99, the load instruction referencing the data didn’t
have to be rewritten because the assembler could provide the proper physical
address for the symbolic address MAZE, The instruction at address 9C will
be assernbled as LODA,3 99,

SYMBOLIC ADDRESSING

When writing instructions in the symbolic assembler language for the
2650, the addresses may be expressed through symbeolic equivalents. The
assembier wili transiate the symbolic address 1o iis nuineric eguivalent
during the assembly process.

It is good programming practice to make all address references symboliic,
as this greatly eases the programmer’s job in producing a working program.
To meke the register specification symbolic, one could equate 2 symbol to
the register number:

RG3 EQU 3
LN BN]
LR B]

LODA,RGZ MAZE

FORWARD REFERENCES

A previously defined symbol is one which has appesred in the name field
before it is referenced (as above). In contrast, a forward reference is a
symbolic reference to a line of code when the symbol has not yet appeared
in the name field. For example:

ADDA,2 COEF
* a0
" &8
* % 8
COEF DATA D'123'

Forward references may be used anywhere in a program with the following
exceptions:

1. The register/condition field.
2. The symbotlic argument fields of EQU, RES, ORG and DATA statements.

RELATIVE ADDRESSING

The programmer may reference a memory cell either directly or via
relative addressing. To refer directly to a memory cell of symbolic address
MAIN, one has merely to use the name MAIN in the argument field of the
referencing instruction. For example:

BIRA,R2 MAIN

It is also possible to express the address of a memory cell symbolically
if some nearby cell is symbolically assigned. For example, to load the
memory cell which is 5 cells higher in memory than the cell named MAIN,
one need only to refer to it as MAIN+5:

LODAZ MAIN+&

This later method is called relative addressing, and the relative count may be
given as + or - the maximum value which can be held in one integer variable
of the host computer’s FORTRAN compiler.

THE LOCATION COUNTER AND SYMBOL *$"

There is one symbolic name, “$”, which is automatically defined by the
assembler. This single character name is always symbolically equated to the
assembler’s Location Counter, Since the Location Counter is used by the
assembler during the assembly process and is usually equated to the address

103

of the next byte to he assembled, it represents the address of the instruction
or data currently being specified. For example: BCTR,3 $+5. The branch
address will be interpreied by the assembler to be the address of the first
hyte of the branch instruction plus 5 bytes.

HARDWARE RELATI\WVE ADDRESSING

When using instructions which use ““hardware relative addressimg’™ (as
distinguished from relative addressing discussed catlier in this section), it is
important to realize the assembler will not only e¢valuate the expression
which is given as an operand address, but will convert it to a hardware
relative address (see the Hardware Specifications manual for a description of
the addressing modes). For example:

Address Name Operation Argument
140 SAM LODAR2 PAL
103 SUBLR2 -3
105 BIRR,R3 SAM
107 next instruction

In this code, the BIRR instruction specifies hardware relative addressing.
Even though the equivalent value of the symbolic address SAM is 100, the
relative addressing instruction requires a displacement relative to the address
of the next sequential instruction, Therefore, the operand SAM will he
evaluated as = - (current location counter+length of BIRR instruction-SAM}
= —(105+2-100) = - (+7} = -7. Remember, where the hardware mstruction
calls for “hardware relative addressing”’, the expression in the operand field
will be evaluated as the displacement from the address of the next sequential
instruction, The value of this displacement may range from -64 to +63.

INDIRECT ADDRESSING
The symbol “*” is used to specify indirect addressing. For example:

BCTA,3 ®*3AM
LA
L BN

SAM ACON SUBR

In this code, the BCTA instruction specifies indirect addressing. The
assembler will set the indirect bit (byte #1, bit #7) for this instruction,

AUTO-INCREMENT AND AUTO-DECREMENT

The symbol 4+ and “-” are used to specify auto-increment and auto-
decrement, respectively. For example:

LODA,RO BUF.R3,+
in this code, which specifies auto-increment, the assembler sets hits

#6 and £5 of byte #1 to “01” for this instruction. This option is specified
in the instruction set tables as (,X).

PROCESSOR INSTRUCTIONS

2650 machine instructions may be written in symbolic code. All features
provided by the assembler such as symbolic addressing and constant genera-
tion may be used. The fields described below are free form and are separated
by ai least one blank character. The name, however, if Dresent, must begin
in logical column 1.

LABEL OPERATION OPERAND COMMENTS
name opcode operand(s)
Where.

LABEL FIELD contains &n opticnal label which the assembler will
assign as the symbolic address of the first byte of the

instruetion.
OPERATION contains any of the 2650 processor mnemonic operation
FIELD codes as detailed in Appendix A, or any Assembler

Directive, This field may include an expression which
specifies a register or value as required by the instruction.
All symbols used in this field must have been previously
defined, i.e., no svmbolic forward references are allowed.

OPERAND contains one or more operand elements such as indirect

FIELD address indicator, operand expression, index register
specification, auto-increment/auto-decrement indicator,
constant specification, etc., depending on the require-
ments of the particular instruction.

COMMENTS any characters following the argument field will be

FIELD reproduced in the assembly listing without processing.
The Comments Field must be separated from the argu-
ment field by at least one blank,

Note: Refer to Appendix E for 2 summary of the mnemonic op-codes and see 2650
Hardware Specifications,

106

DIRECTIVES TO THE 2650 ASSEMBLER

Theve are eleven directives which the assembler will recognize. These
assembler directives, although written much like processor instructions, are
simply commands to the assembler instead of to the processor. They direct
the essembler to perform specific tasks during the assembly process, but
have no meaning to the 26350 processor. These assembler directives are:

ORG
EQU
ACON
DATA
RES
END
LJE
PRT
SPC
TITL
PCH

106

ORG SET LOCATION COUNTER

The ORG directive sets the assembly Location Counter to the location
specitied. The assembler assumes an ORG § at the beginning of the program
if no ORG statement is given.

LABEL OPERATION OPERAND
{ name } ORG expression
Where!
name optionally provides a symbhol whose value will be
equated to the specified location.
expression when evaluated, results in a positive integer value. This
value will replace the contents of the location counter,
and bytes, subsequently assembled will be assigned
sequential memory addresses beginning with this value.
Any symbols which appear in the argument must have
been previcusly defined.
Examples:
LARR YORD
STAR H'100'

107

1

a8

EQU SPECIFY A SYMBOL EQUIVALENCE

The EQU directive tells the assembler to equate the symbal in the name
field with the evaluatable expression in the argument field.

LABEL OPERATION OPERAND
name EQU expression
Where:
name is the symbol which is to be assigned some value by the
execution of this directive.
expression may be resolved to zerc or some integer value which is
containable in the host computer’s FORTRAN integer cell.
If u symbol is used in the argument, it must have been
previously defined.
Examples:
PAL EQU H'10F'
LOP2 EQU PAL
RAMP EQU SLOP- 3+PAL
REGL EQU 1

ACON DEFINE ADDRESS CONSTANT

The ACON directive tells the assembler to allocate two successive bytes of
storage. The evaluated argument will be stored in the two bytes, the low order
8 bhits in the second byte and the high order bits in the first byte. This
directive is mainly intended to provide a double hyte containing an address
for use as the indirect address for any instruction executing in the indirect
addressing mode.

LAREL OPERATION OPERAND
{ name } ACON expression
Where:
name 15 an optional label. If specified, the name becomes the
symbolic address of the first hyte allocated.
expression is some expression which must resolve to a positive
value or zero. If posilive, the value should be no larger
than fhat which can be contained in two bytes.
Example:
ASUB ACON SUBR

109

110

DATA DEFINES MEMORY DATA

The DATA directive tells the assembler to allocate the exact number
of bytes required to hold the data specified in the argument field of this
directive. Up to 16 bytes can be specified with one DATA directive, but
the argument field may not extend past logical column 72.

LABEL OPERATION OPERAND
{ name } DATA expression
Where:
name is an optional label. If used, the name becomes the
symbolic address of the first byte allocated by the
directive.
expression is a general constant, a self-defining constant or a

symbolic address. If a symbol is specified, it must have
heen previously defined. A multiple constant specifica-
tion in the argument field will cause a corresponding
number of bytes to be allocated. Any other expression
that can be resolved to a single value will result in one
byte being allocated.

Examples:

PAL DATA LooP
DATA H'03,22,FC,A1’
DATA +127
DATA D28

Note: If the expression evaluates to a value between D and 255 the result 15 an
eight bit absolute binary number. DATA +127 results in H'7F. Also,
if the expression evaluates e a value which is less than 0 the result
is & 2's complement, hinary number. DATA H'-5' results in H'FB'.

RES RESERVE MEMORY STORAGE

The RES directive telis the assembler to reserve contisuous bytes of
storage. The number of bytes so reserved is determined by the argument,
The reserved bytes are not set to 2 known value, but rather the effect of this
directive is fo increment the loration counter,

LABEL OPERATION OPERAND
{name} RES ‘ exXpression
Where:
name is an optional label. If used, the name hecomes the

symbolic address of the first byte allocated.,

expression is some evaluatable expression which must resolve to
some positive integer or zero. The value of this expres-
sion may not exceed the maximum positive value
containableina FORTR ANcell of the host computer. If a
symbol is specified, it must have been previously defined.

Example:
LOR RES 23
MASK RES LOR+E

RES H'1A

END END OF ASSEMBLY

The END directive informs the assembler that the last statement to he
asseinbled has been input and the assembler may proceed with the assem bly.
The END directive causes the assembler to communieate the program start
address to the object module.

LABEL OPERATION QPERAXND w
END expression
Where:
expression may be resolved to the starting address of the program.
If this parameter is not specified, the start address is set
Lo zero.

111

112

EJE EJECT THE LISTING PAGE

The EJE directive tells the assembler fo advance the listing to the top of
the next page regardless of the line position on the current listing page.

The directive is used primarily to organize listing for documentation
purposes and does not appear in the listing,

LABEL OPERATION OPERAND

EJE

PRT PRINTER CONTROL

The PRT directive tells the assembler to resume or discontinue printing
of the assembled program.

This directive is used primarily to shorten assembly time by listing only that
portion of the program which the user needs to see. Only the PRT OFF will
appear in the listing.

LABEL OPERATION OPERAND
PRT [on
off

Note: PRT is set ON at the beginning of an assembly of the assembler.

SPC SPACE CONTROL

The SPC directive tells the assembler to skip or space a number of lines.

This directive is used primarily tc organize listings for documentation
purposes and does not appear in the listing,

LABEL OPERATION OPERAND
SPC expression
Where:
expression is some evaluatable expression which must resolve to
some positive integer. If the value of this expression is
equal to, or greater than, the number of lines remaining
on the page, the effect is the same as the EJE directive.
Example:
spPC 5
TITL TITLE

The TITL directive tells the assernbler to skip to the top of the next page
and nsert a given title into the main header.

'This directive is used primarily for documentation purposes and does not
appear in the listing.

LABEL OPERATION OPERAND
TITL expression
Where:
expression is the title information not to exceed forty character
positions.
Example:
TITL MAIN PROGRAM SUBROUTINE

113

1

PCH PUNCH CONTROL

The PCH directive tells the assembler to selectively resume or discontinue

the output of the load modute.

This directive is used primarily to shorten assembly time when a load
module is not desired or when only a pottion of the load module 1s desired.

LABEL OPERATION

OPERAND

PCH

B

Note: PCH is set ON at the beginning of an assembly by the assembler.
When PCH OFF is specified, any prior load module data is output.

THE ASSEMBLY PROCESS

The 2650 assembler translates symbolic source code into machine language
instructions. The assembler examines every socurce statement for syntactic
validity and produess the equivalent machine code for the 285G PIOCESSOr.

This is a two pass assembler, which means, the entire source code is
scanned twice by the assembler. On the first pass, all defined labels and their
equivalent values are stored in a symbol table, the first byte of evely instruc-
tion is fully determined, and some errors may be detected. During pass 2,
symbolic address references are replaced by their values, eirors msy be
detected, and a listing and load/object module is generated.

SYMBOL TABLE

The assembler builds and maintains a symbhol table during the assembly
process. The symbol table contaius an entry for each symbol in the assembied
program. The entry consists of the symbol itself and its value. Up to 400
symbols may be used in each program assembled. If a symbol, which
appears in the argumeni field of an instruction has never been defined
(never appeared in the NAME field), the assembler will generate an error
code on the listing because it is unable to resolve an undefined symbol and
will place zero as the unresolved value in the object module.

LOCATION COUNTER

The assembler maintains a memory cell which it uses as a Location
Counter. This Location Counter keeps track of the address of the next
byte of storage to be allocated by the assembler. During coding, the
programmer may think of the Location Counter as containing the address
of the first byte of the instruction being written. In this assembiler, the
Location Counter is also used to provide load information. This mesns
that the addresses displayed on an assembly listing are the actual addresses
which ave $o contain the corresponding information upon leading of the
object program.

ERROR DETECTION

During an assembly, the source program is checked for syntax errors,
If errors are found, appropriate notification is given and the assembly
proceeds. Although an assembled program containing errors generally will
not run properly, it is considered good practice to complete the agsembly
to locate all errors at one time, rather than terminate it when an ervor
is encountered. '

ERRCR CODES

As shown in the listing illustzation, there are three eolumns on the
listing in which an error indication may appear, An error displayed, in the
first column usually indicates that the error was in the Name Field, the
second column corresponds to the Operation Field, and the third corresponds
to the Argument Field. Sometimes because an error causes the assembler
to view the nexi field incorrectly, a valid field may be flagged as an error,
This is 2 consequence of the free format source language. A good rule is to
fix errors in a particular line of code as they are discovered. In this way,
erroneously flagged program errors may then be passed as valid. '

115

116

The following alphabetic characiers are printed in the error indicator
columns and imply the corresponding message.

L — Label error. The label contains too many characters, conlains invalid
characters, has been previously defined, or is an invalid symbol.

O — Op-code error. The op-code mnemenic has not been recognized a8 a
valid mnemonic,

R — Register field error. The register fieid expression could not be evaluated,
or when evaluated, was less than 0 or greater than 3, or the register
field was not found.

§ — Syntax error. The instruction has violated some syntax rule.

U — Undefined symbol. There is a symbol in the argument field which has not
been previously defined.

A — Argument error. The argument has been coded in such a way that it
cannot be resolved to a unigque value.

P — Paging error. A Memory acCess instruction has attempted to address
across a page boundary.

W — Warning. The assembler has detected a syntactically correct but unustial
construction. The error will not be counted and will not inhibit the
ptoduction of the abject module.

USING THE ASSEMBLER

The program is prepared by punching it into cards or otherwise trans-
ferring the program statements into a logical card image file. An ORG
statement usually occurs early in the program. [f no ORG appears, the
assembler assumes an ORG 0 to occur before the first assembled statement.
An END statement must occur as the last statement. A program written in
the 2650 Symbolic Assembler Language should be preceded and possibly
followed by control cards for the particular computer system which is
being used. Figure 14 shows the control cards for an IBM/370 DOS
system. Although the control cards may vaty from system to system, the
format of the actual 2650 source program will be the same in the system.

The ohject module produced by the Assembler during pass 2 is directed
to the FORTR AN standard device #2, in this instance the card punch. The
source program is read by the assembler at standard device #1, the card
reader. In some systems the device assignments may be altered if desired,
through assign cards. In other systems, however, the assembler must be
recompiled with the device numbers desired being set in the main program
module.

o F -
M B

[W

‘
i S
<

NN

.
-

a

#& L R S P -
. N R T I “W?Wﬂwgwgfﬁ
L I IT
Ll
I N = ST
- & ~?§§§»E§§-§‘§‘Q€§?§ﬁ%

Figure 14

B
i ¥ B

L L

OBJECT MODULE

The format of the object module is: The first card or card image is always
all 9.

bb899929999999999

The second and all subsequent data cards are in the following format. Logical
columns (1-5) contain the load address in decimal. Each three columns (8-71)
contain the data to be loaded in decimal. Each three columns represent a
byte of data; columns (6-8), (9-11), {12-14), etc. Beginning at the address
indicated in columns (1-5) each sequential data byte is to be loaded into
sequentially ascending addresses in memory. If a 999" appears in a particular
data byte position, that byte of information is to be ignored by the loader
and the contents of the corresponding location is not modified.

Because there is address and data on every card image, each card image is
independent. Therefore, the order of the data cards is unimportant and
patch cards may be prepared manually by preparing a data card in the object
module format.

The last two card images each serve a special purpose. The next to last

card contains a series of -1 punches, This card is used to signal the end of

load information and has no other function.

The last card, which follows the '-1' card, contains either the start
address (specified in assembler END statement) or zero in columns (1-5),
the remainder of the card contains '-1' punches which have no meaning.

117

118

ASSEMBLY LISTING

Figure 15 is a sample of a program listing produced by the 2650

Assembler. The following explanations are keyed to the listing,

1.

Page heading — which displays the current version and level of the 2650
Assembler.

. Line number — every assembled line is assigned a line number for the

programmer’s convenience.

. Address coluran — The numbers in this column are equal to the value

of the assembly Location Counter and indicate the address at which the
first byte (Bl) is to be loaded.

. Label column — If there is a symbol in the Label Field of a line of code,

the value of the label will appear in this column. For example, in line
number 17 the value of the label SORT is H'0007".

_Data field — This field describes the data bytes which are to be stored

sequentially starting at the address in the Address Column.

. Error columns — These columns may contain the error codes as detailed

elsewhere in this chapter.

. Source code — This area of the listing reproduces the source code as it was

read by the assembler.

8. Page number — Every page of the listing is numbered sequentiaily.
9. Cumulative errors — This field indicates the total of errors detected by the

assembler during the assembly process. Warning messages (W) are not
included in this total.

Figure 15. SAMPLE PROGRAM LISTING

119

120

CHAPTER IV

2650 SIMULATOR

121

122

INTRODUCTION

The 2650 Simulator is 2 FORTRAN program which allows a user to
simulate the execution of his program without utilizing the 2650 Processor,

The Simulator executes a 2650 program by maintaining ils own internal
FORTRAN storage registers to describe the 2650 program itself, the micro-
processor registers, the ROM/RAM memory configuration, and the input. data
to be read dynamically from IO devices. Multiple simulations of the same
program may he executed during a single simulation run. In addition,
statistical timing information may he generated.

The Simulator requires as input both the program object module pro-
duced by the 2650 Assembler and a deck of user commands. [t produces
a listing of the user’s commands, executes the program and prints {““displays™)
both static and dynamic information as requested by the user’s commands.

123

L]

24

SIMULATOR OPERATION

GENERAL
Once the Simulaior is loaded and started, it performs the following actions:

® Presets each register in simulated memory to a “HALTY mstruction.
Thus, if the user’s program attempts to branch to some undefined area of
memoty, the current execution of the simulated program is terminated
and only relevant data is printed.

® Reads and stores the user’s commands. These commands control the
performance of the Simulator during program execution. They are stored
in a simulator iable for reference before, during, and after execution.

® Loads tite 2650 object module into simulated memory,

® Starts the simulated program. The simulated program is started at the
address specified in the START command. If no START command is
submitted, the program is started in the location specified in the END
statement of the simulated program (see Assembler manual). If ne location
is specified in the END statement, the Simulator starts in location 0.

® Oversees the execution of each instruction. Before an instruction is
executed, the Simulator checks the address of the instruction and the
address of the referenced memory location to see if either of these
addresses is referenced by any one of the user’s commands. If so, the
command is executed. The Simulator then executes the current in struction,
updates all affected registers and refrieves the next instruction for
execution.

® Terminates the simulated program. The simulation is terminated either
by the execution of a “HALT” instruction, or by having executed a
preset number of instructions or by having satisfied the conditions of the
STOP. command.

® Once the execution of one simulation is complete, the Simulator prints
any statistical timing information requested (STAT), and proceeds with
the next simulation (TEND) or terminates itself (FEND).

SIMULATED PROCESSOR STATE

The Simulator maintains a number of FORTRAN integer cells which are
used to simulate the microprocessor’s state, i.e. the geneval purpose registers,

the upper and lower program status bytes, the location counter or instruction
address register (1AR), the address of the instruction referenced and the
contents of the location referenced.

These simulated registers and status bits may be displayed dynamically,
(INSTR., REFER., TRACE.) i.e., while the simulated program is executing.
Also the general purpose registers and the status bytes may be altered dyna-
mically (SETR., SETE.).

SIMULATED MEMORY

The Simulator maintains a 2048 cell FORTRAN integer array which is
used to simulate read-write random access memaory.

It 1s possible to configure parts of this memory into a ROM-RAM environ-
ment by using the SROM Command. [f part of the simulated memory is set
to Read-Only and an instruction attempts to store data into that memory
segment, the Simulator bypasses storing the data, prints 1 warning message
and continues with the next program instruction.

Using Simulalor commands, the user may change parts of memory before
the program executes (PATCH) and he may display parts of memory
dynamically (DUMP,).

The simulated memory is smaller in many cases than the Lotal memory
size of the user's physical system. This restriction encourages the construction
of modular programs. Because the simulated memory is smaller than a
2650 page, it is not possible to fully test programs which utilize the 2650
paging system, i.e., programs larger than 8192 bytes.

SIMULATED INPUT/OUTPUT INSTRUCTIONS

The Simulator maintains a 200-byte First In, First Out {FIFO) buffer to
store the data read from a simulated input device. This buffer must be preset
by the user ¢command, INPUT.

When any 2650 input instruction is simulated (REDE, REDC, REDD), the
Simulator accesses the buffer. If there is data in the buffer, the next byte of
data 1s inserted in the simulated register specified by the mnput instruction.
If the buffer contents have been exhausted, a warning message is displayed
on the simulator listing,

To simulate the execution of any 2650 output instruction (WRTE, WRTC,
WRTD]}, the Simulator takes the data byte from the register specified in the
output instruction and displays it along with the address of the output
instruction.

125

USER COMMANDS

GENERAL

The 2650 Simulator accepts commands which specifly how the program is
to run and what data is to be recorded.

In any one Simulator run, the user may specify that his program be
executed any number of times. The user submits a new set of commands for
each execution. The final command set is followed by a final end card
{FEND), while all prior command sets are terminated with a temporary end
card {TEND) ([lust. III-1).

COMMAND SET — EXECUTION - 3

EXECUTION -~ 2

EXECUTION - 1

COMMAND SET

Figure 16. THREE SETS OF COMMANDS

Within any one command set, the user may specify:
® That the program execution start at a specific memory location (START).

® That the execution of the program be complete either when the number of
instructions executed equals a specified number (LIMIT) or when the
instruction at a specific address executes (STOP.) or when the simulated
program itself executes a “HALT” instruction.

® That statistics be displayed at the end of execution (STAT). The Simulator
accumulates a count of the total number of instructions executed, the
number of each type of instruction executed, and the total number of
2650 machine cycles expended. This information provides a measure of
efficiency by indicating how many 1-, 2-, or 3-byte instructions were
executed and may be used to calculate program timings.

® That certain areas of simulated memory be designated as Read-Only
(SROM) and are therefore inaccessible to any memory write operation,

e That the contents of memory be initialized with specific data (FATCH).

® That a FIFO {First In, First Out) buffer be used to simuiate data read from
I/0O devices {INPUT).

® That the processor state be recorded whenever a speciiic memory loca-
tion executes {INSTR.), whenever a specific memory location is referenced
(REFER.), or whenever any instruction executes which lies within a
specified range of memory addresses (TRACE.). The processor state
consists of the location counter, the instruction referenced and its con-
tents, the upper and the lower program status bytes, and the contents of
all the general purposc registers,

® That an area of memory be dumped whenever an instruction at a speciiic
memory location executes (DUMP.).

® That certain general purpose registers (SETR.) or the program status
bytes (SETP.) be set dynamically, ie,, whenever a specific memory
location executes.

¢ That comments (%) be interspersed between control cards..

Some of these commands execute dynamically, i.e., when an instruction
at a specific memory location executes or when that location is referenced.
Since the simulator storage capacity limits the total number of locations
which may be retained simultaneously (while a program is executing), a
total of 30 memory locations may be specified on all the “dynamic®’
commands submitted for any one execution, i.e., in any one command set,
These dynamic commands are identified by a trailing period (.), e.g., “STOP.”.
This period is treated as a field separator, i.e., it is not treated as part of the
command name by the Simulator and is therefore optional. The description
for each dynamic command identifies which of its parameters count toward
the 30 “dynamic’” command limit, i.e., the limit of 30 memory locations.

In addition, the number of DUMP. commands is limited to five (5); the
numbet of SETR. commands is limited to four (4); the number of SETP.
commands is limited to two (2); and the number of data read on sl INPUT
cards in one command set is limited to 200,

All “dynamic commands’ are executed before the simulated instruction
is executed.

For those commands which accept only one set of parameters (LIMIT,
SROM, START) only the last set of parameters encountered is used.

COMMAND FORMATS

Figure 17 contains a list of the commands, their parameters and a brief
description of the commands themselves, In addition, the Simulator treats
& a comment card, any card with two consecutive asterisks (**) starting in
column 1.

The Simulator accepts information in card image form, The entire card is
read in FORTRAN “A” format. A command must be complete on one card
as continuation cards are not allowed. Comments may appear in any order
within a conunand set.

The command name starts in column 1 and must appear as shown, except
for the optional period.

The field of characters which lies between the command narme and its
parameters or between the parameters themselves is called a field separator.
A field separator may contain any number of characters, but none of these
characters may be hexadecimal characters (0-9, A-F). For the sake of clarity
in all the examples, the following field separators are used to indicate the
following functions:

127

28

FiELD SEPARATOR FUNCTION

blank (s)
{)

E

Identifies a command which counts toward the “dynamic”
command limit.

Separate a command from its parametexs.
Encloses optional parameters.
Separates one set of parameters from another.

Separates one parameler from another within a set of
parameters,

Indicates that multiple parameters or sets of parameters are
legal. If a period flags a command, each of its parameter sets
counts toward the “dynamic” command limit. E.g., the
following sets of commands are identical:

1. INST. 100
INST. 200
2. INST. 1G0; 200

The parameters themselves must be hexadecimal numbers (0-9, A-F).
The following labels identify parameters in Illustration II-2:

LOC
NO

FWA

LWA

VALUE
RO,R1...R6
PSL

PSU

Location or address of an instruction which is to be
executed or the address of data which is to be referenced.

A number of data, e.g., the total number of instructions
t0 be executed.

First Word Address of some area of memory.
1,ast Word Address of some area of memory.
The value to which some location is fo be set.
General Purpose Registers 0-6.

Identifies Lower Program Status Byte.
Identifies Upper Program Status Byte.

COMMAND
NAME

DUMP.

FEND

INPUT

INSTR.

LIMIT
PATCH
REFER.

SETP.

SETR.

SROM
START
STAT

STOP.

TEND

TRACE.

PARAMETERS

LOC, FWA-LWA ;. . . ;LOC, FWA-LWA)

None

VALUE(; . .. ;VALUE)

LOC(; . . . ;LOC)

NO

LOC,VALUE(; . . . ;LOC,VALUE)
LOC(; . . . ;LOC)

LOC(,PSL=VALUE) (,PSU=VALUE)

LOC(,RO=VALUE). . {R6=VALUE)

FWA-LWA
LOC

None
LOC(; . .. ;LOC)

None

FWA-LWA(; ... ;FWA-LWA)

DESCRIPTION

Display the area of memory, FWA-LWA, when-
ever the instruction at LOC executes.

Execute the last simulation and terminate the
entire run,

Define the data to be read by simulated I/O
instructions,

Display the processor registers whenever the
instruction at LOC executes.

Specify the total number of instructions executed.
Initialize each memory location, LOC, to VALUE.

Display the processor register whenever the in-
struction at LOC is referenced by another
instruction, '

Set the program status byte (lower and/or upper}
to VALUE whenever the instruction at LOC
execufes.

Set the general purpose registers to VALUE
whenever the instruction at LOC executes.

Specify the boundaries of Read-Oniy Memory.
Start the simulated program execution at LOC.

Display instruction statistics at end of program
execution,

Terminate the program execution when the in-
struetion at LOC executes,

Execute the last simulation and prepare to read
the User Commands for the next simulation.

Display the processor registers whenever an in-
struction executes, which lies within the area of
memory, FWA-LWA,

Figure 17. COMMAND SUMMARY

129

COMMAND DESCRIPTIONS

The following command descriptions are alphabetized by command name.
As previously discussed all parameters are entered in hexadecimal notation
{0-9, A-F). All address parameters (LOC, FWA, LWAY} are limited to the size
of simulated memory.

DUMP. DUMP SIMULATED MEMORY

This command causes the Simulator to display selected portions of
memory whenever the location counter mafches LOC,

Each LOC counts as one “dynamic” command. The total number of
“dynamic” commands is limited to thirty (30). The total number of LOC’s
submitted in DUMP. commands is limited to five ().

DUMP. LOC,FWA-LWA(;. .. ;LOC,FWA-LWA)

Where: DUMP. is the command name.

LOC is the address of the 2650 instruction at which the
dump occurs.

FWA is the first address of the area to be dumped.

LWA is the last address of the area to be dumped. LWA must
be larger than FWA.

Example: DUMP. 5A,0-3FF 100-11A-21A
DUMEP. EQ-400-4FF

Note: More datz may be dumped than was specified since the FWA dumped
always has a least significant digit of 0, e.g. 30, 100, ete. Similarly, LWA
always has a least significant digit of F, e.g. 3F, 10F, eic.

FEND FINAL END COMMAND

This command signals the Simulator that the preceding commands
complete the directives for the final simulator run. After FEND is read, the
Simulator performs the last simulation and comes to its final termination.

FEND

Where: FEND — specifies the command name.
Example: START 14

TRACE 0,100

TEND

START AA

PATCH 11,(C2

FEND

INPUT DEFINE DATA FOR INPUT

This command loads data into a FIFO storage buffer from which the same
data is used to supply I/O instructions with input data. The first data point
specified becomes the first one accessed by a 2650 read instruction. The last
point specified becomes the last one accessed. Should the buffer become

empty during the simulated execution, an error message is printed, the
input register remains unchanged and the simulation continues.

Any number of these command cards may be submitted as long as the
total number of data specified in one run does not exceed the size of the
FIFO storage buffer (200).

INPUT VALUE(;...;VALUE)

Where: INPUT — specifies the command name,
VALUE — specifies a 2-digit hexadecimal value.

Example: INPUT 0,1, 2,3,10,1A, FF

131

132

INSTR. INSTRUCTION TRACE

This command sets a break point at the specified address. When the
instruction at this address executes, the Simulator prints out the internal
state of the simulated processor. The break point occurs before the instruc-
iion is executed.

Each address specified in an INSTR. command counts as one “dynamic’”
command.

INSTR. LOCE . .. ;LOC)

Where: INSTR. — specifies the command.

LOC — specifies the address for a break point. The address
must be within simulated memory.

Example: INSTR. 1CE, 1A, 22
[NSTR. 123-200-5E
INSTR. 74

LIMIT LIMIT THE NUMBER OF INSTRUCTIONS EXECUTED

This command determines how many instructions will be executed. If the
number given in the LIMIT command s exceeded before the instruction
specified by a STOP. command executes or before a 2650 HALT instruction
is simulated, the Simulator terminates the current program operation,

Without this command, the Simulator assumes a limit of 1000, instruc-
tions. The maximum LIMIT which may be specified is determined by the
maximum integer constant of the FORTRAN compiler used.

LIMIT NO

Where: LIMIT — specifies the command.
NO — is anumber which determines the maximum number of
instructions to be executed.

Example: LIMIT 200
LIMIT 2F

PATCH PATCH SIMULATED MEMOQRY

This command alters the contents of memory before a simulation run, It
may be used to alter the contents of any byte in memory and overrides load
information in the object module for the duration of one simulation run,

Any number of these commands may be given in a simulator command
stream. '

PATCH LOC,VALUE(;...:LOC,VALUE)

Where: PATCH — specifies the command.

LOC — specifies the simulated memory address which is to
be changed.

VALUE — specifies a 2-digit hexadecimal numher to be
stored at LOC,

Example: PATCH 0,1F 1,0 2. 5E
PATCH 102, EE

REFER. MEMORY REFERENCE TRACE

This command causes a break peoint to occur whenever one of the specified
addresses is referenced by a simulated instruction. During the break point,
the Simulator prints out the internal state of the simulated processor. The
data byte of immediate addressing instructions is handled like an ordinary
operand address.

Each address specified in a REFER. command counts as one “dynamic®
command.

REFER. LOC(LOC. . . ;LOC)

Where: REFER. — specifies the command,

LOC — specifies the effective operand address for a break
point, The address must be within simulated memory.

Example: REFER. 3FF/21/18E
REFER. 200
REFER. b, 50, 22F

133

134

SETP. SET PROGRAM STATUS BYTE

The SETP. command dynamically alters the upper and/or the lower pro-
gram status bytes. The specified program status byte is set when the
address parameter supplied in the command, LOC, equals the location
counter.

A SETP. command must set at least one program status byte. Up to two
SETP. commands may be given in a simulator command stream. Each LOC
gubmitted counts as one “dynamic” command.

The PSL and PSU may be entered in any order.
SETP. LOC(PSL=VALUE) {(,PSU=VALUE)

Where: SETP. — specifies the command.
LOC — specifies the simulated execution address where the
program status byte is to be set.
PSL, — specifies that a value is to be entered into PSL.
PSU — specifies that a value is to be entered into PSuU.

VALUE — specifies the 2-digit hexadecimal value to be
entered into the program status byte.

Example: SETP. 5A PS1L=056
SETP. 10F,PSL=01 PS5U=00

SETR. SET GENERAL PURPOSE REGISTER

This command dynamically sets the general purpose registers during
simulated program execution. Using this command, any or all of the general
purpose registers can be set when the location counter value is equal to the
address parameter, LOC, supplied in this command.

A SETR. command without parameters is not permitted. Up to four
SETR. eommands may be given in a simulator command stream. Each LOC
counts as one “dynamic’ command.

Register identifiers may appear in any order.

SETR.

LOC(,R0=VALUE). . .(,R6=VALUE)

Where: SETR. — specifies the command.

LOC — specifies the simulated execution address where the
registers are to be set,

RO — indicates the general purpose register toc be set. RO

Ri
R2
R3
R4
R5
RB6

always refers to general purpose register 0, R1,R2, and
R3 specify the registers in register bank zero. R4, R5
and R6 specify R1, R2, and R3 in register bank one.

VALUE -- specifies the 2-digit hexadecimal value to be stored
in the selected register.

Example: SETR.
BETR.

10A RI=3F, R2=00, R3=5
9F3 RO=FF, R5=00

135

[+ }]

SROM DEFINE THE BOUNDARIES OF READ ONLY MEMORY

This command allows the user to simulate a Read Only/Read Write
Memory environment. Whenever a 2650 instruction attempts to store data
in the area defined as Read Only, a warning message is printed on the simula-
tion listing. The data is not actually stored, but the simulation run continues.

SROM FWA-LWA

Where: SROM — specifies the command.
FWA — specifies the first address of the simulated ROM
area.

LWA — specifies the last address of the simulated ROM area.
LWA must be greater in value than the FWA. The addresses
specified are inclusive,

Example: SROM 100-FF

START START SIMULATION

This command specifies the address at which simulated execution begins.
The address specified in the START command supersedes the start address
in the load object module. The start address in the load object module is set
by an END statement during program assembly and is used by the Simulator
if no START cominand is given (see the 2650 Assembler Language Manual
for the END statement).

START LOC

Where: START — specifies the command.
LOC — specifies a start address for the program to be
simulated.

Example: START 10A
START 2

STAT DISPLAY INSTRUCTION STATISTICS

This command causes a list of 2650 instructions with the number of
times each was executed to be printed out at the end of the simulation run,

STAT

Where: STAT — specifies the command.

STOP. STOP SIMULATED EXECUTION

This command terminates the current simulated instruction execution
when the location counter matches the command argument, LOC.

Each LOC counts as one *dynamic® command.

STOP. LOC(;. .. ;LOC)

Where: STOP. — specifies the command,

LOC — specifies the instruction address at which simulated
execution ceases.

TEND TEMPORARY END COMMAND

This command signals the Simulator that the preceding commands com-
plete the directives for a simulator run. After the TEND is read, the
Simulator begins simulated execution of the 2650 program, Because TEND is
a temporary end, the Simulator assumes that there is another command
stream following it. The last command stream in a simulation run must be
terminated with a FEND (final end) command.

TEND
Where: TEND — specifies the ¢command.
Exampie: PATCH 01,15 O0A,FF
TEND
START 100
PATCH 01,E2 0A,FF
FEND

137

38

TRACE.

TRACE PROGRAM FLOW

This command causes break points to occur at each instruction within an
area of memory. The user specifies two addresses. If the simulated processer
accesses an instruction at an address that falls between the specified add-
resses, the Simulator prints out the internal state of the simulated processor.

Each set of FWA LWA counts as one ““dynamic” command.

Where:

Example:

TRACE. FWA-LWA(; . .. ;FWA-LWA)

TRACE. — specifies the command.
FWA — specifies from what address the trace is in effect.

LWA — specifies to what address the trace is in effect. LWA
must be larger in value than FWA. The addresses specified
are inclusive,

TRACE. 0-15F, 250-3FF
TRACE. 1-A, 3FF-40A
TRACE. 10-1A 30-5A 60-7A

SIMULATOR DISPLAY (LISTING)

As the Simulator reads each command set, it prints the card images of the
command set and then executes the program. During program execution the
following commands result in some form of display:

DUMP.
INSTR.
REFER.
TRACE.

DUMP. results in the display of an entire area of memory while the last
three commands result in some form of trace, i.e., a display of the processor
state:

Instruction address register {IAR) or location counter
Instruction executed (INST) '

Instruction referenced or effected (EADDR,)

Contents of the instruction referenced or effected (EADDR)
Program status byte upper (PSU)

Program status byte lower (PSL)

General purpose registers (R0, R1, R2, R3, R4, R5, R6)

Figures 18 through 21 confain the printout or display output from one
Simulator run. Figure 18 shows the first command set, which contains

commands to:

® Start at location 0 (START)

Initialize locations 55-5F, locations 61-6B and location 19 {PATCH)

® Dump locations 55-77 whenever either location O or location 3 execuies
(DUMP)

¢ Trace locations 14-1A {TRACE)

Figures 18 and 19 show the results of the first command set:

® A dump of locations 55-77. Note that a larger area is dumped than was
specified.

® 30 traces

® A final dump of locations 55-77

When the program execution for the first command set is complete, the
Simulator reports:

® The numhber of machine cycles executed
® The number of instructions executed

Figure 20 shows the second command set, It is exactly the same as the
first command set except that it initializes locations 12 and 33 instead of
location 19,

The output of the second command set is just like the output of the first
command set except that it results in 33 traces, not 30.

139

40

© Omriad - _"BD' L Ca

o "'.'mc_&.

an
ek cc,pu-nna
EH

© 18K

'ntm : A:I“hﬁ

orear

CO¥RANT 'ur
ths0. !
oord P u" g a0 G
FRECE uuv}tm

TRACE rw:m‘-q'

TEF,
oG *LLNE,
TRACE EEI“NkD

Cpliw L ﬁdﬂl.j'—
TRALC COMMIRD
ree HET .)
ao1r }I’Jl'..htl MR
TRALE GEMMAND .
Fs INST
S0l LML D as
TRALCF LCHMLKD .
14k) [R5T
L4 LECA.2 LUED PERE
THACE COMMAMD
14R INEY
oa1v ELER] [l PRS
TRACE cﬂ'ln,wb
AP us
whid rrwr.a an
TRACE CLMMAND
T80 [45T
Dol LEOA4E AddLa3a—
l”.ll:E [kl ELLAI]
INIT
I:IJ!.? LTDA 0 an5Eel
Thate {LERaRD
IaR THaT
gR14 - £CK1L0 L.
TP-\CF EL"FWD
LEY
“DL‘- LE"!-J‘ qohl ey
TFACE C’JHFM\D
AET
UUlT ﬂ.l‘l‘bll{‘ FO055a1
TOLCE LOMMBRD
§aR INET
LCIka - CERI.0 aa
TOACE COMMARD
‘I&R IHET .
- A014 LODE,G. OJRLa3,-
CTRALE COMN ST
AR IMSE :
oy SOCAD A05 5. 1
TRACE COMMAND
AL 1RER
GOl CEHI.H [: LI
n-u\.c[- ;‘)’.‘.m.ihl:‘ e T
I4F . 1,2 BET . R
TEOts LEtAYE . AD6L.

TPa.tE CEHA KD

LY T4 . .
7064, L

TRACE EOFMIND o .

B 1her :
CALEALD DOEELT L

' EADDR,
S TURE

T EADEH {FRDOR

‘EADLF {EADERY

Eapes’ WERT .

sOmid dooa

T3 e gk

WO 4D 4L al ii! HD

i :1'E=|:r|:=u' -

m

EAD[N [EAROUA] ' PSEL _oﬂL._
L6 pRaL 0 R
EODA [EAULRE . P38U BSBL
pede | ou83 o e

Ea9CR MERDDRN ESEW PSAL

eLIE 207h 01 - os0 -

Farce | IEAnRd) PAU PIBC

acea croodl oo oL 0

EiDDx (EADDA PEB PYAL
%2

tess dpaz - 01

0ol JOD!

FLELS .IEAQIJR}
Lraa, 1)

:Il:-j! oz

[:.Dn_'a_ {EAnERY

IR LEADDRG
PRty

TEAEDRT "

Figure 18.

i 01 0%,
S 0B 6 W1 4T w40 &0

FSgy
ar

waEL

PHFH SPEEL
o

r.u]a . naas . LU
EﬁBDR <£chk PEBD.-R
LB . 0002 Tel” ep
L AR DIR- Jca‘nnn L PR
CEEE. . 0EBL . - M- 4
| EdnR !Fm' . eseu PRRL,
Fo1A L d . Lo I T
Ceann tEapcRl msAu riel
pihe 4008 M E
ESDCR [EMORD PSBL PSEL
QL&) *© 00GF o1 40
FOZOP NEADDR) - PSEU PIAL
aok 0604 - aL en
£A0TR LEabCR] C PSBU PSAL
case | 900% ar 21
ganbi JEADDRG © PSEU ASBL
[oasa =1} Bl
EAULA (EMDCA} F5BIL 2 3RL
LET-LTT TR
FancR (ERDENS #Ear PEAL
coe? De02 oL el
EAr | EADURDE A5RU PSAL
CCSE OO0y ot a1
EARCH (EADDP1 PHAL FiBL
CeiR T oBD9A LI
BAZLR tHAZER) PEAL PEEL
acks 0BnI ot B
£4078 [EEERN . BLHL PSEL
CobE Q005 T
£200R {EADDRI . PSAU P3EL
r31A 30da B s

" PSBU- PED
L

FIRST COMMAND SET

o
o)

Ll

=

3

g

az.

i
wy
o

AQ
o

+ FD

¥ RL'AZ 43 Re 5 U6
d;.- m‘.. a0

.13
]

Rl
Ll

Fl

oT

Rl
ot

&1
a1

a6

'.czm.u

ke

14
03

‘Wi

DH

!3

Rz i

a0

R
oo

w2
oo

Rz
oo

mz
o

Rz
L]

R2

og

F3
oF

%1
ar

a3
(-

a3
ok

=3
e

R3
a3
"3
o5

oy
GE

ZRi

s
2 pA
[

B

a4

Rr3

¥
LER

o, o0z 0 Bnng

ke WS
TR

Eﬂ l"

'
LE]
oo aa

Wk RS
Ho od

oy UG
@l 0f

ks Bn
30 Od

AL EG
ap 49

A4 ‘RS

.00

FIETY

a0 g

R RE

Ri

GE

R
b

L]
og -

nE
o3

Fb

.on

®e
on
e
o0

R
ax

ao oo 0

PRI
20 00 3

A4 RS R
o0 an

[
Ta- ad-.
Ry REE
0002

“ha KL Rz ALY Mr'h:
Clr OL-0F A1 G fd

TReCE COPNAND ' N
H

1 [NET E4lZh 1EabeRy PEeY pieq ®0 Rl RE B3 R4 & Ag

nola [) o4 oot |- odnd a1 ad ol a1 3001 9% a0 0]

TokranS LUHF . . B i T
agsn LFor 18 46 b5 33 71 22 €2 03 a5 04 €3 0z J1 oo oL B Lo . .
Died DG OL U 5T DA 28 {e £2 4D 0 01 4D 44 &8 L D

2Grd 5G40 43 Al A0 40 0 20 S0 4D 40 4T EORE T T

MO. IF "8CHIRE CYCLES EECoT=h = 232

f0. R IRSTEUS TIOWS E5LOLAEL 2 13

Figure 19. FIRST COMMAND SET, Cont.
141

stpoT
FRIL*
FATCH
PATCH
PATCH
PATCH
aaTie
rime

QDUHP

iniLe
PATCH
BATTH
FENG

a0

G5,0 ER,1 ET.F g2 55.7
SEy5 589w 5C.3 S0y fE.L

=F40
L1p i

B2, 43,0 fkpl E5e] BEaD
E¥,7 afla® 4%, ¢ tha2 BF.1

ZaBli. 1T
Q3577

CCRFLND CLUAR

[EL]
TiR
ooFc
TEALE
128
+hls
TREDF
1ap
nal?
TRALT
148
cols
TRALE
1ap
aolsy
TRALE
TAR
nact
TLACE
lap
anla
TRACE
Lk
Dd-L4
TRALE
TaR
FoLT
TRECE
thF
fleM Y
TRELE
AR
e
TOLCE
14F
0017

142

I CO#MaHD
EE

AT aF 15 1B &5 &
o3 pa op 90 01 a1
of 4D 40 &d &2 4@ oD 0 00 &7 40 &L 4D adl

LM AND
[RTEA
104 Y
L MmN
THEF
AEDRA T
[yil L ECNA
iHST
LORIL0

CEMFARD
THST

LEM Ll
CCWHANT
EWST

LCCE O
COHEARD
[hsT
ArLa L
CUMHENG
IHAT

CLN1,0

scedad
LLMHARD

[RRL)
LLMF ShE
THSY
NEER
W Hatsy
(L)

ATR4LD
LCrNAKD
IHAT
ECMI.0
CLFMARD
[NGT
Ll

T
ADGES O
CfH¥aND
LT
LoRLaE
CLMYERD
14ET

LODAeD
COHMAND

INET

aRzd e
CCNUahD

TMET

L3}

O |y 34-
L0531
o
DAb1a -
G056, 1
AL}
[l 3 T Al
5%
as
Natslsde=

G254

a4
006143,
E-CETRE
oo

F0ele e

onse, 1

Oétad ¢35
LLIEI
Ok
Qb3
DOSael
14
006 1s Zam
0954, 1

oe

05l

i)

42 37 03 45 Dy LT 02 01

ag

Cr GaoCa D2 0L §) 43 &3 =0

EACDR 1EACDCAT
coeh ool

FRILH (E&DLAY
cisf aneo

EANMR (ERQCRF
a0LR dedd

FADLR. EEADDRY
421 0a2

EaCnR (EADERE
CLSE 0801

ELpLR [EADDR]
ETlR oL

EanCR A EADCAL
Lasn aoneE

EADDR [E&AODTY
acsn FO0%2

FAIOR {EWDLRI
“C1LE anoa

EA9DR [TADCR]
CCad 200

TaLss (Eepend
i1 Tad?

EACER |EADCR)
£c1me sl L]

CADDR [EaDDRE
Goa? ooad

Tapie |EADESN
CoEA OG04

ErDDR [EADDE]
oclpe 2904

EMCR {EADNRY
L& AO03

E8C:NR GEADDRE
Cosr Ll B

EAUDR (EADDR)
[a0q 4

EACDR [EANORY
(.2 00d1

ERDCR A FADCA]
CCS& ono3

FatbR [EADDR]
e [Hligrl)

EATCR LEADTA)
Giek 0001

EBDER CEAONRT
[£:1-3- B B S

Zapnk {EADLHN
1L Jona

EanDr iﬁancul
Ofe2 COED

farce (ERIERD
LLs? wnz

EniDR [£2RCRY
gelR . D

=aphk 1FATER]
ooed aoan

EACDA [E&RCYH
Eb5a oGol

Figure 20.

Gl

L
FEEL PSBL Ry A1 R A3 R4 RS Ta
ag e o] 3B MO DK 00 &0 DO
FEBL RSLL B RL R2 =3 P4 PS5 R
33 Al oGl aF G0 o 00 00 a7
P5EL PSRL Ry A3 B2 F3 44 RS PE
oL R m oee B0 04 09 S0 0%
P38 PSEL Bl Rl R2 B3 k% AS Rh
4l g bl Ak OF A A0 04 O
#5800 PEREL &n Rl w2 R1 R4 RG 3
01 46 02 Gi Ow 8% 0 oo 0%
P5AU B3AL Fg RL Rz PR3 R4 K5 64
LI £3 &4 A0 0F 04 0F JF
P5R PIAL Ay RL B2 R Ra RS Ré
0l AB g3 D% 00 P 06 40 03
PLEU PEAL A0 RL RZ %3 RG RS b
n] 4B Ch 49 90 08 d0 D@ a3
PSEU PSGL # K1 K2 R3 R RS RS
Ul 46 gs 09 00 @B DD 20 00
PSBU mSBL mO KL R2 A3 R4 RE R4
L 2w o9 CB 30 98 00 2o 40
PEBa PSEL Fl Rl F2 R R4 RS RS
nly &9 T3 08 0o D7 OO 00 Do
P5BU PEBL ay Al RZ RY R4 95 BN
G1 A o0& G0 0T 00 ad DO
FEBL PSEL md R1 R HZ Ry BB A&
LT ¢3 of oo OF 07 R O
oEBU PSAL FO AL A2 R} Py RS RE
51 &8 cz ot DO D5 GO b 4
Phiu PEAL p0 Rl R2 @3 P& Rh Ro
LT 07 07 00 Q& 99 0 03
PEU PEEL #) L RZ R R4 3 A&
01 ba 21 Oe OO O& O0 00 2%
PSEW PRBL B KL A2 83 MA K5 24
a1 &R 02 g& U0 D5 £0 CO OO
pEIL PEAL Wy RL R R3 R4 PS5 RS
o1 4 th 08 03 ar 00 00 A
F3AL P3EL Fd RL 2 P3 9% F5 H&
B a8 B Qs 00 5 g0 a0 00
FLe0 PEBL pE A1 A2 K3 9% FE AL
o1 4% af 05 09 04 0 d0 00
PSAU BSBL B} Rl AZ B3 B4 A5 9§
LA By 0 30 04 09 0D DO
P5du PSEL AD Ki A2 R3 A% RS Re
AT] T4 g4 02 04 DD 39 OF
vaHl PEFL F& ®1 RZ P13 95 FF Ré
LI 83 o1 04 08 03 o @ op
P5SBL PRAL By Rl RF FIE6 R4 R
a1 4 £3 04 PO 0% 0G50 0%
PAHLL PSBEL F» Rl Wz #3 R4 RS R&
o a2 pa Ou 9@ 03 0 40 0O
PiBY PSEL PO Rl K2 R3I T4 EY Rb
oy o L3 03 09 e 00 S0 0o
BEBLE SEL & ki RZ R3 B F5 A&
[T g % 00 82 30 o0 o0
oy mEAL FD R1 RE R RG4S RS
ol a8 22 02 Bo 02 00 S0 0
RSl PSBL By RE RY RS MG PY OSE
Pl Uk o ¢2 J0 Ol OO an 0o

SECOND COMMAND SET

TRELF CORMARD
hF 1

i NST
TniA [T
TRaL? CCuMAN]
[4E S IwEr
G 14 LCo G
IRBGE CLMmANC
Hr INST
caLT . Ak, 0
TRACE ELamsur
T4 [H5T
0314 CCMEND

SINWAIRD EUMP

035} 17 U4 1 1R
Claelt a5 a3 Gl a2
0T “ib &0 40 AT

43 s Qg

E80DA fEADPRT
CELE 3004

EXNAN (BApnRj

ULy Ty e ooal noeD

Eantt | gancd)
LOB5 044

FANCR [EADDR]

LCid apgs

MC. OF MACHINE CWGLFS [XSCUTED - 24z

K. CE TRETRUCTIONS =X:fUTEZ = - v

Figure 21. SECOND COMMAND SET, Cont.

PSEU I55E
01, %8

PIEY PSBL
81 as
PREI Poal
dr ag

PSBU FialL
o s

H5 00 0] mE LD Q3 06 3ec0l 32 ST opo
C7 L3 B0 D3 Ol 41 4 3D 4n
A AR RD 08 IJ S0 A0 40 w3 el 40 40

L¥
L]

L33
01

Rl
0

&l

oy

%2
ply)

"z

og

RE
oo

Rz
]

K3
[0}

R3
a1

LS
g

R
i}

bi
LS
1

By
L]

L]
ag

RS
ao

RS

ag.

w5
0
L
i

as
a0

L]
i)

[
ue

i

oo

143

144

APPENDIXES

145

148

APPENDIX A

MEMORY INTERFACE

Figure 22 shows a compiete interface between the 2650 and a 256 x &
R/W random access memory. Since the memory chips are MOS they can be
driven directly by the address lines and the control lines, The gates shown
are assumed to be standard 7400 series TTL so that some signal buffering is
assumed fto be necessary. If CMOS or T4LS gates are used, some of the
buffering inverters may not be necessary. The same is true of the data bus.
Depending on the number and nature of the I/Q devices being interfaced, it
may or may not be necessary to buffer the data hus,

Because the data in and data out signals for the memory chips are bussed
together, care must be taken to avoid overlap of drivers on the data bus. In
this example, the problem is solved by using the write pulse into the memory
as the chip select input instead of using the R/W line as is conventionally
done. The R/W output from the processor is a level and is valid when
Operation Request is true. Write Pulse from the processor is gated with the
OPREQ and M/IO signals to assure proper operation.

For a large memory the next address line (ADR8) could be gated into the
chain that generates the chip select signais, with similar write pulse
generation for the higher order memory.

The OPACK signal is assumed to be false for the durafion of all memory
operations. This eliminates some gating from that control input. No
problems will be encountered with this approach as long as the memories are
fast enough for the clock speed being used with the processor. At a cycle
time of 2.4us, data must be returned to the processor by lus or less time
from the OPREQ ieading edge.

© ADRT Az 2506
2564
RN RAM
ADDRESS
QUTPUTS
! & ARO
ADR @ R
L 414
Hiw —p-ibo !
b
! ' DATA O
i r | ar 2608
R - 256 Yy
ornear—{0r [L + fAN R A
—
WA [t 0] [i
| I
2650 PROCESSOR | An0
=3
OATA 1D

1
Ge 7 ¥y

-

DAaTA
BUS

=31}
B

OPACK f
’1 -~ 5
=11 L |

- —

d—wjcnn
&u——-PSV
<
,ﬁ--_- EDH En
A Briusen
1
il

[x]
=
8
-

RESET

Figure 22,

147

APPENDIX B

I/0 INTERFACE

Figure 23 shows one of many possible methods for buffering the data bus
and interfacing it to several devices. There are advantages o be gained by
using the Signetics 8T26. 1t has a PNP input buffer that keeps its low input
level current at 200gA instead of 1.6mA. This lightens the load on the
processor bus drivers and allows the processor to interface to several 8T20%
if necessary. The 8T26 has four complete driver/teceiver pairs in a package,
so two packages can fully buffer the 8-bit data bus.

The conirol signals generated for use with I/O interfaces are very
straightforward. Combining M/IO with OPREQ generates a signa! that can
often be used conveniently at the I/O devices instead of having each device
derive the signal individually. In the figure it is gated with the Read/Write
information in order to control the bus buffer.

Each [/O device must handle four basic processor interface functions:
{a) hbus interface
{(b) data transfer logic
(¢) device selection logic
(d} transfer acknowledge logic

Depending on the nature of the complete system and the particular I/O
device, these functions can be either extremely simple or fairly complex.

% LDORESS LINES TO MEMORY

wEUS O

- . o

| m

MEMORY
-[1)

|-

=11}

DAIVER TR o
OPRED I >o—'_—E ENABLE e 2. =
WG f- i ? 1
Fiw -‘I} — — .__I
o RECEIVER ;
EME ENAELE
110 OFERAT OM DATA BUS
ADDITIGAAL
1/0 DEV ICES
Ty — 8% — — ,_—arzs,—l —]

o
=
B
n
=

DaTs [
ACKNOWLEDUEL | TRANSFER I H

g

I

3

\7,:__ L=

LoGIE Lo
P 3,) = L ! [1] | 1] i]J: | ! I AT
I 1 W A O B
SELECTION
| LOGIC D(;‘J:;“-— T L L i I 1 1
FAll EXTERNAL DEVICE
L e e e e et e e e e — e — = = = — s — = —— |

APPENDIX C

INSTRUCTIONS, ADDITIONAL INFORMATION

The 2650 uses wariable length instructions that are one, two or three
bytes long. The instruction length is determined by the nature of the
operation being performed and the addressing mode being used. Thus, the
instruction can be expressed in one byte when no memory operand
addressing is necessary, as with register-to-register or rotate instructions. On
the other hand, for direct addressing instructions, three bytes are allocated.
The relative and immediate addressing modes allow two-byte instructions to
be implemented,

The 2650 uses explicit operand addressing; that is, each instruction
specifies the operand address. The first byte of each 2650 instruction is
divided into three fields and specifies the operation to be performed, the
addressing mode to be used and, where appropriate, the register or condition
code mask to be used.

Function Class Register
Field Field Field

76543210

The CLASS field specifies the instruction group, the major address mode
and the number of processor cycles required for each instruction. The
CLASS field also specifies, with one exception, the number of bytes in the
instruction. The following table shows the specifications for each class.

CLASS INSTRUCTION ADDRESS BYTE DIRECT
FIELD GROUP REGISTER LENGTH CYCLES

0 Arithmetic Register 1 2

1 Arithmetic Immediate 2 2

2 Arithmetie Relative 2 a3

3 Arithmetie Absolute 3 4

4 Centrol (inc. rotate) 1 2

5 Control 1-2 3

6 Branch Relative 2 2

7 Branch Absolute 3 3

Within the arithmetic groups (classes 0, 1, 2, and 3) the function field
specifies one of the eight operations as follows:

FUNCTION ARITBMETIC
FIELD GPERATION

LOAD
EXCLUSIVE OR
AND
INCLUSIVE OR
ADD
SUBTRACT
STORE
COMPARE

=1 1 o Qo DD O

149

Within the branch group (classes 6 and 7) the function field specifies one
of eight operations as follows:

FUNCTION BRANCH
FIELD OPERATION

] Branch On Condition True
1 Branch To Subroutine On Condition True
2 Branch On Register Non-Zero
3 Branch To Subroutine Qn Register Non-Zero
4 Branch On Condition False
5 Branch To Subroutine On Condition False
& Branch On Incrementing Register
i Branch On Decrementing Register

There is very little pattern to the use of the function field within the
control group {classes 4 and 5).

The register field is used to specify the index register, to specify the
operand source register, to specify the destination register, or a condition
code mask. For the register-to-register and the indexed instructions, register
zero is implicitly assumed to be the source or the destination of the
instruction. For all other instructions that involve a register, the register field
allows any of four registers to be specified, except for indexed branch
instructions which require that register 3 be specified.

Conditional branch instructions utilize the 2-bit register field as a
condition code mask field. A few instructions use the register field as part of
the operation code and consequently allow no variation in register usage.

APPENDIX D

INSTRUCTION SUMMARY
SIGNETICS 2650 PROCESSOR

ALPHABETIC LISTING

HEX OP Pa. HEX QP Pg. HEX oOP Pq.
8C ADDA 57 98 BCFR 75 BC BSFA 81
8D a9 8D
8E 9A BE
8F
84 ADDI 56 1C BCTA 74 BS BSFR 81
85 1D B9
86 1E BA
87 1F
88 ADDR 58 18 BCTR 74 7c BSNA 82
89 19 7D
8A 1A 7E
8B 1B 7F
80 ADDZ &5 FC BDRA 77 78 BSNR 82
81 FD 79
82 FE 7A
83 FF 78
"4C ANDA 61 FB BDRR 77 3C BSTA 80
aD Fo 3D
4E FA 3E
AF FB 3F
a4 ANDI 60 ‘DC BIRA 76 38 BSTR 80
45 (5]9] 39
46 DE 3A
47 DF 3B
a3 ANDR 60 D8 BIRE _ 76 BF BSXA 83
49 D9
aA DA
43 0B
41 ANDZ &9 W 78 aF BXA 79
42 5D
43 5E
—_— 5F
ac BCFA 75 55 5E 78 EC cpma 87
ah 50 ED
aE 5A EE
5B EF

151

1h2

HEX

E4
Eb
E6
E?

ES
ES
EA

EG

op Pg.
QgM| 66

C@AMR &6

cgmvz 85

2C
2D
2E
2F
24
25
26
27

EGRA 65

Egnl 64

28
29
2A
2B
20
21
22
23

EgRR 64

EZRZ &3

HEX
40

oP Pa.
HALT 90

6C
60
6E
BF

64
66
66
67
68
69
BA
6B
60
61
g2
63

ac
oD
OE
OF
04
05
06
07
08
08
0A
0B
00
o1
02
03

LghA 63

lpﬁl 62

igﬁR 62

IgRZ 61

L@DA 53

LgDl B2

L@DR 53

LDz 52

HEX

83

92

Cco

17

op Pg.
LPSL 69

LPSL 68

PPSL 71

76

30
N
32
33

PPSU 70

REDC 85

A —————

70
A
72
73

REDD 84

54
55
56
57
14
15
16
17
24
35
35
37

REDE 85

RETC 83

RETE 84

1]
b1
02
D3

RAL 67

13
12
cc
cD
CE
CF

cg

C1
c2
C3
AC
AD
AE
AF

Ad
AB
AB
A7

AB
Ag
AA
AB
AD
Al

A2
Al

SPSL
SPSU
STRA

STRR

5TRZ

SUBA

SuBlI

SUBR

SUBZ

70
69
5B

54

54

59

58

58

57

HEX
F4

BS
B4
BO
B1

B2
B3
FO
F1

F2
F3
o4
0b
D8
D7
9B
BB

op Pg.

TMI 88

TPSL 73
TPSU 72
WRTC B6

WRTD 86

WRTE 87

ZBRR 73
ZBSR 79

183

154

NUMERIC LISTING

HEX

00
01
02
03

op
L@DZ

04
05
06
o7

LeD

08
02
0A
OB

LZDR

oC
0B
OF
oF

LEDA

12

SPsU

13

SPSL

14
15
16
17
18
19
1A
1B

RETC

BCTR

1c
1D
1E
1F

BCTA

20
21
22
23

E@RZ

Py,

b2

52

69

70

83

74

74

SIGNETICS 2650 PROCESSOR

HEX op Pg.

24 EGRI 82
25
25
27
28 EGRR 64
29
A
2B

2C E@RA B5
2D
2E
2E
30 REDC 85
31
32
33
34 RETE 84
35
36
37
38 BSTR 80
39
3A
3B
3C BSTA 80
3D
3E
3F
40 HALT 80

41 ANDZ 58
42
43

HEX

44
45
48
47

OP Py.
ANDI 60

49
4A
4B

AMNDR 60

4C
4D
4t
4F
=0
51

52
83

ANDA 61

RRR €8

54
55
]3]
57

REDE 8%

58
hY
BA
5B

5C
5D
5E
5F
60
1

62
63

BENR 78

BRNA 78

IBRZ 61

64
gb
66
67

@RI 62

HEX

68
69
GA
6B

op

IZRR

&C
6D
6E
6F

RA

70
72
73

REDD

74

CPsU

75

CPSL

76

PPSU

77

FPSL

78

A
78

BSNR

7C
7D
7E
7F

BSNA

30

B2
83

ADDZ

84
a5
86
87

ADDI

Pg.
62

84

71

72

70

71

82

82

55

56

HEX

828
89
BA
8B

op
ADDR

3C
ap
8E
BF

ADDA

g2

LPSU

93

LPSL

94
9%
26
97

98
a9
9A

DAR

BCFR

9B

ZBRR

ac
gD
9E

BCFA

9F

BXA

AQ
Al
A2
A3

SUEZ

Pg.

66

68

G9

89

75

73

79

57

HEX oP

Ad SUBI

AL

AB

A¥

A8 SUBR
A

AB

AB

AC SUBA
AD

AE

AF

BO WRTC

BF BSXA

Pg.

68

59

36

72

73

81

78

81

g3

155

156

HEX
ca

oP

NP

C1
cz
Cc3

STRZ

€8
9
CA
CB

STRR

cC
CcD
CE
CF

STRA

Do
o
D2
D3

RRL

D4
il
D6
b7

WRTE

DS
D9
DA
DB

BIRR

DC
DD
DE
DF

BIRA

EO
E1
E2
£3

CEmzZ

Pg.

37

54

54

55

67

87

76

HEX

E4
Eb
Ed
E7

opP

c@M|

E8
E9
EA
EB

CEMR

EC
ED
EE
EF

COMA

FO
F1
F2
F3

WRTD

F4
F5
8
F7

T™MI

F8
Fo
FA
FB

BDRR

FC
FD
FE
FF

EDRA

Pg.
46

66

B7

86

88

77

77

2650 INSTRUCTIONS

ORGANIZED BY FUNCTION

LOAD/STORE Pg. ARITHMETIC Pq. ARITHMETIC Py
o0 LBz 52 80 ADDZ 56 68 IBRR 62
1) 81 69
02 82 6A
03 83 6B
04 L@DI 52 84 ADDI 56 6C 1ZRA 83
05 85 6D
08 86 GE
07 a7 GF
08 LPDR 53 38 ADDR 56 20 EfRZ 63
09 89 21
0A 8A 22
0B 88 23
oc L@DA 53 8C ADDA &7 24 E®RI 64
oD 8D 75
1] 8E 26
OF BF 27
Cl STRZ 54 A0 SUBZ 57 28 EARR 64
cz2 Al 29
C3 A2 ZA
A2 2B
c8 STRR 54 Ad SUBlI 58 2C EARA 65
co AB 2D
CA AB 2£
CB A7 i
ce STRA 65 A8 SUBR 58 41 ANDZ 59
cD A9 a2
ce AA 43
CF AB
AC SUBA 5% 44 ANDI g0
AD 45
AE 48
AF 47
60 igRZ &1 43 ANDR &0
61 49
52 aa
83 4B
64 IBRI 62 ac ANDA 81
65 4D
66 4F
67 4F

157

158

BRANCH

18
19
1A
1B
1C
10
1E
1F
a8
99
A

ac
8D
9E

58
59
bA
5B

bC

BCTR

BCTA

BCFR

BCFA

BRNR

ERNA

BIRR

BIRA

9B

BDRR

BDRA

ZBRR

Pyg.

74

74

75

75

78

78

76

76

77

77

79

73

SUBROUTINE BRANCH Fg.

38
39
3A
3B

BSTR

3c
30
3E
3F

BSTA

Be
B9
BA

BSFR

BC
BD
BE

BSFA

78
79
1A
7B

BSNR

iC
7D
7E
7F

BSNA

BF

BSXA

BB

SUBROUTINE RETURN

14
15
16
17

ZBSR

RETC

34
35
36
37

RETE

80

80

81

81

82

B2

a3

79

a3

84

COMPARE Pa.

EO
E1
EZ
E3

c@MZ 65

E4
ES
E8
E7

TOMI . 66

E8
E9
Ea
EB

COMR 66

EC
ED
EE
EF

CAMA 67

INPUT/QUTPUT

30
31

32
33
70
77

72
73

REDC 8b

REDD 84

B0
B1
B2
B3
FQ
F1
F2
F3

WRTC 86

WRTD 86

54
55
56
57

REDE 8b

b4
D%
D6
D7

WRTE 87

PROGRAM STATUS
MANIPULATION Py

92 LPSU 68
93 LPSL 69
12 sPsU 69
13 spSL 70

74 CP5U 71
75 CPSL 72
76 PPSU 70
77 PPSL 71

B4 TPSU 72
B5 TPSL 73

ROTATE INSTRUCTIONS

Lo RRL 67
D1
B2
L3
50 RRR 63
b1
52
53

MISCELLANEQUS Pg,

o

40

F4
F5
F6
7

nN@P

HALT

Thl

94
85
96
97

DAR

87

a0

g8

89

159

160

APPENDIX E

SUMMARY OF 2650 INSTRUCTION MNEMONICS

In these tables parentheses are used to indicate options. In no case are they
coded in any instruction. The following abbreviations are used:

r — register expression, must evaluate to 0 <1< 3.

v — value expression

* — indivect indicator

a — address expression

x — index register expression

X — index register expression with optional auto-increment or auto-
decrement

NOTE:

— the use of the indirect indicator is always optional,

— when an index register expression is specified, it can be followed by '+ or

' -" which indicates use of auto-increment or auto-decrement of the index
register. Example:

LODA,O DPR,R3.+

BX A, BSXA are exceptions and do not permit auto-increment or auto-decremernt.

— even though an address expression is specified in a hardware relative addressing
instruction, the assembler develops it into a value of (-64 = V = +63).

— a memory reference instruction which requires indexing may use only register
() as 1he destination of the cperation.

— if an index register expresgion is used with either the BXA or BSXA instruc-
tions it must specify index register #3 (either register bank) for indexing. Any
other value in the index field will produce an error during assembly. However,
it is not necessarv to use an index register expression with these instructions:
a hlank in this field will default to register 3.

LOADR/STORE INSTRUCTIONS

LODZ r Luad Register Zevo
LODLy v Load Immediate
LODRr (#)a Load Helative

LODAr (#)al,X) Load Absolule
STRZ 4 Store Register Fera
STERr {+#)a Ztore Relative
STRAT (+)a{,X) Store Absolule

ARITHMETIC INSTRUCTIONS

ADIE r Add v Register Zero
ADDLr v Add Immediate
ADDE,y (#a Add Relative

ADDAY f+Jal X} Add Absolute

SUBZ r Subtract from Register Zero
SURLr ¥ Subtract Iinmediate
SUBRr (=) Subtract Retative

SUBA,r (#*1a(.X) Sublract Absolute

LOGLCAL INSTRUCTIONS

ANDZ Es And o Register Zero
ANDLr ¥ And [rrumediate
ANDR,r {%)}a And Helative

ANDArX (#}a,X) And Absolute

IO0RZ r Inclusive or to Register Zero
IORLE ¥ Inelusive or Immediaia
[ORR,r [#m Inclasive or Relative

[IORAr {#)ad.X) Inchisive or Absolute

EORZ T Exclusive or to Repister Zero
EQRLr v Exclusive oy Immediate
EQRREr (*]a Exclusive or Relalive

EGRAr (+)al.X} Exclusive ar Absolute

COMPARISGN INSTRUCTIONS

COMZ r Compare to Register Zero
LCOMILr v Compure Immediate
COMBr d+la Compare Relative

COMATr (+)a,X] Compare Absoluta

ROTATE INSTRUCTIONS
RER,¢ Rotale Registor Right
RRL,r Rotale Repgister Left

BRAMNCH INSTRUCTIONS
BUTR,y {)a

BCFRy (#)a Branch on {ondition False Relative
BCTAx {#) Braneh on Condition Tete Absolute
BCFAx {+)a Branch on Condition False Absolute

BENEX (+)a
BRNAT (+)a
BIRRr ({+la

Branch on Coditoun True Relative

Branch on Register Non-Zero Relalive
Branch on Register Non-Zero Absolute
Braneh on Incrementing Repister Relative

Length {bytas)

G0 B = D B2 b

L= - RSO L

C BO BD R O 3 B e L0 B BS

L

Length {bytest
1
1

bo Gs O 09 o ka @D

EIRAYr (+)a
BDER.r (+}a
BDREA;r (*la
BXaA [#da(x)
ZERRE (=)

Branch on Incrementing Regisler Absolote
Btanch on Decrementing Register Relative
Branch on Decrernenting Register Absolute
Braneh Indexed Absolute, Lnvonditional
Zero Branch Belative, Unconditional

SUBROUTINE BRANCH/RETURN INSTRUCTIONS

BSTRY (:]a
BSFR.v (+)a
BSTAY (]
BEFAY {#)a
BSNRz (w}a
BENAr {+)a
BSXA (elu(x)
RETCy

RETE.v

ZBSR (#)a

Bruneh to Subrouline on Condition
True, Relative

Branch 1o Subroutine on Condjiien
Falze, Belative

Brunch to Subroutine on Condition
True, Aheohite

Branch to Subroutine on Condition
False, Abaclute

Branch to Bubroutine on Non-Zero
Fegisler, Relative

Branch to Subrouline on Nog-Zoero
Ragister, Abaninte

Branch to Subroutine, Indexed, Unconditional
Return From Subtoutine, Conditional
Retlrn From Subvouline and Enahle
Interrupt, Conditional

Zere Branch to Subrautine

Relalive, Uneonditional

PROGRAM ETATUS INSTRUCTIONS

LesU
LPSL
BEEL
SPSL
CPSU v
CPSL v
PRSL v
PFSL v
TPSL v
TPEL v

Load Program Suatus, Uppex

Load Program Slatus, Lower

Srore Program Status, Upper

Stare Program Slatus, Lower

Clear Program Status, Upper, Seleciive
Clear Program Status, Lower, Selactive
Preset Program Status, Upper, Solective
Preset Prograun Status, Lower, Selective
Test Program Status, Upper, Seleciive
Test Pragram Btatus Lower, Selective

INPUIT/OUTPUT INSTRUCTIONS

WRTD.t
REDDr
WRTC,r
REDC,r
WRTEr
BEDEr v

Write Data
Head Data
Write Conta,
Raad Control
Wrile Extended
Reud Extended

MISCELLANEQUS INSTRUCTIONS

HALT
DaARy

TMLr v
Nt

Halt, Enter Wait State
Decimal Adjust Register
Test Under Mask Immediale
Mo Operation

5=~ <L R TS)

B3 03 B B B e ed e o

FOBOH

[I

161

APPENDIX F

NOTES ABOUT THE 2650 PROCESSOR

1.

AUTO-INCREMENT, DECREMENT of index register. This feature is
optional on any instruction which uses indexing with the exception of
BXA and BSXA. The increment or decrement occurs before the index
register is added io the displacement in the instruction.

. The contents of registers when used for indexing are considered to be

unsigned absolute numbers. Consequently, index regisiers can contain
values fram O to 255, They “wrap-around” sc that the number following
2551s 0.

. Only absolute addressing instructions can be indexed.

4. The Branch on Incrementing Register or Decrementing Register instruc-

tions perform the increment or decrement before testing for zero. The
only time the branch address is not taken, is when the register contains
zera,

. All hardware relative addressing is implemented as modulo 8K and there-

fore relaiive addressing across the top of a page boundary will result in a
physical address near the bottom of the page being accessed. For example:

1FFC, LODR,R2 $+16

This instruction results, during execution, in accessing the byte at location
000C in the same page as the instruction. Similarly, negative relative
addresses from near the bottom of a page may result in an effective
address near the top of the page,

. Page boundaries cannot be indexed across.

7. Data can always be accessed across a page boundary through use of

relative indirect or absolute indirect addressing modes.

8, The only way io transfer control to a program in some other page is to
branch absolute or branch indirectly to the new page. Program execution
cannot flow across a page boundary.

9. Uneonditional branch or branch to subroutine instructions are coded by
specifying a value of 3 in the register/value field of BSTA, BSTR, BCTA
or BCTR. Example:

UN EQU 3

[B BN

» 4 8

BSTA,UN PATL
BCTR,3 LOOFP

Unconditional branches on conditions false (BCFA, BCFR} are not allowed.

APPENDIX G

ASCII AND EBCDIC CODES

This table presents the only characters that the assernbler will recognize
in an A or E iype constant and their equivalent codes in hexadecimal.

VALID EBCBIC ASCTI VALID EBCDIC ASCII
CHARACTERS CODE CODE CHARACTERS CODE CODE
0 FO 30 v E5 56
1 F1 31 W E6 57
2 F2 . 32 X E7 58
3 F3 33 Y ES8 59
4 F4 34 4 E9 5A
5 F5 35 blank 40 20
6 F6 38 : 4B SE
7 F7 37 { 4D 28
8 F3 38 + 4E 2B
9 F9 -39 i AF 7C
A C1 41 & 50 26
B c2 42 ! 5A 21
C C3 43 $ 5B 24
D c4 44 * 5C 24
E C5 45) 5D 29
F Cs 46 ; 5E 3B
G C7 47 —or ~ 5F TE*
H C8 48 - 60 2D
I Co 49 / 681 2F
J D1 4A) 6B 20
K D2 4B % 6C 25
L D3 iC —or < 8D R
M D4 4D > 6E 3E
N D5 4E ? 6F 3F
0 D6 4F : 7A 3A
p D7 50 # 7B 23
Q D3 51 @ 7C 40
R D9 52 ' 7D 27
S E2 53 = 7E 3D
T E3 54 ” 7F 22
U E4 - 55 < 4C ac

*may have different graphic symbols on different computer systems

163

64

APPENDIX H

COMPLETE ASCIICHARACTER SET

{MSB) by] 1 1 1
hg it g b
by bry by b~,b5 ° ° 1 1
0 0] 0 sp @ P p
o o 0] [A o] q
0 0 1 0 " B R r
i}] 1 1 # c] 5
0 1 0] $ D T t
4 1 0 | 1 %, E U u
0 1 1 0 & F v v
0 1 1 1 ' G W w
1 o}] 0 { H X x
1 0 0 1 j A ¥ ¥
1 o 1] . J z z
1 a 1 1 + K [{
¥ 1 0 0 ! L 5
1 1 o 1 - M] }
1 1 1 0 N T -~
1 1 1 1 / 0 “ DEL

68
137
274
549

1 099

o IR L

1&
33
67
134

268
536
073
147

294
589
179
359

L9
438
877
755

>11

131
262
524

048
057
154
388

777
554
108
217

435
870
74l
483

967
934
869
738

476
953
906
813

627

096
192
384
768

536
072
144
288

576
152
304
608

214
432
804
728

456
912
824
648

296
592
184
368

736
472
944
888

776

WrMRES

et B AT, R

APPENDIX |

POWERS OF TWO TABLE

25
625
812

9086
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
00
000

000
000
000
000

000
000
e]0]
0o

000
000
oco
Wy

060

25

125
562
281

140
070
035
517

258

‘629

814
207

953
476
238
119

Q39
029
014
007

003
001
000
apo

000
oQc
000
000

000
000
000
000

ong

625
312
1586
578

789
394
037
348

674
337
418
209

604
802
901
450

725
862
231
465

232
116
058
0329

014
007
003
001

oo

23
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

351
275
637
818

909

25
625
812

406
203
101
550

775
387
153
596

298
149
574
287

643
321
660
830

915
957
978
98%

494

25

125
562
781

390
635
847
923

461
230
615
307

653
B26
913
456

228
ala
BO7
403

701

625
3z
656
828

914
957
478
739

365
934
467
733

366
183
091
545

772

25
125

62
031
515
257

628
814
407
703

851
425
712

856

928

45
625
8l2

906
453
226
613

806
203
951

475

237

5

25

125
362 3
281 25

640 625
320 312 5
660 156 25
830 078 125

915 039 J&2 5

165

166

APPENDIX J

HEXADECIMAL-DECIMAL CONVERSION TABLES

From bex: locate each hex digit in its corresponding column position and note
the decimal equivalents. Add these to obtain the decimal vatue.

From decimal: {1} locate the largest decimal value in the table that will fit into
the decimal number to be converted, and {2) note its hex equivalent and hex
column position. {3) Find the decimal remainder. Repeat the process on this and
subsequent remainders.

Note: Decimal, hexadecimal, (and binary} equivalents of all
numbers from 0 to 265 are listed on panels 9 - 12,

HEXADECIMAL COLUMNS
6 5 4 3 2 1

HEX = DEC HEX = DEC |HEX = DEC |MEX = DEC | HEX=DEC | HEX = DEC
0 0lo 00 0 0 0 o 0 a o
1 1048576 {1 65536 |1 4096 | 1 256 | 1 186 11
2 2097152 |2 1310722 819212 B12 | 2 32 2 2
3 23145728 |3 196608 |3 12288 3 768 | 3 48 3 3
4 4194304 |4 262,144 | 4 16384 | 4 1024 | 4 64 4 4
5 5242880 |5 327680 (5 20480 | 5 12801 5 80 5 5
6 6291456 |6 393,216 |6 24576 | 6 1536]| 6 96 8 6
7 7.340032 |7 468,752 |7 28672 7 1,792 7 M2 7 1
g 8383608 (B 524288 |8 32,7681 8§ 2048 (8 128 8 8
9 9437184 |9 589,824 |9 3586419 2304 | 9 144 g 9
A 10485760 | A 655,360 | A 40,960 | A 25660 | A 160 A 10
B 11,534,336 |B 720806 | B 45066 (B 2816 | 8 176 B M
C 12582912 |C 786,432 | C 49,152 | € 3072 C 192 C 12
D 13631488 [D 851968 | D 53248} O 3328 | D 208 D 13
\E 14,680,064 |E 917,504 |E 57344 | E 3584 | E 224 E 14
F 16728640 |F 983040 | F 61440 | F 3840 | F 240 F 15
0123 4567 0123 4567 0123 4567

8YTE BYTE 8YTE

The table provides for direct conversion of hexadecimal and decimal
numbers in these ranges:

Hexadecimal Decimal
Q00 to FFF 0000 to 40956

In the table, the decimal value appears at the intersection of the row
representing the most significant hexadecimal digits (167 and 16') and
the column representing the least significant hexadecimal digit {16°).

Expmple: c21,, = 3106,
HEX 0 1 2

Cco 3072 3073 3074
C 28088 3082 3090
c2 3104 3105 3106
C3 3120 3121 3122

APPENDIX J Cont'd.

Q000
H0LE
0032
D048
U064
0080
0095
0112
0128
0144
(U
0176
0192
0208
0224
0240

0256
0272
0288
0304
G320
(336
0332
0363
0384
G400
0416
0432
D44
Q464
D480
0496

0522
0528
0544
LT
0576
0392
0608
0624
0640
0656
0672
0688
0704
0720
0736
0752

L76d
Q784
Q860
0&lo
Gaiz
D843
0864
0880
0894
uslz
0928
0944
0960
0976
Q992
1408

000l
0017
o033
0049
063
0081
0097
01L3
0129
0145
016l
Q177
01492
0209
0225
024l

0657
B73
0539
07035
0721
Q737
0753

Q769
0785
0801
817
LE33
(849
0B6&5
088l
0897
05813
0929
0945
0961
0977
0993
1009

2

0002
0018
0034
G050
0065
00582
098
0114
Q130
(14
0162
G173
0134
0210
0226
0242

0754

0770
0786
0802
0818
0834
0250
0866
ogaz
0898
0914
0930
0945
0962
0875
0994
1010

3

0003
api9
0035
0051
00e7
QO&3
Loss
0115
0131
oL47
0163
0179
01595
0211
0227
0243

0771
Q7E7
GEO3
281%
0835
0351
0867
0883
0899
0915
0931
0947
0963
Q979
0995
1011

4

o4
0020
0036
0052
OD6E
D084
0160
0lle
0132
0lag
0164
Q1ag
0138
0212
0228
0244

0260
0376
0292
0308
0324
0340
3336
D37z

Q388

0404
0420
Da3s
0452
D468
D434
0300

05L6
0532
0548
0564
D380
0596
0612
0628
544
060
0678
0692
0708
724
0740
0756

0772
0788
0804
0820
0836
0852
0368
0884
0%00
0916
0932
0945
0964
0380
0996
101z

5

0ons
Q2L
olek iy
0053
00RS
Los5
pLol
[
OL33
0149
0le5
0151
0197
0213
D229
0245

0261
0277
0293
0309
0325
0341
0357
Q3732
03&9
0403
0421
0437
(453
0469
Q485
0501

Q0317
4533
549
0565
VLT
G597
Bal3
067%
DA4s
de6l
UB77
G693
0729
0725
0741
0?57

0773
0789
0805
08zl
0837
D833
Q4s9
0385
0901
08y
0933
0949
0965
0981
0997
1013

0008
0022
0g3g
DOs4
0070
0086
0102
U118
0134
0150
0166
0182
0198
0214
0230
0248

Q262
0z78
Q294
Q210
0325
0342
0338
0374
0390
Dage
Dazz
0438
D434
D470
D48s
D5Q2

0518
0534
0550
0566
382
0594
0614

Qoo7
ap22
0039
0053
0071
o8y
{0103
0119
0135
0151
D167
0183
0169
0215
0231
0247

0519
0535
055L
U567
0583
0599
0615
0631
0647
D663
0679
a595

0715

0727
0743
0759

~

G775
2751
aa07
0823
08289
0855
Q871
08s7
0903
091%
0935
0951
QU&7
05983
0999
1015

&

QOOE
0024
0040
0056
Qo072
oogs
0104
0120
0138
0152
0168
0184
0200
0215
0232
0248

D264
0280
0296
Qarz
0328
0344
0360
0376
0392
0408
0424
G440
Q456
0472
0488
0504

0520
D536
G532
D368
0584
0600
0618
D832
0648
D664
0680
0696
7Lz
0728
0744
0760

0776
0792
Quis
0824
04}
0856
0872
D58E
0904
o920
0936
0952
0368
0984
1000
1015

9

0009
0025
004l
0057
0073
00Rg
aLos
0121
0137
0153
0169
dLes
9201
ozly
D233
D249

0265
0281
0297
0213
0329
0343
034l
Q377
0393
D409
0423
0441
0457
0473
04839
0503

0521
0537
0533
0569
0585
0601
{0617
0633
D649

OEGS.

0681
0657
0713
0729
Q745
a761

0777
0793
080
D825
D841
BES7
0873
389
0%03
(821
2937
0953
0949%
0935
1001
1017

A

0GLd
1026
0042
254
0074
009d
0106
Q122
0138
0154
0170
0185
0202
0218
0234
025

D266
0282
0258
03L&
0330
0346
0362
D378
0394
0410
a6
D442
0458
Dazig
0430
0506

0527
0538
0554
0570
03556
0502
Qeld
0634
U650
0666
01739}
0695
0714
0730
0746
avez

0778
0794
0810
0826
OB432
0858
D874
pnaen
0966
Q622
0438
0954
0970
0986
1002
IR

B

0011
Gazy
0043
anss
0075
0091
o107
0123
0139
2155
0171
OLE7
0203
0219
0235
0251

0267
D283
0259
0315
331
0347
0363
0379
0395
411
0427
0443
0459
0475
0491
0307

0523
0539
0555
0571
0587
Q603
0&81%
0635
0&51

0667
0683
0699
0715

0731

0747
0753

0779
0755
0311
QEz?
D843
1839
Q&75
g%l
0907
09213
2939
0855
o7l
(987
1003
1019

C

anla
0028
0044
Q00eq
0076
0092
108
0124
aL40
0156
0172
QgL
0204
0220
0236
0252

0268
0284
0300
03la
0332
0348
0364
0380
03496
042
0428
Dédeey
0460
0476
0497
U308

0524
054{
{0556
0572
0388
D604
0620
0636
0652
0663
U84
070G
4716
a732
0748
0764

0780
07%6
0812
0328
Quas
0860
0876
0Rgz
0908
0924
0940
0954
ae732
0988
L0004
1020

8]

0013
0029
0045
00e]
Qazy
0093
0109
0l2s
0141
0157
0173
DLES
0205
0221
0237
0253

0259
0285
0301
0317
0333
03459
0353
Q3al
037
0433
0429
0445
0481
0477
(493
050%

0525
0341
0557
0373
0589
0603
0621
0637
G653
056%
D685
0701
0717
0733
0749
0785

0781
07497
0813
082%
UE45
0861
Q877
0893
0504
0923
0941
9357
0973
{389
1005
102l

£

014
ek n]
QU4E
QL6
DLTE
0094
0110
G126
0142
G138
0174
0190
0206
o222
0238
0254

G270
0286
03gz
0318
G334
G350
0366
0382
0398
0414
0430
Gaas
G462
0478
0494
o5t

0526
(542
0338
0574
0550
0606
0622
0638
0654
0&70
0686
G702
G7la
G734
Q750
0766

D782
07498
4814
0830
D246
0867
0878
a9
0910
iz
0947
0958
Q974
0990
1006
1022

aols
0031
OGa7
el
Qu7e
0085
0LLl
0127
GL43
0159
0175
0191
U2GY
0223
0239
U255

0271
Qa7
Q303
0319
0333
0351
0357
0383
0399
0415
0431
Qa4a7
0463
0479
3495
511

U327
0543
0559
(575
D591
aac7?
UB23
0639
8635
0671
UBE7
0763
G7ly
0735
avsl
a767

G783
0799
Gals
0#31
0847
Gael
U879
U895
0411
0927
0943
0959
0975
0991
1007
1023

167

168

APPENDIX J Cont'd.

L0024
1040
10356
1072
1083
1104
1120
1136
1152
1168
1184
1200
1218
1232
1248
1264

1250
1296
1312
L328
1344
1380
1376
1392
1408
1424
Lihl
1456
1472
L4B8
1504
1520

1536
1552
1568
1584
16006
lelé
1632
1648
logs
L5480
L5596
L71z2
1728
1744
1760
1775

1792
1A0S
1824
1840
L5856
L1872
138
L9004
L9z0
133&
1952
L9606
L9Ga
2000
2016
3z

1025
1041
1057
1073
1089
1105
1121
1137
1153
1169
1185
1201
1317
1233
1249
1265

1281
1287
1313
1329
1345
1361
1377
1393
1409
1425
1441
1457
1473
1489
1505
13zt

1537
1553
1569
1585
160k
1617
1633
L&40
1665
1681
1697
L713
172%
1745
1761
1777

L793
Ladd
LE25
LE4l
1857
LB73
1589
19035
1921
1937
1953
1969
1985
2001

2017
2033

1026
1042
1038
1074
1090
1106
1122
1138
1154
1170
1186
1202
1218
1234
1250
1266

1282
1298
13Ll4
1334
1346
1362
13738
1394
1410
1426
1442
1458
1474
1450
1506
1522

1533
1554
1570
1586
L0z
16148
iod4
1650
ibbk
1682
1698
1714
1730
L7465
1762
1778

1754
1810
Ldzé
Li42
L1358
L8874
L&D
LG06
1922
L9318
1954
1970
1984
2002
Hila
2034

106z8
1044
1060
10786
1092
1108
1124
ilad
1156
1172
1185
1204
1220
1236
1252
1268

1284
1300
1314
1312
1343
1364
1380
13%6
1412
1428
Labd
L460
1476
1492
1508
1524

1540
1556
1572
1588
L5604
1620
1636
1652
1668
la84
1700
1714
1732
1748
1764
1780

179%
1812
1828
1844
1860
LBTH
1592
1908
1924
L1944
19358
L1972
1958
200
2020
2035

029
1045
1061
1077
1083
110%
1125
1141
1147
L1173
1184
1205
1221
1237
1233
1269

1033
1046
1062
1478
1094
1110
1125
1142
1138
1174
1190
1208
1222

1354
1270

1266

T 1302

131§
1334
1350
1366
1352
1358
14l
1430
Lash
labl
1474
1494
1510
1526

L1547
1558
1574
1594
1E06k
1622
1638
LG54
1670
1686
1702
17L&
1734
1750
liea
1782

1031
1047
1063
1079
1095
1111
1127
1143
1159
1175
1191
1207
1223
1239
1255
127l

1033
1049
1065
1081
1067
1113
112%
L1&3
1161
1177
1193
1209
1225
1241
1257
1273

1034
1050
1066
1082
1098
1114
1139
1146
L1632
1178
1154
110
1226
1242
1258
1274

1290
1308
132z
1338
1354
1370
1386
1402
1418
1434
1450
Y. 1
1452
1498
1514
1530

1546
1562
1578
1594
1680
1626
164l
lasg
1674
1650
1706
1722
1738
1754
1770
1786

10z
1818
1534
LH50
1566
LgE2
1898
LOL4
1930
L2946
L1962
1978
L1994
2010
2026
2042

1035
1051
1067
1083
1089
1115
1131
1147
1163
1179
1195
1211
1227
1243
1259
1275

1291
1307
1323
1339
1353
1387
1403
1419
1435
14351
1467
1483
1499
1315
1331

1547
1563
1579
1595
16L1
1627
1643
1659
1675
L6yl
L7007
1723
1739
1735
1771
1787

1803
1419
1835
1851
1867
1883
LE94
L1915
L83l
L9&7
L1963
1979
L9485
2011
07
2063

1L03%
1052
1048
1034
1100
1116
1132
1148
1164
1180
1196
igle
L228
1244
1260
1276

1292
1308
1324
1340
1356
1372
1328
1404
1420
1436
L4352
L46E
1484
1500
1516
1532

L5348
L564
1580
1596
1612
1628
1644
1660
1676
1692
1708
1724
1740
1756
1772
1788

1804
Lazo
1336
a5z
TELE
1884
159040
L1916
14532
1948
L3964
1 980
1996
20172
2038
2044

1037
1053
1064
1083
1101
1117
1133
1.4%
1165
1181
1187
1213
1229
1345
1261
1277

1293
1309
1325
1341
1357
1373
1349
1403
142L
1437
1453
146%
1485
1301
1317
1533

Li49
1565
1581
1597
16113
1629
Lads
1661
1477
1493
1709
1725
17al
1757
1773
1788

LBOS
1821
L837
1853
1869
1885
1901
1917
1933
1549
L96S
1981
1997
2013
2029
2043

E

1038
1054
1070
1064
1102
1118
1134
1150
1166
1182
1198
1214
1230
L2456
1262
L27%

1254
1310
1326
L3452
1338
1374
1390
L4086
laz22
1438
15454
1470
labh
1502
1518
1534

1530
1366
L5&2
1358
lal4
Le30
Le4é
1662
L&7a
Lo%4
L7l
L1726
L742
1753
1774
L7500

LEug
16822
1838
1854
1870
1#HE
1902
1918
1934
1950
L%66
1982
1998
2014
2030
bAIE

F

ekl
LO55
ta7l
1087
1103
1LY
1135
1152
1167
1183
L1349
L2i3
1231
1247
1263
1279

1295
1311
1327
1343
1359
1375
1391
1407
1423
1435
1455
1471
1487
1503
15139
1535

L5351
1567
L583
15589
Llels
1e3l
LE&7
1663
La79
L&95
1711
1737
1743
1759
1775
1791

R 1
1823
1839
L8535
1871
LERT
1903
1919
149125
1451
1947
13813
1959
2015
2031
2047

Pl e

APPENDIX J Cont'd.

AED

2048
2064
2080
04e
2112
2128
2144
2160
2L76
21492
2208
2224
2240
2256
2272
2288

230
2320
2334
2352
2368
2384
2400
2416
26332
2448
2464
24E0
2496
2512
2528
2544

2560
2576
2592
2608
2624
2640
2636
2672
2643
2704
2720
2736
2152
2763
2784
2800

2816
2832
2845
2864
2380
78496
2912
2928
2644
2960
2976
2992
3008
3024
3040

- 3056

2049
2065
2081
2097
2113
2129
2145
2161
2177
2153
2209
2225
2241
2257
2273
2285

2605
2625
2641
2657
2673
2689
2705
2721
2737
2753
2769
2785
2801

2817
2833
2849
2865
2881
2897
2913
2929
2943
2961
2977
2993
3009
3025
3041
3057

2

2050
2066
2082
2092
Z2lla
2130
2146
2162
2178
2194
2210
2226
22342
2258
2274
2290

2306
2322
2338
2354
2370
2384
2402
2418
2434
2450
2466
2482
2498
2514
2530
2546

2562
2378
25%4
2610
2626
2647
2658
2674
2690
2706
2722
2738
2754
2770
2786
2802

2818
2834
2850
2866
2842
2898
2914
2930
2546
2962
2978
2959
3010
3026
3042
3058

3

2051
2067
2083
2059
AR
2131
2147
1R3
2179
2195
2211
2227
2243
2259
2273
2291

2307
2323
2339
2355
2371
2387
2403
2419
2435
2451
2407
2483
2499
2515
2531
2547

2563
2379
2595
2611
2627
2643
2859
2675
2691
27G7
2723
2739
2755
2771
27E7
2803

25819
2835
2851
2867
2883
2899
2915
2931
2947
29563
2975
2995
3011
3027
3043
30359

4

2052
2068
2084
2100
2lle
2132
2148
FLEs
2LB0
2196
2212
2228
2344
2260
2278
22492

2308
2324
2340
2356
2372
2388
2404
2420
2436
2437
24468
2484
2500
2514
2532
2548

2564
2580
2596
2612
2628
2644
2660
2676
2692
2708
2724
2740
2756
2772
27B8
2804

2820
2836
2852
2868
2884
2900
2916
2932
2948
2964
2980
2996
3012
0ze
3044
060

5

2053
2069
2085
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2233

2309
2325
2341
2357
2373
2389
2405
2421
2437
2453
2469
2485
2501
2317
25333
25459

2363
2581
2597
2613
2629
2643
2661
2677
2653
2709
2725
2741
2757
2773
27849
2805

2821
2837
2852
2869
2885
2901
2917
2933
2949
2965
2981
2997
3013
3029
3045
sl

2054
2070
2086
2oz
2118
2134
2150
2Leb
2182
2138
2214
2230
2246
2262
2278
2294

2310
2326
2342
2358
2374
23490
2406
2422
2438
2454
2470
2486
2502
2518
2534
2550

2566
2582
23598
26814
2630
2646
2662
2678
2694
27L0
2726
2142
2758
2774
2790
2806

2822
2838
2834
2870
2884
2902
2918
2934
2950
2966
2982
2993
3014
3030
1046
0e2

2055
2071
2087
2103
2119
2135
2151
2167
2183
2149
2215
2231

247
2263
2279
2295

2311
2327
2343
2359
2375
23%1
2407
2423
2439
2435
2471
2487
2503
2519
2533
2531

2367
2583
2599
2615
2631
2647
2663
2679
26895
2711
2727
2743
2755
2773
2791
2807

2823
2839
2855
2871
2887

2919
2935
2951
2967
7983
2959
3015
3031
3047
3063

&

2038
2072
2088
2E04
2120
2136
2152
2168
2LE4
2200
2216
2232
2248
2264
2280
2398

23tz
2328
2344
2360
2376
2392
2408
2424
2440
2436
2472
2458
2504
2520
2536
2552

2568
2584
2600
2616
2632
2648
2664
2650
2696
2712
2728
2744
2760
2776
2792
2808

2824
2840
2856
2872
2588
2904
2920
2936
2952
2968
2984
3000
kIO
3032
3043
3064

g

2057
2073
2089
2105
2121
2137
2153
2169
2183
2201

2217
2233
2249
2265

2281

2297

2313
2329
2345
2361
2377
2383
2405
2425
2441
2457
2473
2459
2505
2521
2337
2553

2825
2841
2857
2873
288%
2905
2921
2937
2953
2969
29&5
ool
iz
3033
049
30635

A

2058
2074
2090
2106
2122
2138
2154
2174
2L86
2202
2218
2234
2250

2266

2282
229

2314
2330
2346
2362
2378
2394
2410
2626
2443
2458
2474
2450
2506
2522
2538
2554

2826
2843
2858
2874
28940
2904
2922
2938
2954
7970
2986
3002
3i0la
3034
3050
3066

B

205%
2075
2091
2107
2123
213%
2155
2171
2187
2203
2219
2235
2251
2267
2283
2259

2315
2331
2347
2363
2379
2395
2411
2627
2443
2459
2475
2491
2507
2323
2539
2555

2571
2547
2603
2619
2633
265L
2667
2683
2699
2715
2731
2747
2763
2779
2795
2811

2827
2843
2859
2875
2891
2807
2923
2339
2933
2971
2587
3003
3018
3035
3051
3067

G

2060
2676
2092
2108
2124
2140
2156
a7z
2188
7204
2220
2238
£252
2268
2284
2300

2316
2332
2348
2364
2380
23986
2412
2428
2444
2460
2476
24492
2508
2524
2540
2556

2572
~Try
2604
2620
2636
2652
2668
2684
2700
2718
2732
2748
2764
2780
2796
2812

2528
2844
2860
2876
2892
2908
2924
2940
2956
2972
2988

3020
3036
052
1068

D

2061
2077
2093
2109
2125
2041
2137
2173
2189
2205
2221
2237
2253
2269
2283
2301

2317
2333
2349
2365
2381
23597
2413
2429
2643
2461
2477
2493
2509
2325
2541
2357

2573
2589
2605
2621
2637
2653
2669
2685
2701
2717
2733
2749
2765
2781
2797
2413

2829
2843
2B6L
2877
2893
2909
2923
2941
2957
2973
29849
3005
30zl
30237
3053
3069

2926
2942
2558
2974
2990
006
3022
3018
3054
3070

F

2063
2079
2095
2111
2127
2143
2159
Z175
2191

2207

2323

2239
2255
2271

2287

2303

2314
2335
2351
2367
2383
239%
2415
2431
2447
2463
2479
2495
2511
2527
2543
2539

2575
2591
2607
2623
2639
2655
2671
2687
2703
2719
2735
2751
2767
2783
2799
2815

2831
2847
2863
2879
2895
2911
2927
2943
2559
2975
2991
3007
023
3029
3035
3071

169

cal
2

APPENDIX J Cont'd.

oo
Dl

D3
D4
]

o7
DE
o9
DA
og
DC
]
nE
nF

d

ELE
ELIEE
0L
3120
alie
3152
3168
3lds
3200
216
3232
J2an
3265
3280
3794
311z

3328
3344
1366
1376
3342
3404
EEYEN
3440
1456
3472
3458
F504
3520
3338
3552
3564

12N
360
3418
632
3048
I6h4
68D
3696
ALz
3778
3744
376
1776
37932
3805
6z

JR&D
3856
1572
ase
3904
3
3936
3957
kL
3984
004
401la
5032
LY
4064
4080

L

073
3e9
3105
3121
ALz
3153
3169
al&a
3zcl
3217
3233
3249
1265
Jakl
aay
3313

3329
1343
1361
3377
3393
3405
1435
344l
1457
1473
1459
1505
3521
3537
3353
3569

3383
3601
3637
31633
3649
665
1681
3697
i7L3
3739
3745

761
1777
3793
3509
1825

184l
3857
1573
38649
3605
3921
3937
3953
3564
1985
4003
4017
4513
4040
Liihs
4041

2

3074
3090
3106
3122
a3z
3isa
3170
3186
302
3215
3234
3259
32€8
1283
Jusa
1314

3330
3346
3362
3378
1394
3410
3426
3442
3454
3474
3494
3506
1522
3535
3554
3570

EEEL
2607
34618
3634
3650
3666
InBR2
3698
3¥L4
3730
3746
3762
3774
3794
3810
3428

3842
3858
3874
3540
390
3422
3938
1954
MF0
IGHE
a002
H0LE
4034
4330
LUBR
54082

an7s
el
307
3123
Jrag
31355
3171
21E7
3203
32149
3235
3231
3g67
3283
3299
3313

333
A347
1363
3379
3395
3411
3447
3443
345%
3475
34491
3507
3323
353%
3535
3371

3387
3603
619
3435
365L
lag?
1683
3649
3713
3731
3747
3763
1774
3795
3811
3827

3443
3859
18%35
g9l
aa07
3523
3939
3853
3971
3987
4003
&0l
4035
4031
4067
4083

3076
3092
3108
3124
3140
Jlas
3172
31858
3204
3220
3236
3252
3153
1284
3300
ile

3337
3343
3364
3386
1396
3412
3435
Jadd
3460
3476
34932
3508
3524
3540
3536
3572

3588
3604
3620
3636
3652
EJiLY
kLT
3708
1716
1732
3748
3764
370
3796
3812
2628

3844
3860
3876
3592
3908
3914
3940
3956
3672
ELLES
4004
4020
40345
40n7
el
L84

3

377
23
0y
3izs
314l
17
A7
EEE-X
1205
3221
3237
3253
3269
3285
3301
3317

3333
3344
3365
3381
3397
3413
3429
3443
3452
3477
3493
3509
3523
3341
3357
3373

|
3891
3909
3525
394l
3957
3973
3987
4045
4021
&403z
4053
4069
4084

b

3074
3094
3L10
jlZe
3142
Laa
IL74
ENE
3206
3322
3238
3234
347
3286
3302
3318

3079
3095
311
Jia2v
3143
3l50
3173
el
3207
3z2:3
3239
3255
3271
3287
3303
3319

3591
3607
3613
3a39
3653
3671
I6ET
3703
2719
3735
37al
ira7d
3783
3799
3815
3831

-1

3847
3863
3579
3893
3911
3927
3943
3939
3975
3991
4007
4123
4039
455
&071
4087

#

3030
30%6
11z
3128
L4
3160
3176
319z
3208
3rag
3240
3256
3277
J2ay
2304
3320

3336
3352
1368
3384
3400
3416
3432
344
3464
1420
3590
3512
1528
3544
3560
3576

3592
3ad8
3624
3540
3636
3672
3688
3704
3720
3736
3752
3768
3784
3800
L3NS
318317

ARGA
3864
3880
3896
3912
3928
3944
1980
3976
3992
4008
4024
5040
5056
4072
458

S

308]

3097
3113
3129
1145
Akl
q?
3193
3209
3225
3241

3257
3273
3289
3305
3221

1937
33353
3369
3385
3401
3417
3433
3649
1465
3481
3497
3513
3529
3343
335E
3577

3593
3609
4625
3041
3637
3673
3e89
3705
3721
3737
3753
3769
3785
3801
IWLT
N33

3549
865
BB
3897
3913
3929
3943
396l
3577
3993
4009
4025
4041
4057
4073
4089

a

3082
3098
lla
3l
145
3i6Z
3L7a
3194
3o
3226
324z
3258
37
3250
3304
I3z22

3328
3354
3370
3386
3407
34148
3434
3450
3466
34n2
3498
3514
3530
1546
3562

3578

3504
610
3626
Jhaz
3638
3674
1690
3706
3722
3738
31754
3770
3786
3802
3818
3834

3850
3365
33832
3898
1954
3310
3946
3962
3975
1954
4010
4076
4042
4058
4074
4090

3899
3515
393L
3947
3963
3579
3995
4011
4027
4043
4039
4i7s
G091

c

3084
3100
3116
3132
3148
3164
3180
31958
3ziz
3228
3244
3260
3278
3292
3308
1324

3340
3356
3372
3385
3404
34}
3436
1432
3468
3484
3500
3316
a532
1548
3564

3380

1554
3612
3628
3644
3660
3674
3692
370E
3724
3740
3756
3772
3788
3804
3820
3836

3852
38638
1884
3900
3916
3932
3948
3964
39ED
199
4ULZ
4028
444
4060
4076
5092

]

3085
3101
3117
3133
3149
3165
EIR:x
ALg7
3213
3229
3243
3261
3277
3293
3309
3325

3341
1357
3373
3389
3405
3421
3337
3453
3469
3485
3501
1517
3533
3549
1565
3581

3587
36l3
3629
3645
3BGL
3677
3693
3709
3725
3741
3757
3773
3789
3805
3521
3837

3853
JuHY
3583
3901
3917
033
3949
3965
3981
3997
4013
&07%
4045
4081
4077
4393

3086
3102
l1s
134
350
3166
3182
31498
3214
3230
3246
262
3278
3294
33l
3326

3367
3358
3374
3350
3406
3422
3438
3834
3470
3486
3502
3518
1534
3550
3566

3582

3593
3614
3630
3646
3662
3878
Je94
3710
3726
3742
3758
3774
3790
3806
3822
1838

38534
3870
3E86
3902
3918
31934
3950
3966
3982
3448
4014
4030
4046
4062
4078
L4094

W7
3103
1119
3115
51
aL67?
3183
1199
3215
3231
3247
1763
3274
3203
3311
3327

3343
31339
3375
3391
1407
3423
3439
3455
347
1487
503
3519
3533
3551
3567

3583

3599
3615
1631
3647
JbR3
3679
3695
3711
3zz7
3743
3759
3775
39l
3807
3823
3539

3835
3871
SRAT
3903
3919
3935
3951
3967
3983
3999
4015
031
4067
4063
4470
4095

COMMAND
NAME

DUMP.

FEND

INPUT

INSTR,

LIMIT
PATCH
REFER.

SETP.

SETR.

SROM
START
STAT

STOP.

TEND

TRACE.

APPENDIX K

COMMAND SUMMARY

PARAMETERS
LOC, FWA-LWA(; ..

None

VALUE(; . .. :VALUE)

LOC(. . . ;LOC)
NO
LOC,VALUE(; . . . ;LOC,VALUE)

LOC(; . . . ;LOC)

LOC(,PSL=VALUR) (,PSU=VALUE)

LOC(,RO=VALUE). . .(R6=VALUE)

FWALWA
LOC

None
LOC(...; LoC)
None

FWA-LWA(. . . ;FWA-LWA)

.;LOC, FWA-LWA)

DESCRIPTION

Display the area of memory. FWA-LWA, when-
aver the instruction at LOC executes.

Execute the last simulation and terminate the
entire run.

Define the data to be read by simulated [JO
mstructions.

Display the processor registers whenever the
instruction at LOC executes.

Specify the total number of instructions executed,
Initialize each memory location, LOC, to VALUE.

Display the processor register whenever the in-
struction at LOC is referenced by another
instruction,

Set the program status byte (lower and/for upper)
to VALUE whenever the instruction ai LOC
execuies.

Set the general purpose registers to VALUE
whenever the instruction at LOC executes.

Specify the boundaries of Read-Only Memory.
Start the simulated program execution at LOC.
Display instruction statistics at end of program
execution,

Terminate the program execution when the in-
struction at LOC executes,

Execute the last simulation and prepare to read
the User Commands for the next simulation,

Display the processor registers whenever an in-
struction executes, which lies within the area of
memory, FWA-LWA.

171

172

APPENDIX L

ERROR MESSAGES

Whenever the Simulator detects an error in the User Commands, it
prints one of the following error messages:

ERROR IN OBJECT MODULE CARD NUMBER
the 2650 object module is incorrectly formatied.

INPUT DATA TABLE OVERFLOW
an INPUT command attempted to expand the simulated data input
buffer beyond its limit (200 bytes).

PARAMETER OQUT OF RANGE
a User Command either contains an address which is outside the
bounds of simulated memory or the command defines a datum which
is larger than one byte (255,4).

$IM MEMORY EXCEEDED
a 2650 ohject module loads inio an area which is outside of simulated

memaory.

SYNTAX ERROR [N COMMAND
the command parameters are either missing or in error.

TOO MANY COMMANDS
the maximum number of dynami¢ commands has been exceeded.

TOO MANY DUMP COMMANDS
the maximum number of DUMP commands has been exceeded.

TOO MANY SET REGISTER COMMANDS
the maximum number of SETR. commands has been exceeded.

TOO MANY SET PSB COMMANDS
the maximum number of SETP. commands has been exceaded.

UNRECOGNIZED COMMAND
a command has been read which is unknown to the Simulator.

UNEXPECTED ENI OF FILE
either the object module or the set of User Commands is misgsing, or
one of their respective card decks is incorrectly formatted, or the
FEND command is missing.

Whenever the Simulator detects an error while the simulated program is
executing it prints one of the following error messages:

ADDRESS OUT OF RANGE
an instruction attempted to access a location which lies outside of
simulated memory.

INSUFFICIENT INPUT DATA
a I/O imstruction attempted to read another datum from the input
data buffer (INPUT) after all the data from the buffer had been read.
The gimulated input register remains unchanged i.e., the instruction is
essentially ignored, and program execution continues.

LC= ATTEMPT TO STORE INTO ROM
an msfruction attempted to store daia into the area designated as
ROM (SROM).

LC EXCEEDS MEMORY
the program attempted to execute a memory location which lies
outside of simulated memory,

NO KNOWN OPCODE
the program attempted to execute a memory iocation which did not
contain a valid instruction. Either the program was modified during
execltion or the program is attempting to execute data.

173

APPENDIX M

SIMULATOR RESTRICTIONS

SIMULATOR RESTRICTIONS

1. The simulated memory reserved hy the Simulator for program storage is
limited to 2048 bytes.* Thus, the Simulator will accept only programs or
program segments which fit into this area. This implies that the 2650
paging facility (page size = 8192 bytes) cannot be simulated.

9 Qome User Commands are limited in the amount of entries they may
accept.

COMMAND LIMIT
DUMP. b LOCs
SETR. 4 LOC’s
SETP. . 2 LOC’s
INPUT 200 VALUE’s
All “dynamic” commands 30 LOC’s (for TRACE. count 1

for each set of FWA-LWA)

APPENDIX N

SIMULATOR RUN PREPARATION

In order to prepare a program for execution by the Simulator, the
programmer.

1. Codes a program in 2650 Assembly Language.

2. Assembles the program until no assembly errors oceur.

3. Obtains the object module and listing for the assembled program.

4. Generates command cards using addresses from the listing of the
assembled program,

5. Submits the object module and the command cards in that order for a
Simulator run,

SiHINDLES

a subsidiary of L5, Philips Corporation

Seged o Gorpiral or

A0 B 07

AR s e Y
Sunrwyzae, Calizrma Ba085
lelgphomg A0 TES 70

	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	xBack

