

First Edition 1980

Second Edition 1981

© 1980 by Sinclair Research Limited

ZX81
BASIC
PROGRAMMING

 by Steven Vickers

Front cover illustration by John Harris of Young Artists, specially
commissioned by Sinclair Research Limited.

Contents

(cont. over)

CHAPTER 1
Setting up the ZX81 Page 5
& how to use this manual, whether or not
you know BASIC.

CHAPTER 2
Telling the computer what to do Page 11
How to type things in to the computer

, , RUBOUT, NEWLINE

CHAPTER 3
A History lesson Page 19

CHAPTER 4
The Sinclair ZX81 as a pocket calculator
Page 23
Statement: PRINT, with commas &
semicolons
Operations: +, -, *, /, **
Expressions & scientific notation

CHAPTER 5
Functions Page 29
Statement: RAND
Functions: ABS, SGN, SIN, COS, TAN,
ASN, ACS, ATN, LN, EXP, SOR, INT, PI,
RND, FUNCTION

CHAPTER 6
Variables Page 35
Statements: LET , CLEAR
Simple Numeric variables

CHAPTER 7
Strings Page 41
Operation: + (for strings)
Functions: LEN, VAL, STR$
Strings, simple string variables

CHAPTER 8
Computer Programming Page 47
Statements: RUN, LIST
Programs

Editing programs using , & EDIT

CHAPTER 9
More computer programming Page 55
Statements: GOTO, CONT, INPUT, NEW,
REM, PRINT
STOP in INPUT data
BREAK

CHAPTER 10
If… Page 65
Statements: IF, STOP
Operations: =, <, >, <=, >=, <>, AND, OR
Function: NOT

CHAPTER 11
The character set Page 75
Functions: CODE, CHR$
The character set is thoroughly non-
standard.
GRAPHICS

CHAPTER 12
Looping Page 81
Statements: FOR, NEXT, TO, STEP

CHAPTER 13
SLOW & FAST Page 87
Statements: SLOW, FAST
The ZX81 operates at two speeds: one neat,
the other fast.

CHAPTER 14
Subroutines Page 91
Statements: GOTO, RETURN

CHAPTER 15
Making your programs work Page 99
Flowcharts & debugging

CHAPTER 16
Tape storage Page 105
Statements: SAVE, LOAD

Contents

CHAPTER 17
Printing with frills Page 113
Statements: CLS, SCROLL
PRINT items: AT, TAB

CHAPTER 18
Graphics Page 117
Statements: PLOT, UNPLOT

CHAPTER 19
Time & motion Page 125
Statement: PAUSE
Function: INKEY$

CHAPTER 20
The ZX81 printer Page 131
Statements: LPRINT, LLIST, COPY

CHAPTER 21
Substrings Page 135
Slicing, using TO

CHAPTER 22
Arrays Page 141
Statement: DIM

CHAPTER 23
When the computer gets full Page 147
Odd things happen.

CHAPTER 24
Counting on your fingers Page 153
Binary & hexadecimal counting

CHAPTER 25
How the computer works Page 159
What the individual chips do.
Statement: POKE
Function: PEEK

CHAPTER 26
Using machine code Page 165
Statement: NEW
Function: USR

CHAPTER 27
Organization of memory Page 169

CHAPTER 28
System variables Page 175

APPENDICES
A The character set Page 181
B Report codes Page 189
C The ZX81 for those that understand
BASIC Page 191
Index Page 203

Chapter 1

7

Setting up the ZX81
Unpack the ZX81, you will have found

1. This manual.

2. The computer. This has three jack sockets (marked 9V DC IN, EAR & MIC), one aerial
socket, & an exposed part of its circuit board where you can plug extra equipment. It has
no switches - to turn it on you just connect it to the power supply.

3. A power supply.

 This converts mains electricity into the form that the ZX81 uses. If by accident you
plug it into the wrong socket in the computer you will do no damage. If you want to use
your own power supply, it should give 9 volts DC at 700mA unregulated, & end in a
3.5mm jack plug with positive tip.

4. An aerial lead about 4 feet (120cm) long, which connects the computer to a television.

Chapter 1

8

5. A pair of leads about a foot (30cm) long with 3.5mm jack plugs at both ends. These
connect the computer to a tape recorder.

 You will also need a television - the ZX81 can work without one, but you won't be able
to see what it's doing! It must be a UHF television - if it's not built to receive BBC2 (in the
UK) then it's no good.

 Later you will need a cassette recorder. This is because when you turn a ZX81 off, all
the information stored in it is permanently lost. The only way to keep it for later is by
recording it on a cassette tape - you'll see how to do this in chapter 16. You can also buy
tapes that other people have prepared, & so run their programs.

 When you've got everything together (except the cassette recorder) connect them as
shown on previous page.

 If your television has two aerial sockets, marked UHF & VHF, then use the UHF one.

 Turn the power on, & switch on the television. You now need to tune the television in.
The ZX81 operates on channel 36 UHF, & when it is first plugged in and properly tuned it
gives a picture like this:

When using the computer, you will probably want to turn the volume right down.

 If your television has a continuously variable tuning control, then you just have to
adjust it until you get this picture. Many televisions now have an individual push button
for each station. Choose an unused one (e.g. ITV2), & tune it in.

 If you get stuck with the computer, remember that you can always reset the computer
& get back this picture by taking out the '9V DC IN' plug and putting it back again. This
should be a last resort, because you lose all the information in the computer.

 Note: This description of the television applies to Britain, where there is a UHF system
using 625 lines at 50 frames per second. This will work in some other countries (for

Chapter 1

9

instance most Western European countries except France). The USA, uses VHF & 525
lines at 60 frames per second.

 Now that you've set up the computer, you'll want to use it. If you already know the
computer language BASIC, then read appendix C & use the rest of the manual only to
clarify the obscure points.

 If you're a novice, then the main part of the manual has been written for you. Don't
ignore the exercises; many of them raise interesting points that are not dealt with in the
text. Look through them, & do any that take your fancy, or that seem to cover ground you
don't understand properly.

 Whatever else you do, keep using the computer. If you have a question 'What does it
do if I tell it such & such?' then the answer is easy: type it in & see. Whenever the
manual tells you to type something in, always ask yourself, 'What could I type instead?' &
try out your replies. The more of your own stuff you write, the better you will understand
the ZX81. (This is called unprogrammed learning.) Regardless of what you type in, you
cannot damage the computer.

Chapter 2

13

Telling the computer what to do
Turn the computer on (by plugging it in) and get the blank screen with the write-on-black
K, as in the picture in chapter 1. To make it do something, you have to type in a
message that it understands; for instance the message

 PRINT 2+2

tells it to work out the sum 2+2 and display the answer on the TV screen.

 A message like this, telling the computer to do something straight away, is a
command; this particular one is a PRINT command, but also a PRINT statement. Calling
it a PRINT statement just specifies its form without referring to how the computer is going
to use it. Thus every command takes the form of a statement, but so do some other
things - program lines do, as we shall see in chapter 8.

 To type in this command,

1. First type PRINT. But, although as you can see the keyboard has a key for each letter,
you do not spell the word out P, R, I, N, T. As soon as you press P the whole word will
come up on the screen, together with a space to make things look nice, and the screen
will look like this:

 The reason for this is that at the beginning of each command the computer is
expecting a keyword - a word that specifies what kind of command it is. The keywords
are written above the keys, and you will see that 'PRINT' appears above the P key, so
that to get 'PRINT' you have to press P.

 The computer lets you know that it expects a keyword by the that you had to start

off with. There is almost always some white-on-black (inverse video) letter, either

or (or, we shall see later, or), called the cursor. The means 'whatever key

Chapter 2

14

you press, I shall interpret it as a keyword'. As you saw, after you had pressed P for
PRINT, the changed to an .

 This system of pressing just one key to get more than one symbol is used a lot on the
ZX81. In the rest of this manual, words with their own keys are printed in BOLD TYPE.

 You must remember that it is useless trying to spell these words out in full, because
the computer just won't understand.

2. Now type 2. This should cause no problems. Again, you should see 2 appear on the
screen, and the L move along one place.

 Note also how much space is automatically put in between PRINT & 2 to make it look
neat. This is done as much as possible, so that you hardly ever have to type a space. If
you do type a space, it will appear on the screen, but it will not affect the meaning of the
message at all.

3. Now type +. This is a shifted character (they are marked in red - the colour of SHIFT
itself on its key - in the top right hand corner of each key), and to get '+' you must hold

down the key and while you are still doing that, press the key .

4. Now type 2 again. The screen will look like this:

5. Now - and you must always remember this - press NEWLINE, the key . This
means 'message complete', or 'all right, computer, lets see some action'. The computer
will now read the message, work out what has to be done, and do it. In this case, the
screen will change to

Chapter 2

15

 4 is the answer - but of course you do not need to buy a computer to work that out.

 0/0 (Note how zero is written with a slash to distinguish it from capital O. This is fairly
common in computing circles.) is the report in which the computer tells you how it got on.
The first 0 means 'OK, no problems'. (In appendix B there is a list of the other report
codes that can arise, for instance if something goes wrong.) The second 0 means 'the
last thing I did was line 0'. You will see later - when you come to write programs - that a
statement can be given a number & stored away for execution later: it is then a program
line. Commands do not actually have numbers, but for the sake of reports the computer
pretends that they are line 0.

 You should imagine a report as hiding a cursor - if you press P for PRINT now, the
report will disappear and the screen will change to

Chapter 2

16

 The cursor can also be used for correcting mistakes: type ++2, to get

 PRINT ++2

on the bottom line, Pretty incomprehensible stuff, and when you press NEWLINE you get

 The is the syntax error marker (the syntax is the grammar of the message, saying
which are allowed and which are not), and shows that the computer got as far as
'PRINT', but after that decided that it was not a proper message.

 What you want to do of course is rub out the first +, and replace it by - let us say - 3.
First you have to move the cursor so that it is just to the right of the first +; there are two
keys, and (shifted 5 and shifted 8), that move the cursor left and right. Holding
SHIFT down, press the key twice. This moves the cursor left two places to give you

 PRINT + +2

 Now press the RUBOUT key (shifted 0), and you will get

 PRINT +2

RUBOUT rubs out the character (or keyword) immediately to the left of the cursor.

 If you now press 3 this will insert a '3', again immediately to the left of the cursor,
giving

 PRINT 3 +2

and pressing NEWLINE gives the answer (5).

Chapter 2

17

 The key (shifted 8) works just like the key, except that it moves the cursor right
instead of left.

Summary

 This chapter has covered how to type messages in for the ZX81, explaining the single
keystroke system for words,

 the & cursors,

 reports,

 the syntax error marker,

 & how to correct mistakes using , and RUBOUT.

 The keyboard

 Here is a picture of the keyboard.

 Remember that to use SHIFT, you have to hold it down at the same time as you press
another key. Do not confuse digit 0 with letter O.

Chapter 3

21

A History lesson
The messages that you type in are in a computer language called BASIC (standing for
Beginners' All-purpose Symbolic Instruction Code). It actually takes the computer quite a
lot of effort to break down the BASIC messages into its own rudimentary operations, but,
after all, that's what it's paid to do. The BASIC messages contain enough English words
(like PRINT) to make them fairly easy for an English speaking human to learn.

 BASIC was designed at Dartmouth College in New Hampshire, USA in 1964, & since
then it has come to be by far the most widely used computer language by beginners &
hobbyists. This is largely because it is very well adapted for on-line use where the user
types something in & the computer answers straight away. There are other languages -
such as ALGOL (in fact a whole family of ALGOLs) & PASCAL - with a much neater
structure & greater power than BASIC, but only a few - such as the relatively unknown
APL & POP-2 - are as easy to use on-line. Some others that must be mentioned are
FORTRAN, PL1 & COBOL.

 Many personal computing magazines publish programs in BASIC, & are well worth
looking through for ideas. You will almost certainly have to adapt them slightly because
every computer that uses the BASIC language has its own dialect, different from all the
others.

Chapter 4

25

The Sinclair ZX81 as a calculator
Turn the computer on. You can now use it as a calculator, along the lines of chapter 2:
type PRINT, then whatever it is that you want working out, & then NEWLINE. (We shan't
usually bother to tell you to type NEWLINE.)

 As you would hope, the ZX81 can not only add, but also subtract, multiply using a star
* instead of the usual times sign - this is fairly common on computers) & divide (using /
instead of ÷). Try these out.

 +, -, * and / are operations, & the numbers they operate on are their operands.

 The computer can also raise one number to the power of another using the operation
** (Shifted H. Do not type * - shifted B - twice): type

 PRINT 2**3 (Remember the NEWLINE.)

& you will get the answer 8 (2 raised to the power 3, or 23, or 2 cubed)

 The ZX81 will also work out combinations of the operations. For instance.

 PRINT 20-2*3**2+4/2*3

gives the answer 8. It goes all round the houses to get this, because first it works out all
the powers (**) in order from left to right, & then all the multiplications & divisions (* & /),
again from left to right, & then the additions & subtractions (+ & -), yet again from left to
right. Thus our example is worked out in the following stages:

Chapter 4

26

 We formalize this by giving each operation a priority, a number between 1 & 16. The
operations with highest priority are evaluated first, & operations with equal priority are
evaluated in order from left to right.

** has priority 10

* and / have priority 8

+ & - have priority 6

 When - is used to negate something, as when you write -1, then it has priority 9. (This
is unary minus, as opposed to the binary minus in 3-1: a unary operation has one
operand, while a binary operation has two. Note that on the ZX81 you cannot use + as a
unary operation.)

 This order is absolutely rigid, but you can circumvent it by using brackets: anything in
brackets is evaluated first & then treated as a single number, so that

 PRINT 3*2+2

gives the answer 6+2 = 6, but

 PRINT 3*(2+2)

gives the answer 3*4 = 12.

 A combination like this is called an expression - in this case, an arithmetic or numeric
expression because the answer is a number. In general, whenever the computer is
expecting a number from you, you can give it an expression instead and it will work out
the answer.

 You can write numbers with decimal points (use the full stop), & you can also use
scientific notation - as is quite common on pocket calculators. In this, after an ordinary
number (with or without a decimal point), you can write an exponent part consisting of
the letter E, then maybe + or -, & then a number without a decimal point. The E here
means '*10**' ('times ten to the power of'), so that

2.34E0 = 2.34 * 10**0 = 2.34

2.34E3 = 2.34 * 10**3 = 2340

2.34E-2 = 2.34 * 10**-2 = 0.0234 & so on.

(Try printing these out on the ZX81.)

 The easiest way of thinking of this is to imagine the exponent part shifting the decimal
point along to the right (for a positive exponent) or to the left (for a negative exponent).

Chapter 4

27

 You can also print more than one thing at once, separating them either with commas
(,) or semicolons (; or shifted X). If you use a comma, then the next number will be
displayed starting either at the left hand margin, or in the middle of the line in the 16th
column. If you use a semicolon, then the next number will be displayed immediately
following the last one.

Try

 PRINT 1;2;3;4;5;6;7;8;9;10

&

 PRINT 1,2,3,4,5,6,7,8,9,10

to see the differences. You can mix commas & semicolons within a single PRINT
statement if you want.

Summary

 Statements: PRINT, with commas & semicolons

 Operations: +,-,*,/,**

 Expressions, scientific notation

Exercises

1. Try

 PRINT 2.34E0

 PRINT 2.34E1

 PRINT 2.34E2

and so on up to

 PRINT 2.34E15

 You will see that after a while the ZX81 also starts using scientific notation. This is
because it never takes more than 14 spaces to write a number in. Similarly, try

 PRINT 2.34E-1

 PRINT 2.34E-2

& so on.

2. Try

 PRINT 1,,2,,3,,,4,,,,5

A comma always moves you on a bit for the next number. Now try

 PRINT 1;;2;;3;;;4;;;;5

Chapter 4

28

Why is a string of semicolons no different from a single one?

3. PRINT gives only 8 significant digits. Try

 PRINT 4294967295, 4294967295 -429E7

 This proves that the computer can hold all the digits of 4294967295, even though it is
not prepared to display them all at once.

4. If you've got some log tables, then test out this rule:

 Raising 10 to the power of a number is the same as taking the antilog of that number.

 For instance, type

 PRINT 10**0.3010

& look up the antilog of 0.3010. Why are the answers not exactly equal?

5. The ZX81 uses floating point arithmetic, which means that it keeps separate the digits
of a number (its mantissa) and the position of the point (the exponent). This is not always
exact, even for whole numbers. Type

 PRINT 1E10+1-1E10,1E10-1E10+1

Numbers are held to about 9 1/2 digits accuracy, so 1E10 is too big to be held exactly
right. The inaccuracy (actually about 2) is more than 1, so the numbers 1E10 & 1E10+1
appear to the computer to be equal.

 For an even more peculiar example, type

 PRINT 5E9+1-5E9

Here the inaccuracy in 5E9 is only about 1, & the 1 to be added on in fact gets rounded
up to 2. Here the numbers 5E9+1 & 5E9+2 appear to the computer to be equal.

 The larger integer (whole number) that can be held completely accurately is 232-1
(4,294,967,295).

Chapter 5

31

Functions
Mathematically, a function is a rule for giving a number (the result) in exchange for
another (the argument, or operand) & so is really a unary operation. The ZX81 has some
of these built into it & their names are the words written under the keys. SQR, for
instance, is the familiar square root function, and

 PRINT SQR 9

gives 3, the square root of 9. (To get SQR, you first press the FUNCTION key - shifted
NEWLINE. This changes the cursor to . Now press the SQR key (H): SQR appears on

the screen and the cursor changes back to . The same method works for all the words
that are written underneath the keys, almost all of which are function names.)

 Try

 PRINT SQR 2

 You can test the accuracy of the answer by

 PRINT SQR 2*SQR 2

which ought to give 2. Note that both SQRs are worked out before the *, and in fact all
functions (except one - NOT) are worked out before the five operations +, -, *, / and **.
Again, you can circumvent this rule using brackets -

 PRINT SQR (2*2)

gives 2.

 Here are some functions (there is a complete list in appendix C). If your maths is not
up to understanding some of these, it does not matter - you will still be able to use the
computer.

SGN The sign function (sometimes called signum to avoid confusion with SIN). The
result is -1, 0 or +1 according as the argument is negative, zero or positive.

ABS The absolute value, or modulus. The result is the argument made positive, so that

 ABS -3.2 = ABS 3.2 = 3.2

SIN *

COS *

TAN *

ASN arcsin *

ACS arccos *

Chapter 5

32

ATN arctan *

LN natural logarithm (to base 2.718281828459045..., alias e)

EXP exponential function

SQR square root

INT integer part. This always rounds down, so INT 3.9 = 3 & INT -3.9 = -4. (An integer
is a whole number, possibly negative.)

PI π = 3.1415265358979..., the girth in cubits of a circle one cubit across. PI has no
argument. (Only ten digits of this are actually stored in the computer, & only eight
will be displayed.)

RND Neither has RND an argument. It yields a random number between 0 (which value
it can take) & 1 (which it cannot).

* The trigonometrical functions. These work in radians, not degrees.

 Using the jargon of the last chapter, all these except PI & RND are unary operations
with priority 11. (PI & RND are nullary operations, because they have no operands.)

 The trigonometrical functions, & EXP, LN & SQR, are generally calculated to 8 digits
accuracy.

RND & RAND: These are both on the same key, but whereas RND is a function, RAND
is a keyword, like PRINT. RAND is used for controlling the randomness of RND.

 RND is not truly random, but follows a fixed sequence of 65536 numbers that happen
to be so jumbled up as to appear random (RND is pseudo-random). You can use RAND
to start RND off at a definite place in this sequence by typing RAND, & then a number
between 1 & 65535, & then NEWLINE. It's not so important to know where a given
number starts RND off, as that the same number after RAND will always start RND off at
the same place. For instance, type

 RAND 1 (& NEWLINE)

& then

 PRINT RND

& type both these in turn several times. (Remember to use FUNCTION to get RND.) The
answer from RND will always be 0.0022735596, not a very random sequence.

 RAND 0

(or you can miss out the 0) acts slightly differently: it judges where to start RND off by
how long the television has been on, & this should be genuinely random.

Chapter 5

33

Note: In some dialects of BASIC you must always enclose the arguments of a function
on brackets. This is not the case in ZX81 8K BASIC.

Summary

 Statement: RAND

 Functions: SGN. ABS, SIN, COS, TAN, ASN, ACS, ATN, LN, EXP, SQR, INT, PI,
RND

 FUNCTION

Exercises

1. To get common logarithms (to base 10), which are what you'd look up in log tables,
divide the natural logarithm by LN 10. For instance, to find log 2,

 PRINT LN 2/LN 10

which gives the answer 0.30103.

 Try doing multiplication & division using logs, using the ZX81 as a set of log tables in
this way (for antilogs, see chapter 2, exercise 3). Check the answer using * and / - which
are easier, quicker, more accurate, & much to be preferred.

2. EXP & LN are mutually inverse functions in the same sense that if you apply one &
then the other, you get back to your original number. For instance,

 LN EXP 2 = EXP LN 2 = 2

 The same also holds for SIN & ASN, for COS & ACS, & for TAN & ATN. You can use
this to test how accurately the computer works out these functions.

3. π radians are 180°, so to convert from degrees to radians you divide by 180 & multiply
by π: thus

 PRINT TAN (45/180*PI)

gives tan 45° (1).

 To get from radians to degrees, you divide by π & multiply by 180.

4. Try

 PRINT RND

a few times to see how the answer varies. Can you detect any pattern? (Unlikely.)

 How would you use RND & INT to get a random whole number between 1 & 6, to
represent the throw of a die? (Answer: INT (RND *6) +1.)

Chapter 5

34

5. Test this rule:

 Suppose you choose a number between 1 & 872 & type

 RAND & then your number (& NEWLINE)

 Then the next value of RND will be

 (75 * (your number + 1) - 1)/65536

6. (For mathematicians only.)

 Let p be a [large] prime, & let a be a primitive root modulo p.

 Then if b i is the residue of a i modulo p (1 ≤ bi < p-1), the sequence

1p

1bi

−
−

is a cylindrical sequence of p-1 distinct numbers in the range 0 to 1 (excluding 1). By
choosing a suitably, these can be made to look fairly random.

 65537 is a Mersenne prime, 216-1. Use this & Gauss' law of quadratic reciprocity, to
show that 75 is a primitive root modulo 65537.

 The ZX81 uses p=65537 & a=75, & stores some b i-1 in memory. The function RND
involves replacing b i-1 in memory by b i+1-1, & yielding the result (bi+1-1)/(p-1). RAND n
(with 1 ≤ n ≤ 65535) makes b i equal to n+1.

7. INT always rounds down. To round to the nearest integer, add 0.5 first. For instance,

 INT (2.9+0.5) = 3 INT (2.4+0.5) = 2

 INT (-2.9+0.5) = -3 INT (-2.4+0.5) = -2

 Compare these with the answers you get when you don't add 0.5

8. Try

 PRINT PI, PI -3, PI -3.1, PI -3.14, PI -3.141

 This shows how accurately the computer stores π.

Chapter 6

37

Variables
'My pocket calculator,' you will be saying, 'can store a number away & remember it later.
Can your ZX81 do that?'

 Yes. In fact it can store away literally hundreds, using the LET statement. Suppose
that eggs cost 58p a dozen, & you want to remember this. Type

 LET EGGS=58 (& NEWLINE, of course)

 Now first, the computer has reserved a place inside itself where you can store a
number, & second, it has given this place the name 'EGGS' so you can refer to it later.
This combination of storage space & name is called a variable. Third, it has stored the
number 58 in the space: we say that it has assigned the value 58 to the variable [whose
name is] EGGS. EGGS is a numeric variable, because its value is a number.

 Do you want to know how much eggs cost? Type

 PRINT EGGS

 If you want to know the cost of half a dozen eggs, then type

 PRINT EGGS/2

 In fact, should you want to know the square of the cosine of the price of one egg, you
can type

 PRINT COS (EGGS/12)**2

 'How very easy,' you must think, & you will be wondering what to do next, when in
rushes your housekeeper saying 'Glory be, eggs have just gone up to 61p a dozen.'

 Well. There is no time to lose. Type

 LET EGGS=61

 This does not reserve any extra storage space, but replaces the old value of 58 with
61. Now you can type

 PRINT EGGS

confident in the expectation of getting the most up-to-date price available.

 Now type

 PRINT MILK

 You will get a report 2/0, & looking up 2 in appendix B, you will see that it means
'variable not found' - the computer hasn't the faintest idea how much milk costs, because
you haven't told it. Type

 LET MILK=18.5

& all will be all right.

 (Type

 PRINT MILK

Chapter 6

38

again.)

 A variable need not be named after groceries - you can use any letters or digits as
long as the first one is a letter. You can put spaces in as well to make it easier to read,
but they won't count as part of the name.

 For instance, these are allowed to be the names of variables:

 TWO POUNDS OF APPLES BUT NOT GOLDEN DELICIOUS
 RADIO 3
 RADIO 33
 X
 K9P

but these are not:

 3 BEARS (begins with a digit)
 TALBOT? (? is not a letter or a digit)
 . (inverse video characters not allowed)
 FOTHERINGTON-THOMAS (- is not a letter or a digit)

Now type

 CLEAR

&

 PRINT EGGS

 You will get report 2 (variable not found) again. The effect of CLEAR is to release all
the storage space that had been reserved for variables - then every variable is as though
it had never been defined. Turning the computer off & on will also do this - but then it
doesn't remember anything at all when it is turned back on.

 Expressions can contain the name of a variable anywhere they can have a number.

Note: In some versions of BASIC you are allowed to omit LET & just type in (say)

 EGGS=58

 This is not allowed on the ZX81. In any case, you'd find it rather difficult to type in.

 Also in some versions, only the first two characters in a name are checked, so that
RADIO 3 & RADIO 33 would count as the same name; & in some others a variable name
must be a letter followed by a digit. Neither of these restrictions applies to the ZX81.

 Yet again, in some versions of BASIC, if a variable has not yet appeared on the left-
hand side of a LET statement then it is assumed to have a value 0. As you saw above
with PRINT MILK, this is not so on the ZX81.

Chapter 6

39

Summary

 Variables

 Statements: LET, CLEAR

Exercises

1. Why do variable names (that is to say, names of variables) have to begin with a letter?

2. If you're unfamiliar with raising to powers (**, shifted H) then do this exercise.

 At its most elementary level, 'A**B' means 'A multiplied by itself B times', but obviously
this only makes sense if B is a positive whole number. To find a definition that works for
other values of B, we consider the rule

 A ** (B+C) = A**B * A**C

 You should not need much convincing that this works when B & C are both positive
whole numbers, but if we decide that we want it to work even when they are not, then
we find ourselves compelled to accept that

 A**0 = 1

 A**(-B) = 1/A**B

 A**(1/B) = the Bth root of A

&

 A**(B*C) = (A**B)**C

 If you've never seen any of this before then don't try to remember it straight away; just
remember that

 A**-1 = 1/A

&

 A**(1/2) = the square root of A

Chapter 6

40

& maybe when you're familiar with these the rest will begin to make sense.

 Experiment with all this by telling the computer to print various expressions containing
**: e.g.

 PRINT 3**(2+0),3**2*3**0

 PRINT 4**-1,1/4

3. Type

 LET E=EXP 1

Now E has the value 2.718281828..., the base of natural logarithms. Test the rule

 EXP a number = E ** the number

for various numbers.

Chapter 7

43

Strings
One thing the ZX81 can do that pocket calculators cannot is deal with text. Type

 PRINT "HI THERE. I AM YOUR ZX81." (" is shifted P.)

 The chilling greeting inside the quotes is called a string (meaning a string of
characters), & can contain any characters you like except the string quote,". (But you can
use the so-called quote image, "" (shifted Q), & this will be printed as " by a PRINT
statement.)

 A common typing error with strings is to miss out one of the quotes - this will give you
the marker.

 If you are printing numbers out, you can use these strings to explain what the numbers
mean. For instance, type

 LET EGGS=61

& then

 PRINT "THE PRICE OF EGGS IS ";EGGS;" NEW PENCE A DOZEN."

(Don't worry about this going over the end of the line.)

 This statement displays three things (PRINT items), namely the string "THE PRICE
OF EGGS IS ", the number 61 (the value of the variable EGGS), & then the string " NEW
PENCE A DOZEN." In fact you can PRINT any number of items you like, & any mixture
of strings & numbers (or expressions), note how the spaces in a string are just as much
part of it as the letters. They are not ignored even at the end.

 There are lots of things you can do with strings.

1. You can assign them to variables. However, the name of the variable must be special
to show that its value is a string & not a number: it must be a single letter followed by $
(shifted U). For instance, type

 LET A$="DOUBLE GLOUCESTER"

&

 PRINT A$

2. You can add them together. This is often called concatenation, meaning 'chaining
together', & that is exactly what it does. Try

 PRINT "GAMMO" + "N RASHERS"

 You cannot subtract, multiply or divide strings, or raise them to powers.

Chapter 7

44

3. You can apply some functions to strings to get numbers, & vice versa.

LEN This is applied to a string, & the result is its length. For instance LEN
"CHEESE" = 6.

VAL This applied to a string, & the result is what that string gives when evaluated as
an arithmetic expression. For instance (if A = 9), VAL "1/2+SQRA" = 3.5. If the
string to which VAL is applied contains variables, then two rules must be
obeyed.

 (i) If the VAL function is part of a larger expression, it must be the first item; e.g.
10 LET X = 7+VAL "Y" must be changed to 10 LET X = VAL "Y" +7.

 (ii) VAL can only appear in the first coordinate of a PRINT AT, PLOT or UNPLOT
statement (see Chapter 17 and 18) e.g. 10 PLOT 5, VAL "X" must be changed
to

 10 LET Y = VAL "X"

 15 PLOT 5, Y

STR$ This is applied to a number, & the result is what would appear on the screen if the
number were displayed by a PRINT statement. For instance STR$ 3.5 = "3.5".

4. Just as for numbers, you can combine these to make string expressions, like

 VAL (STR$ LEN "123456"+"-4")

which is evaluated as

Chapter 7

45

Summary

 Strings

 Operation: + (for strings)

 Functions: LEN, VAL, STR$

Exercises

1. Type

 LET A$="2+2"

& then

 PRINT A$;" = ",VAL A$

 Try changing A$ to more complicated things & doing the same, e.g.

 LET A$="ATN 1*4"

(The answer here should be π.)

2. The string "" with no characters is called the empty or null string. It is only string whose
length is 0. Remember that spaces are significant and an empty string is not the same as
one containing spaces.

 Do not confuse it with the quote image, "" (a single token, shifted Q). This is a special
device to get over the fact that you cannot write an ordinary string quote in the middle of
a string (why not?). When the quote image appears in a string that has its quotes at the
end (for instance in the listing of a program), it shows up as two quote symbols, to
distinguish it from the ordinary quote; but when it is displayed by a PRINT statement, it is
as just one quote symbol.

 Try

 PRINT "X";"";"X",""""."""";"";""""

3. If you enjoy humiliating computers, type

 PRINT "2+2 = ";2+1

Chapter 8

49

Computer programming
And now at last you shall write a computer program. Turn the computer off & on, just to
make sure that it is clear. Now type

 10 LET BUTTER=75 (& NEWLINE)

& the screen will look like this:

 This is different from what happened with EGGS in chapter 6; if you type

 PRINT BUTTER

you will see (from the report 2) that the variable BUTTER has not been set up. (Press
NEWLINE again & the screen should go back to looking like the picture.)

 Because the LET statement had a number, 10, in front of it, the computer did not
execute it straight away, but saved it for later. 10 is its line number, & is used to refer to it
rather in the same way that names are used to refer to variables. A set of these stored
statements is called a

program. Now type

 20 PRINT BUTTER

Chapter 8

50

& the screen should look like this:

 This is a listing of your program. To have the program carried out (or executed or run),
type

 RUN (don't forget the NEWLINE)

& the answer 75 will appear in the top left-hand corner of the screen. At the bottom left-
hand corner you will see the report 0/20. 0, as you know, means 'OK, no problems', & 20
is the number of the line where it finished. Press NEWLINE, & the listing will come back.

 Note that the statements were executed in the order of their line numbers.

 Now suppose you suddenly remember that you also need to record the price of yeast.
Type

 15 LET YEAST=40

& in it goes. This would have been much harder if the first two lines had been numbered
1 & 2 instead of 10 & 20 (line numbers must be whole numbers between 1 & 9999), so
that is why, when first typing in a program, it is good practice to leave gaps in the line
numbers.

 Now you need to change line 20 to

 20 PRINT BUTTER, YEAST

You could type out the replacement in full, but there is a way to use what is there
already. You see that little by line 15? This is the program cursor, & the line it points
to is the current line. Press the key (shifted 6), & it will move down to line 20. (
moves it up again.) Now press the EDIT key (shifted 1), & a copy of line 20 will be
displayed at the bottom of the screen. Press the key 7 times so that the cursor
moves to the end of the line, & then type

Chapter 8

51

 ,YEAST (without NEWLINE)

The line at the bottom should now read

 20 PRINT BUTTER, YEAST

Press NEWLINE & it will replace the old line 20. The screen will now look like this:

 RUN this program & both prices will be displayed.

 (Here is a useful trick involving EDIT, to use when you want to clear the bottom part of
the screen altogether. Press EDIT, & the current line will be brought down from the
program, replacing what you wanted deleting. If you now press NEWLINE, the line will
be put back in the program, making no difference to it, & the bottom part of the screen
will be cleared leaving just the cursor.)

 Now type - in a fit of absent-mindedness –

 12 LET YEAST=40

 This will go up into the program & you will realise your mistake. To delete this
unnecessary line, type

 12 (with NEWLINE, of course)

 You will notice with surprise that the program cursor has gone. You should imagine it
as being hidden in between lines 10 & 15, so if you press it will move up to line 10,
while if you press it will move down to line 15.

 Last, type

Chapter 8

52

 LIST 15

You will now see on the screen

 15 LET YEAST=40

 20 PRINT BUTTER, YEAST

 Line 10 has vanished from the screen, but it is still in your program - which you can
prove by pressing NEWLINE again. The only effect of LIST 15 are to produce a listing
that starts at line 15, & to put the program cursor at line 15.

 LIST

on its own makes the listing start at the beginning of the program.

Summary

 Programs

 Editing programs using , & EDIT.

 Statements: RUN, LIST

Exercises

1. Modify the program so that it displays not only the two prices, but also messages to
show which is which.

2. Use the EDIT key to change the price of butter.

3. Run the program & then type

 PRINT BUTTER, YEAST

 The variables are still there, even though the program has finished.

4. Type

 12 (& NEWLINE)

Again, the program cursor will be hidden between lines 10 & 15. Now press EDIT, & line
15 will come down: when the program cursor is hidden between two lines, EDIT brings
down the second one. Type NEWLINE to clear the bottom part of the screen.

Chapter 8

53

 Now type

 30

 This time, the program cursor is hidden after the end of the program; & if you press
EDIT, then line 20 will be brought down.

5. Put a LIST statement in the program so that when you run it, it lists itself.

Chapter 9

57

More computer programming
Type

 NEW

 This will erase any old programs & variables in the ZX81. (This is rather like CLEAR,
but CLEAR only erases the variables.) Now carefully type in this program:

 10 REM THIS PROGRAM EXTRACTS SQUARE ROOTS

 20 INPUT A

 30 PRINT A,SQR A

 40 GOTO 20

 (You will need to type in most of the spaces yourself in line 10).

 Now run it. Apparently the screen goes blank, & nothing happens, but look at the

cursor in the bottom left-hand corner: where you might have expected a there is
instead an - the machine has gone into input mode. This is the effect of the INPUT
statement in line 20. The machine is waiting for you to type in a number (or even an
expression), & it won't carry on until you have. After that, it will have the effect of

 20 LET A=... whatever you typed

 Just a minute though, what happened to line 10? It looks as though the computer has
completely ignored it. Well, it has. REM in line 10 stands for remark, or reminder, & there
solely to remind you of what the program does. A REM statement consists of REM
followed by anything you like, & the computer will ignore it.

 All right, so we're in input mode for line 20. Type some number, 4, say, & then
NEWLINE. The 4 & its square root appear on the screen, & you might think that was
that. But, no - it seems to want another number. This is because of line 40, GOTO 20,
which means exactly what it says. Instead of running out of program & stopping, the
computer jumps back to line 20 & starts again. So, type another number (2, say; at any
rate you had better make it positive).

 After a few more of these you might be wondering if the machine will ever get bored
with this game; it won't. Next time in its instability it asks for another number, type STOP
(shifted A) instead; it will take the hint. The computer reports back with report D/20 - look
up D in the list of reports (appendix B). 20 is the line where it was waiting for some input
when you stopped it.

Chapter 9

58

Have you suddenly remembered some more numbers that you wanted the square root
of? Then type

 CONT

(short for CONTINUE) & the computer will clear the screen & ask you for another
number.

 For CONT, the computer remembers the line number in the last report that it sent you
that had a code other than 0, & jumps to that line. Since the last report was D/20 (& D is
not 0), in our case CONT is identical to GOTO 20.

 Now type in numbers until the screen starts getting full. When it is full, the computer
will stop with the report 5/30. 5 means 'screen full', & 30 is the number of the PRINT
statement it was trying to execute when it discovered there was no room. Again,

 CONT

will clear the screen & carry on - this time, CONT means GOTO 30.

 Note that the screen is cleared not because this is a CONT statement, but because it
is a command. All commands (except COPY, which appears in chapter 20) clear the
screen first.

 When you're tired of this, stop the program using STOP & get the listing by pressing
NEWLINE.

 Look at the PRINT statement on line 30. Each time the pair of numbers A & SQR A is
printed, it is on a new line, & this is because the PRINT statement does not end with a
comma or semicolon. Whenever this is the case, then the next PRINT statement starts
printing on a new line. (Thus to put in a blank line, use a PRINT statement in which there
is nothing to be printed - just PRINT on its own.)

 However, a PRINT statement can end in a comma or semicolon, & then the next
PRINT statement carries on printing as though the two had been one long statement.

 For instance, with commas, replace the 30 by

 30 PRINT A,

& run the program to see how successive PRINT statements can print on the same line
but spread out in two columns.

 With semicolons, on the other hand, with

 30 PRINT A;

everything is jammed together.

 Try also

 30 PRINT A

Chapter 9

59

Now type in these extra lines.

 100 REM THIS PROGRAM MEASURES STRINGS

 110 INPUT A$

 120 PRINT A$,LEN A$

 130 GOTO 110

 This is a separate program from the last one, but you can keep them both in at the
same time. To run the new one, type

 RUN 100

 This program inputs a string instead of a number, & prints it & its length. Type

 CAT (& NEWLINE, as usual)

 Because the computer is expecting a string, it prints out two string quotes - this is a
reminder to you, & it usually saves you some typing as well. But you don't have to restrict
yourself to string constants (explicit string with opening & closing quotes & all their
characters in between); the computer will evaluate any string expression, such as one
with string variables. In this case you might have to rub out the quotes that the computer
has displayed. Try this. Rub them out (with & RUBOUT twice), & type

 A$

 Since A$ still has the value "CAT", the answer is CAT 3 again.

 Now input

 A$

again, but this time without rubbing out the string quotes. Now A$ has the value "A$", &
the answer is 2.

 If you want to use STOP for string input, you must first move the cursor back to the
beginning of the line, using .

 Now look back at the RUN 100 we had earlier on. That jumps to line 100, so couldn't
we have said GOTO 100 instead? In this case, it so happens that the answer is yes, byt
there is a difference. RUN 100 first of all clears the variables (like CLEAR in chapter 6),
& after that works just like GOTO 100. GOTO 100 doesn't clear anything. There may well
be occasions when you want to run a program without clearing any variables. Here
GOTO is necessary & RUN could be disastrous, so it is best to get into the habit of
automatically typing RUN to run a program.

 Another difference is that you can type RUN without a line number, & it starts off at the
first line in the program. GOTO must always have a line number.

Chapter 9

60

 Both these programs stopped because you typed STOP in the INPUT line; but
sometimes - by mistake - you write a program that you can't top & won't stop itself. Type

 200 GOTO 200

 RUN 200

 This looks all set to go on for ever unless you pull the plug out; but there is a less
drastic remedy. Press the SPACE key, which has 'BREAK' written above it. The program
will stop, saying D/200.

 At the end of every program line, the computer looks to see if this key is pressed; & if
it is, then it stops. The BREAK key can also be used when you are in the middle of using
the tape recorder or the printer.

 You have now seen the statements PRINT, LET, INPUT, RUN, LIST, GOTO, CONT,
CLEAR, NEW & REM, & most of them can be used either as commands or as program
lines - this is true of almost all statements in BASIC. The only real exception is INPUT,
which cannot be used as a command (you get report 8 if you try; the reason is that the
same area inside the computer is used for both commands & for input data, & for an
INPUT command there would be a muddle). RUN, LIST, CONT, CLEAR & NEW are not
usually much use in a program, but they can be used.

Summary

 Statements: GOTO, CONT, INPUT, NEW , REM, PRINT

 STOP in input data

 BREAK

Exercises

1. In the square root program, try replacing line 40 by GOTO 5, GOTO 10 or GOTO 15 -
it should make no perceptible difference to the running of the program. If the line number
in a GOTO statement refers to a non-existent line, then the jump is to the next line after.
The same goes for RUN; in fact RUN on its own actually means RUN 0.

2. Run the string length program, & when it asks you for input type

 X$ (after removing the quotes)

 Of course, X$ is an undefined variable & you get report 2/110.

Chapter 9

61

 If you now type

 LET X$="SOMETHING DEFINITE"

(which has its own report of 0/0) &

 CONT

you will find that you can use X$ as input data without any trouble.

 The point about this exercise is that CONT has the effect of GOTO 110. It disregards
the report 0/0 because that had code 0, & takes its line number from the previous report,
2/110. This is intended to be useful. If a program stops over some error then you can do
all sorts of things to fix it, & CONT will start work afterwards.

3. Try this program:

 10 INPUT A$

 20 PRINT A$;" = ";VAL A$

 30 GOTO 10

(c.f. chapter 7, exercise 1).

 Put in extra print statements so that the computer announces what it is going to do, &
asks for the input string with extravagant politeness.

4. Write a program to input prices & print out the VAT due (at 15%). Again, put in PRINT
statements so that it tells you what it's doing. Modify the program so that you can also
input the VAT rate (to allow for zero rating or future budgets).

5. Write a program to print a running total of numbers you input. (Suggestion: have two
variables TOTAL - set to 0 to begin with - & ITEM. Input ITEM, add it to TOTAL, print
them both, & go round again.)

6. The automatic listings (the ones that are not the result of a LIST statement) may well
have you puzzled. If you type in a program with 50 lines, all REM statements,

 1 REM

 2 REM

 3 REM

 : :

Chapter 9

62

 : :

 49 REM

 50 REM

then you will be able to experiment.

 The first thing to remember is that the current line (with) will always appear on the
screen, & preferably near the middle.

 Type

 LIST (& NEWLINE, of course)

& then press NEWLINE again. You should get lines 1 to 22 on the screen. Now type

 23 REM

& you should get lines 2 to 23 on the screen; type

 28 REM

& you get lines 27 to 48. (In both cases, by typing in a new line you have moved the
program cursor so that a new listing has to be made.)

 Does this look a little arbitrary to you? It is actually trying to give you exactly what you
want, although, humans being unpredictable creatures, it doesn't always guess right.

 The computer keeps a record not only of the current line, the one that has to appear
on the screen, but also the top line on the screen. When it tries to make a listing, the first
thing it does is compare the top line with the current line.

 If the top line comes after, then there is no point in starting there, so it uses the current
line for a new top line & makes its listing.

 Otherwise, it first tries to make the listing starting at the top line. If the current line gets
on the screen then all is well; if the current line is only just off the bottom of the screen
then it moves the top line down one & tries again; & if the current line is way off the
bottom of the screen then it changes the top line to be the line before the current line.

 Experiment with moving the current line about by typing

 line number REM

 LIST moves the cursor line but not the top line, so subsequent listings might be
different. For instance, type

 LIST

to get the LIST listing, & then press NEWLINE again to make line 0 the top line. You
should have lines 1 to 22 on the screen. Type

 LIST 22

which gives you lines 22 to 43; when you press NEWLINE again, you get back lines 1 to
22. This tends to be more useful for short programs than for long ones.

Chapter 9

63

7. What would CONT, CLEAR & NEW do in a program? Can you think of any uses at all
for this?

Chapter 10

67

If...
All the program we've seen so far have been pretty predictable - they went straight
through doing all the instructions, & then maybe went back to the beginning again. This
is not all that useful. In practice the computer would be expected to make decisions & act
accordingly; it does this using the IF statement.

 Clear the computer (using NEW), & type in & run this terribly amusing little program:

 10 PRINT "SHALL I TELL YOU A JOKE?"

 20 INPUT A$

 30 IF A$="GET LOST" THEN GOTO 200

 40 PRINT "HOW MANY LEGS HAS A HORSE GOT?"

 50 INPUT LEGS

 60 IF LEGS=6 THEN GOTO 100

 70 PRINT "NO, 6, FORE LEGS IN FRONT","AND TWO BEHIND."

 80 STOP

 100 PRINT "YES",,"SHALL I TELL YOU IT AGAIN?"

 110 GOTO 20

 200 PRINT "ALL RIGHT, THEN, I WONT."

 Before we discuss the IF statement, you should first look at the STOP statement in
line 80: a STOP statement stops the execution of the program, giving report 9.

 Now as you can see, an IF statement takes the form

 IF condition THEN statement

 The statements here are GOTO statements, but they could be anything at all, even
more IF statements. The condition is something that is going to be worked out as either
true or false; if it comes out as true then the statement after THEN is executed, but
otherwise it is skipped over.

 The most useful conditions compare two numbers or two strings: they can test
whether two numbers are equal, or whether one is bigger than the other; & can test
whether two strings are equal, or whether one comes before the other in alphabetical
order. They use the relations =, <, >, <=, >= and <>.

 =, which we have used twice in the program (once for numbers & once for strings)
means 'equals'. It is not the same as the = in a LET statement.

Chapter 10

68

 < means 'is less than', so that

 1<2

 -2<-1

& -3<1

are all true, but

 1<0

& 0<-2

are false.

 To see how this works, let us write a program to input numbers & display the biggest
so far.

 10 PRINT "NUMBER","BIGGEST SO FAR"

 20 INPUT A

 30 LET BIGGEST=A

 40 PRINT A,BIGGEST

 50 INPUT A

 60 IF BIGGEST<A THEN LET BIGGEST=A

 70 GOTO 40

 The crucial part is line 60, which updates BIGGEST if its old value was smaller than
the new input number A.

 > (shifted M) means 'is greater than', & is just like < but the other way round. You can
remember which is which, because the thin end points to the number that is supposed to
be smaller.

 <= (shifted R - do not type it as < followed by =) means 'is less than or equal to', so
that it is like < except that it holds even if the two numbers are equal: this 2<=2 holds, but
2<2 does not.

 >= (shifted Y) means 'is greater than or equal to' & is similarly like >.

 <> (shifted T) means 'is not equal to' the opposite in meaning to =.

 All six of these relational operations have priority 5.

 Mathematicians usually write <=, >= and <> as ≤, ≥ and ≠. They also write things like
'2<3<4' to mean '2<3 and 3<4', but this is not possible in BASIC.

 These relations can be combined using the logical operations AND, OR & NOT.

 one relation AND another relation

is true whenever both relations are true.

Chapter 10

69

 one relation OR another

is true whenever one of the two relations is true (or both are).

 NOT relation

is true whenever the relation is false and is false whenever the relation is true.

 Logical expressions can be made with relations & AND, OR & NOT just as numerical
expressions can be made with numbers & +, - and so on; you can even put in brackets if
necessary. NOT has priority 4, AND 3 & OR 2.

 Since (unlike other functions) NOT has fairly low priority, its argument does not need
brackets unless it contains AND or OR; so NOT A = B means NOT (A = B) (which is the
same as A <> B).

 To illustrate this, clear the computer & try this program.

 10 INPUT F$

 20 INPUT AGE

 30 IF F$="X" AND AGE<18 OR F$="AA" AND AGE<14 THEN PRINT "DONT";

 40 PRINT "LET IN."

 50 GOTO 10

 Here F$ is supposed to be the category if a film - X for 18 years old & over, AA for 14
& over, & A or U for anyone, & the program works out whether a person of a given age is
to be allowed to see the film.

 Lastly, we can compare not only numbers, but also strings. We have seen '=' used in
'F$="X"', & you can even use the other five, < & so on.

 So what does 'less than' mean for strings? One thing it does not mean is 'shorter
than', so don't make that mistake. We make the definition that one string is less than
another if it comes first in alphabetical order: thus

 "SMITH" < "SMYTHE"

 "SMYTHE" > "SMITH"

 "BLOGGS" < "BLOGGS-BLACKBERRY"

 "BILLION" < "MILLION"

 "TCHAIKOVSKY" < "WAGNER"

 "DOLLAR" < "POUND"

all hold. <= means 'is less than or equal to', & so on, just as for numbers.

Chapter 10

70

Note: In some versions of BASIC - but not on the ZX81 -, the IF statement can have the
form

 IF condition THEN line number

This means the same as

 IF condition THEN GOTO line number

Summary

 Statements: IF, STOP

 Operations: =, <, >, <=, >=, <>, AND, OR

 Function: NOT

Exercises

1. <> and = are opposites in the sense that NOT A=B is the same as A<>B

&

 NOT A<>B is the same as A=B

 Persuade yourself that >= is opposite to <, and <= is opposite to > so that you can
always get rid of NOT from in front of a relation by changing the relation to its opposite.

 Also,

 NOT (a first logical expression AND a second)

is the same as

 NOT (the first) OR NOT (the second),

&

 NOT (a first logical expression OR a second)

is the same as

 NOT (the first) AND NOT (the second).

 Using this you can work NOTs through brackets until eventually they are all applied to
relations, & then you can get rid of them. Thus, logically speaking, NOT is unnecessary.
You might still find that using it makes a program clearer.

Chapter 10

71

2. BASIC can sometimes work along different lines from English. Consider, for instance,
the English clause 'if A doesn't equal B or C'. How would you write this in BASIC? [The
answer is not

 'IF A<>B OR C' nor 'IF A<>B OR A<>C']

Don't worry if you don't understand exercises 3, 4 & 5, the points covered in them are
rather refined.

3. (For experts.)

 Try

 PRINT 1=2,1<>2

which you might expect to give a syntax error. In fact, as far as the computer is
concerned, there is no such thing as a logical value.

 (i) =, <, >, <=, >=, and <> are all number valued binary operations, with priority 5. The
result is 1 (for true) if the relation holds, & 0 (for false) if it does not.

 (ii) In

 IF condition THEN statement

the condition can actually be any numeric expression. If its value is 0, then it counts as
false, & any other value counts as true. This the IF statement means exactly the same as

 IF condition <>0 THEN statement

 (iii) AND, OR & NOT are also number valued operations.

 X AND Y has the value

{ X if Y is non-zero (counting as true)
{ 0 if Y is zero (counting as false)

 X OR Y has the value

{ 1 if Y is non-zero
{ X if Y is zero

 NOT X has the value { 0 if X is non-zero
{ 1 if X is zero

 Read through the chapter again, in the light of this revelation, making sure that it all
works.

Chapter 10

72

 In the expressions X AND Y, X OR Y & NOT X, X and Y will each usually take the
value 0 or 1, for false or true. Work out the ten different combinations & check that they
do what you expect AND, OR & NOT to do.

4. Try this program:

 10 INPUT A

 20 INPUT B

 30 PRINT (A AND A>=B)+(B AND A<B)

 40 GOTO 10

 Each time it prints the larger of the two numbers A & B - why?

 Convince yourself that you can think of

 X AND Y

as meaning

 'X if Y (else the result is 0)'

& of

 X OR Y

as meaning

 'X unless Y (in which case the result is 1)'

 An expression using AND & OR like this is called a conditional expression. An
example using OR could be

 LET RETAIL PRICE=PRICE LESS VAT*(1.15 OR V$="ZERO RATED")

 Notice how AND tends to go with addition (because its default value is 0), & OR tends
to go with multiplication (because its default value is 1).

5. You can also make string valued conditional expressions, but only using AND.

 X$ AND Y$ has the value { X$ if Y is non-zero
{ if Y is zero

so it means 'X$ if Y (else the empty string)'.

 Try this program, which inputs two strings & puts them in alphabetical order.

Chapter 10

73

 10 INPUT A$

 20 INPUT B$

 30 IF A$<=B$ THEN GOTO 70

 40 LET C$=A$

 50 LET A$=B$

 60 LET B$=C$

 70 PRINT A$;" ";("<" AND A$<B$)+("=" AND A$=B$);" ";B$

 80 GOTO 10

6. Try this program:

 10 PRINT "X"

 20 STOP

 30 PRINT "Y"

 When you run it, it will display "X" & stop with report 9/20. Now type

 CONT

 You might expect this to behave like 'GOTO 20', so that the computer would just stop
again without displaying "Y"; but this would not be very useful, so things are arranged so
that for reports with code (STOP statement executed), the line number is increased by 1
for a CONT statement. This in our example, 'CONT' behaves like 'GOTO 21' (which,
since there are no lines between 20 & 30, behaves like 'GOTO 30').

7. Many versions of BASIC (but not the ZX81 BASIC) have an ON statement, which
takes the form

 ON numeric expression GOTO line number, line number,...,line number In this the
numeric expression is evaluated; suppose its value is n then the effect is that of.

 GOTO the nth line number

For instance

 ON A GOTO 100, 200, 300, 400, 500

 Here, if A has the value 2, then 'GOTO 200' is executed. In ZX81 BASIC this can be
replaced by

 GOTO 100*A

Chapter 10

74

 In case the line numbers don't go up neatly by hundreds like this, work out how you
could use

 GOTO a conditional expression

instead.

Chapter 11

77

The character set
The letters, digits, punctuation marks & so on that can appear in strings are called
characters, & they make up the alphabet, or character set, that the ZX81 uses. Most of
these characters are single symbols, but there are some more, called tokens, that
represent whole words, such as PRINT, STOP, **, & so on.

 There are 256 characters altogether, & each one has a code between 0 & 255. There
is a complete list of them in appendix A. To convert between codes & characters, there
are two functions, CODE & CHR$.

CODE is applied to a string, & gives the code of the first character in the string (or 0 if the
string is empty).

CHR$ is applied to a number, & gives the single character string whose code is that
number.

 This program prints out the entire character set.

 10 LET A=0

 20 PRINT CHR$ A;

 30 LET A=A+1

 40 IF A<256 THEN GOTO 20

 At the top you can see the symbols ", £, $ and so on up to Z, which all appear on the
keyboard & can be typed in when you have the cursor. Further on, you can see the
same characters, but in white on black (inverse video); these are also obtainable from

the keyboard. If you press GRAPHICS (shifted 9) then the cursor will come up as :
this means graphics mode. If you type in a symbol it will appear in its inverse video form,
& this will go on until you press GRAPHICS again or NEWLINE. RUBOUT will have its

usual meaning. Be careful not to lose the cursor amongst all the inverse video
characters you've just typed in.

 When you've experimented a bit, you should still have the character set at the top; if
not, then run the program again. Right at the beginning are space & ten patterns of
black, white & grey blobs; further on there are eleven more. These are called the
graphics symbols & are used for drawing pictures. You can enter these from the
keyboard, using graphics mode (except for space, which is an ordinary symbol using

the cursor; the black square is inverse space). You use the 20 keys that have
graphics symbols written on them. For instance, suppose you want the symbol , which

is on the T key. Press GRAPHICS to get the cursor, & then press shifted T. From the
previous description of the graphics mode, you would expect to get an inverse video
symbol; but shifted T is normally <>, a token, & tokens have no inverses: so you get the

graphics symbol instead.

Chapter 11

78

Here are the 22 graphics symbols.

Chapter 11

79

 Now look at the character set again. The tokens stand out quite clearly in two blocks:
a small group of three (RND, INKEY$ & PI) after Z, & a larger group (starting with the

quote image after , & carrying on from AT up to COPY).

 The rest of the characters all seem to be ? This is actually just the way they get
printed - the real question mark is between : and (. Of the spurious ones, some are for
control characters like , EDIT & NEWLINE, & the rest are for characters that have no
special meaning for the ZX81 at all.

Summary

 Functions: CODE, CHR$

Exercises

1. Imagine the space for one key symbol divided up into four quarters: . Then if each
quarter can be either black or white, there are 2*2*2*2 = 16 possibilities. Find them all in
the character set.

2. Imagine the space for one symbol divided into two horizontally: . Then if each half
can be black, white or grey, there are 3*3 = 9 possibilities. Find them all.

3. The characters in exercise 2 are designed to be used in horizontal bar charts, using
two colours, grey & black. Write a program that inputs two numbers A & B (both between
0 & 32), & draws a bar chart for them:

 You will need to start off printing " ", & change to either " " or " ", according as A
is more or less than B.

 What does your program do if A & B are not whole numbers? Or if thet are not in the
range 0 to 32? a good - 'user friendly' is the fashionable term - program will do
something sensible & useful.

4. There are two different all grey characters on the keyboard, on A & H. If you look at
them very close up, you will see that the one on H is like a miniature chessboard, while
the one on A is like a sideways chessboard. Print them next to each other, & you will see

that they don't join up properly. The one on A is used to join up neatly with & (on S

& D), while the one on H joins up neatly with & (on F & G).

Chapter 11

80

5. Run this program:

 10 INPUT A

 20 PRINT CHR$A;

 30 GOTO 10

 If you experiment with it, you will find that for CHR$, A is rounded to the nearest whole
number; & if A is not in the range 0 to 255 then the program stops with report B.

6. Using the codes for the characters, we can extend the concept of 'alphabetical
ordering' to cover strings containing any characters, not just letters. If instead of thinking
in terms of the usual alphabet of 26 letters we use the extended alphabet of 256
characters, in the same order as their codes, then the principle is exactly the same. For
instance, these strings are in ZX81 alphabetical order.

 " ZACHARY"

 " "

 "(ASIDE)"

 "123 TAXI SERVICE"

 "AASVOGEL"

 "AA "

 "ZACHARY"

 " RDVARK"

 Here is the rule. First, compare the first characters in the two strings. If these are
different, then one of them has its code less than the other, & the string of which it is the
first character is the earlier (lesser) of the two strings. If they are the same, then go on to
compare the next characters. If in this process one of the strings runs out before the
other, then that string is the earlier; otherwise they must be equal.

 Type in again the program in exercise 4 of chapter 10 (the one that inputs two strings
& prints them in order), & use it to experiment.

7. This program prints a screenful of random black & white graphics characters:

 10 LET A=INT (16*RND)

 20 IF A>=8 THEN LET A=A+120

 30 PRINT CHR$ A;

 40 GOTO 10

(How does it work?)

Chapter 12

83

Looping
Suppose you want to input five numbers & add them together. One way (don't type this
in unless you're feeling dutiful) is to write

 10 LET TOTAL=0

 20 INPUT A

 30 LET TOTAL=TOTAL+A

 40 INPUT A

 50 LET TOTAL=TOTAL+A

 60 INPUT A

 70 LET TOTAL=TOTAL+A

 80 INPUT A

 90 LET TOTAL=TOTAL+A

 100 INPUT A

 110 LET TOTAL=TOTAL+A

 120 PRINT TOTAL

 This method is not good programming practice. It may be just about controllable for
five numbers, but you can imagine how tedious a program like this to add ten numbers
would be, & a hundred would be just impossible.

 Much better is to set up a variable to count up to five & then stop the program, like this
(which you should type in):

 10 LET TOTAL=0

 20 LET COUNT=1

 30 INPUT A

 40 REM COUNT = NUMBER OF TIMES THAT A HAS BEEN INPUT SO FAR

 50 LET TOTAL=TOTAL+A

 60 LET COUNT=COUNT+1

 70 IF COUNT<=5 THEN GOTO 30

 80 PRINT TOTAL

 Notice how easy it would be to change line 70 so that this program adds ten numbers,
or even a hundred.

 This sort of counting is so useful that there are two special statements to make it
easier: the FOR statement, & the NEXT statement. They are always used together.
Using these, the program you have just typed in does exactly the same as

 10 LET TOTAL=0

Chapter 12

84

 20 FOR C=1 TO 5

 30 INPUT A

 40 REM C = NUMBER OF TIMES THAT A HAS BEEN INPUT SO FAR

 50 LET TOTAL=TOTAL+A

 60 NEXT C

 80 PRINT TOTAL

 (To get this program from the previous one you just have to edit lines 20, 40, 60 & 70.
TO is shifted 4.)

 Note that we have changed COUNT to C. The counting variable - or control variable -
of a FOR-NEXT loop must have a single letter for its name.

 The effect of this program is that C runs through the values 1 (the initial value), 2, 3, 4
& 5 (the limit), & for each one, lines 30, 40 & 50 are executed. Then, when C has
finished its five values, line 80 is executed.

 An extra subtlety to this is that the control variable does not have to go up by 1 each
time: you can change this 1 to anything else you like by using a STEP part in the FOR
statement. The most general form for a FOR statement is

 FOR control variable = initial value TO limit STEP step

where the control variable is a single letter, & the initial value, limit & step are all numeric
expressions. So, if you replace line 20 in the program by

 20 FOR C=1 TO 5 STEP 3/2

then C will run through the values 1, 2.5 & 4. Notice that you don't have to restrict
yourself to whole numbers, & also that the control value does not have to hit the limit
exactly - it carries on looping as long as it is less than or equal to the limit (but see
exercise 4).

 You must be careful if you are running two FOR-NEXT loops together, one inside the
other. Try this program, which prints out a complete set of 6-spot dominoes.

 10 FOR M=0 TO 6

 20 FOR N=0 TO M

 30 PRINT M;":";N;" ";

 40 NEXT N

 50 PRINT

 60 NEXT M

N-loop

 |

N-loop

M-loop

 |

 |

 |

 |

M-loop

Chapter 12

85

 You can see that the N-loop is entirely inside the M-loop - they are properly nested.
What must be avoided is two FOR-NEXT loops that overlap without either being entirely
inside the other, like this:

WRONG

 10 FOR M=0 TO 6

 20 FOR N=0 TO M

 30 PRINT M;":";N;" ";

 40 NEXT M

 50 PRINT

 60 NEXT N

M-loop

 |

 |

M-loop

N-loop

 |

 |

 |

N-loop

 The FOR-NEXT loops must either be one inside the other, or be completely separate.

 Another thing to avoid is jumping into the middle of a FOR-NEXT loop from the
outside. The control variable is only set up properly when its FOR statement is executed,
& if you miss this out the NEXT statement will confuse the computer. You might get error
report 1 or 2 (meaning that a NEXT statement does not contain a recognised control
variable) if you're lucky.

Summary

 Statements: FOR, NEXT, TO, STEP

Exercises

1. Rewrite the program in chapter 11 that prints out the character set, using a FOR-
NEXT loop (Answer in chapter 13.)

2. A control variable has not just a name & a value, like an ordinary variable, but also a
limit, a step, & a line number for looping back to (the line after the FOR statement where
it was set up). Persuade yourself first, that when the FOR statement is executed all this
information is available (using the initial value as the first value it takes), & second, that
(using as an example our second & third programs), this information is enough to

convert the one line.

 NEXT C

into the two lines

Chapter 12

86

 LET C=C+1

 IF C<=5 THEN GOTO 30

 (Actually we have cheated slightly here: it should really be GOTO 21 instead of GOTO
30. This will have the same effect in our program.)

3. Run the program, & then type

 PRINT C

 Why is the answer 6, & not 5?

[Answer: the NEXT statement in line 60 is executed 5 times, and each time 1 is added to
C.] What happens if you put STEP 2 in line 20?

4. Change the third program so that instead of automatically adding five numbers, it asks
you to input how many numbers you want adding. When you run this program, what
happens if you input 0, meaning that you want no numbers adding? Why might you
expect this to cause problems to the computer, even though it is clear what you mean?
(The computer has to make a search for the statement NEXT C, which is not usually
necessary.) In fact this has all been taken care of.

5. Try this program, to print out the numbers from 1 to 10 in reverse order.

 10 FOR N=10 TO 1 STEP -1

 20 PRINT N

 30 NEXT N

 Convert this into a program that does not use FOR-NEXT loops in the same way that
you would convert program 3 into program 2 (see exercise 2). Why does the negative
step make is slightly different?

Chapter 13

89

Slow & fast
The ZX81 can run at two speeds - SLOW and FAST. When first switched on, the
computer runs in the SLOW mode and can compute and display information on the
screen simultaneously. This mode is ideal for animation displays.

 However, it can go about four times as fast, & it does this by forgetting about the
picture except when it has nothing else to do. To see this working, type

 FAST

 Now whenever you press a key, the screen will blink - this is because the computer
stops displaying a picture while it works out what key you pressed.

 Type in a program, say

 10 FOR N=0 TO 255

 20 PRINT CHR$ N;

 30 NEXT N

 When you run this, the whole screen will go an indeterminate grey until the end of the
program, when the output from the PRINT statement will come up on the screen.

 The picture is also displayed an INPUT statement, while the computer is waiting for
you to type the INPUT data. Try this program:

 10 INPUT A

 20 PRINT A

 30 GOTO 10

 To get back into the normal (compute & display) mode, type

 SLOW

 It will often be just a matter of taste whether you want compute & display mode for
neatness, or fast mode for speed, but in general you will use the fast mode when

 (i) your program contains a lot of numerical calculation, especially if it doesn't print
much but in compute and display mode time doesn't seem to linger quite as much is you
can see output coming up on the screen fairly frequently, or

 (ii) you are typing in a long program. You will already have noticed how the listing gets
remade every time you enter a new program line, & this can get annoying.

 You can use SLOW & FAST statements in programs without any problems.

Chapter 13

90

 For example,

 10 SLOW

 20 FOR N=1 TO 64

 30 PRINT "A";

 40 IF N=32 THEN FAST

 50 NEXT N

 60 GOTO 10

Summary

 Statements: FAST, SLOW

Chapter 14

93

Subroutines
Sometimes different parts of your program will have rather similar jobs to do, & you will
find yourself typing the same lines in twice or more; however this is not necessary. You
can type the lines in once, in the form known as a subroutine, & then use, or call, them
anywhere else in the program without having to type them in again.

 To do this, you use the statements GOSUB (GO to SUBroutine) & RETURN.

 GOSUB n

where n is the line number of the first line in the subroutine, is just like GOTO n except
that the computer remembers the line number of the GOSUB statement so that it can
come back again after doing the subroutine. It does this remembering by putting the line
number (the return address) on top of a pie of them (the GOSUB stack).

 RETURN

takes the top line number off the GOSUB stack, & goes to the l ine after it.

 As a first example,

 10 PRINT "THIS IS THE MAIN PROGRAM",

 20 GOSUB 1000

 30 PRINT "AND AGAIN";

 40 GOSUB 1000

 50 PRINT "AND THAT IS ALL."

 60 STOP

 1000 REM SUBROUTINE STARTS HERE

 1010 PRINT "THIS IS THE SUBROUTINE,"

 1020 RETURN

 The STOP statement in line 60 is very important because otherwise the program will
run on into the subroutine & cause error 7 when the RETURN statement is reached.

 For a less trivial example, suppose you want to write a computer program to handle
pounds, shillings and pence. Those with long memories will remember that before 1971
a pound was divided into twenty shillings - so a shilling is 5p - & a shilling was subdivided
into twelve old pence; d was the abbreviation for an old penny.) You will have three
variables L, S & D (any maybe others - L1, S1, D1 & so on), and arithmetic is dead easy.
First you do it separately on the pounds, shillings and pence - for instance, to add two
sums of money, you add the pence, add the shillings and add the pounds; to double a
sum of money you double the pence, double the shillings and double the pounds; and so
on. When all that is done, adjust it to the correct form so that the pence are between 0 &
11, and the shillings between 0 & 19. This last stage is common to all the operations, so
we can make it into a subroutine.

Chapter 14

94

 Laying aside the notion of subroutines for a moment, it is worth your while trying to
write the program yourself. Give the arbitrary numbers L, S & D, how do you convert
them into proper pounds, shillings & pence? Part of the problem is that you will start
thinking of odder & odder cases.

 What first springs to mind will probably be something like £1..25s..17d, which you
want to convert to £2..6s..5d. Not so difficult. But suppose you have negative numbers?
A dept of £1..25s..17d, or £-1..-25s..-17d, might well turn out as £-3..13s..7d, which is
rather an odd way of expressing it (as though people only ever lend each other whole
pounds). And what about fractions? If you divide £1..25s..17d by two, you get
£5..12.5s..8.5d, & although this has the pence, 8.5, between 0 & 11; the shillings, 12.5,
between 0 & 19, it is certainly not as good as £1..3s..2.5d. Try & work out your own
answers to all this - & use them in a computer program - before you read any further.

Here is one solution.

 1000 REM SUBROUTINE TO ADJUST L.S.D. TO THE NORMAL FORM FOR
POUNDS, SHILLINGS AND PENCE

 1010 LET D=240*L+12*S+D

 1020 REM NOW EVERYTHING IS IN PENCE

 1030 LET E=SGN D

 1040 LET D=ABS D

 1050 REM WE WORK WITH D POSITIVE, HOLDING ITS SIGN IN E

 1060 LET S=INT (D/12)

 1070 LET D=(D-12*S)*E

 1080 LET L=INT (S/20)*E

 1090 LET S=S*E-20*L

 1100 RETURN

 On its own, this is not much use because there is no program to set up L, S & d
beforehand, nor to do anything with them afterwards. Type in the main program, & also
another subroutine to print out L, S & D.

 10 INPUT L

 20 INPUT S

 30 INPUT D

 40 GOSUB 2000

 45 REM PRINT THE VALUES

 50 PRINT

 60 PRINT " = ";

 70 GOSUB 1000

Chapter 14

95

 75 REM THE ADJUSTMENT

 80 GOSUB 2000

 85 REM PRINT THE VALUES

 90 PRINT

 100 GOTO 10

 2000 REM SUBROUTINE TO PRINT L,S AND D

 2010 PRINT "£";L;"..";S;"S..";D;"D";

 2020 RETURN

 (Recall from chapter 9 that the empty PRINT statement in line 50 prints a black line.)

 Clearly we have saved on program by using the printing subroutine at 2000, & this in
itself is a very common use for subroutines: to shorten programs. However, the
adjustment subroutine in fact makes the program longer - by a GOSUB & a RETURN; so
program length is not the only consideration. Used with skill, subroutines can make
programs easier to understand for the ones that matter, humans.

 The main program is simplified by its using more powerful statements: each GOSUB
represents some complicated BASIC, but you can forget that - only the net result
matters. Because of this, it is much easier to grasp the main structure of the program.

 The subroutines, on the other hand, are simplified for a very different reason, namely
that they are shorter. They still use the same old plodding LET & PRINT statements, but
they only have to do a part of the whole job & so are easier to write.

 The skill lies in choosing the level - or levels - at which to write the subroutines. They
must be big enough to have a significant impact on the main program, yet small enough
to be significantly easier to write than a complete program without subroutines. These
examples (not recommended) illustrate this.

 First,

 10 GOSUB 1000

 20 GOTO 10

 1000 INPUT L

 1010 INPUT S

 1020 INPUT D

 1030 PRINT " ";L;"..";S;"S..";D;"D";TAB 8;"=";

 1040 LET D=240*L+12*S+D

 : :

 : :

 2000 RETURN

Chapter 14

96

& second

 10 GOSUB 1010

 20 GOSUB 1020

 30 GOSUB 1030

 40 GOSUB 1040

 50 GOSUB 1050

 : :

 : :

 30 GOTO 10

 1010 INPUT L

 1015 RETURN

 1020 INPUT S

 1025 RETURN

 1030 INPUT D

 1035 RETURN

 1040 PRINT " ";L;"..";S;"S..";D;"D";TAB 8; "=";

 1045 RETURN

 1050 LET D=240*L+12*S+D

 1055 RETURN

 : :

 : :

 The first, with its single powerful subroutine, & the second, with its many trivial ones,
demonstrate quite opposite extremes, but with equal futility.

 A subroutine can happily call another, or even itself (a subroutine that calls itself is
recursive), so don't be afraid to having several layers.

Summary

 Statements: GOSUB, RETURN

Exercises

1. The example program is virtually a universal LSD calculator. How would you use it.

 (i) to convert pounds & new pence into pounds, shillings & pence?

Chapter 14

97

 (ii) to convert guineas into pounds & shillings? (1 guinea = 1..1s)

 (iii) to find fractions of a pound? (e.g. a third of a pound, or a mark, is 6s..8d.

 Put in a line to round the pence off to the nearest farthing (1/4d).

2. Add two statements to the program:

 4 LET ADJUST=1000

 7 LET LSDPRINT=2000

& change

 GOSUB 1000 to GOSUB ADJUST

 GOSUB 2000 to GOSUB LSDPRINT

 This works exactly as you'd hope; in fact the line number in a GOSUB (or GOTO or
RUN) statement can be any numerical expression. (Don't expect this to work on
computers other than the ZX81, because it is not standard BASIC.)

 This sort of stuff can work wonders for the clarity of your programs.

3. Rewrite the main program in the example to do something quite different, but still
using the same subroutines.

4. ... GOSUB n

 ... RETURN

in consecutive lines can be replaced by

 ... GOTO n

 Why?

5. A subroutine can have several entry points. For instance, because of the way our
main program uses them, with GOSUB 1000 followed immediately by GOSUB 2000, we
can replace our two subroutines by one big one that adjusts L, S & D & then prints them.
It has two entry points: one at the beginning for the whole subroutine, & another further
on for the printing part only.

 Make the necessary rearrangements.

Chapter 14

98

6. Run the program:

 10 GOSUB 20

 20 GOSUB 10

 The return addresses are pushed on to the GOSUB stack in droves, but they never
get taken off again & eventually there is no room for any more in the computer. The
program then stops with error 4 (see appendix B).

 You might have difficulty in clearing them out again without losing everything, but this
will work.

 (i) Delete the two GOSUB statements.

 (ii) Insert two new lines

 11 RETURN

 21 RETURN

 (iii) Type

 RETURN

 The return addresses will be stripped off until you get error 7.

 (iv) Change your program so you don't get the same thing happening again.

How does this work?

Chapter 15

101

Making your programs work
There is more to the art of programming computers than just knowing which statement
does what. You will probably already have found that most of your programs have what
are technically known as bugs when you first type them in: maybe just typing errors, or
maybe mistakes in your own ideas of what the program should do. You might put this
down to inexperience, but you would be deluding yourself.

EVERY PROGRAM STARTS OFF WITH BUGS.

 Many programs finish up with bugs as well. There are two corollaries to this; first, you
must test all your programs straight away; & second, there's no point in losing your
temper every time they don't work. The general plan can be illustrated with a flowchart:

Chapter 15

102

 The idea is that you follow the arrows from box to box, doing what it says at each one.
We have used different sorts of boxes for different sorts of instructions:

A rounded box

is start or finish.

A rectangular box

is a straightforward instruction.

A diamond

asks you to make some kind of decision
before carrying on.

 (These shapes are fairly widely used, but nothing earth-shattering depends on them.)

 Of course, these flowcharts are ill-adapted for describing human activities; thinking
along fixed straight lines like this is not good for creativeness or flexibility. For computers,
however, they are just the job. They are best at describing the large-scale structure of
programs, with a subordinate in almost every box, so a flowchart for our sterling example
in the last chapter might be.

 Conceptually, then, rectangular boxes correspond to GOSUBs; although in practice
some boxes - like the one above that inputs L, S & D - are translated directly into BASIC
statements, without a subroutine.

 Anything - like flowcharts, subroutines, & also REM statements - that makes the
program clearer gives you a better understanding of it; & then you are bound to write
fewer bugs. But subroutines also help you get out the bugs you've written anyway, by
making the program easier to test. You will find it much easier to test the subroutines

Chapter 15

103

individually & make sure that they fit together properly, than to test a whole unstructured
program.

 Subroutines, then, help with the box 'find the bugs' & this is the box where you need
all the help you can get, for it is often the most exasperating. Other hints for finding bugs
are

 (i) Check that there are no typing errors. Always do this.

 (ii) Try to work out what all the variables should be at each stage - & if possible explain
this in REM statements. You can check the variables at a given point in the program by
inserting a PRINT statement there.

 (iii) If the effect of the program is to make the program stop with an error report, then
use this information as thoroughly as you can. Look up the report code, & work out why it
stopped on the line where it did. Print out the values of the variables, if necessary.

 (iv) You might be able to step through a program line by line by typing in its lines as
commands.

 (v) Pretend to be the computer: run the program on yourself using pencil & paper to
note down the values of the variables.

 Once you've found the bugs, fixing them is much like writing the original program, but
you must test the program again. It is surprisingly easy to fix one bug, only to introduce
another.

Exercises

1. The flowchart for the LSD calculator has no 'finish' box. Does this matter? Where
would you put one if you wanted to?

2. Write flowcharts for the looping programs in chapter 12.

Chapter 16

107

Tape storage
As was mentioned in chapter 1, & you have no doubt found out from experience anyway,
when you turn the ZX81 off you lose all the program & variables that were stored inside
it. The only way to save these is to have the computer record them onto a cassette tape;
& then later you can load them back in & the computer will be restored to practically the
same state as it was in when it made the recording.

 You will have found that with the ZX81 a pair of leads (article (v) in chapter 1) which
connect the ZX81 to a cassette recorder. You must provide your own tape recorder, &
some work better than others.

 First, as far as the ZX81 is concerned, the cheap, portable mono cassette recorders
are at least as good as expensive stereo ones, & give less trouble as well. You will find a
tape counter very useful.

 Second, the tape recorder must have an input socket for use with microphones, & an
output socket for use with earphones if there isn't one, try the external loudspeaker
socket.) They should preferably be 3.5 mm jack sockets i.e. to fit the jack plugs on the
leads provided), because other sorts often do not give a signal powerful enough for the
ZX81.

 Any cassette tape should work, although low noise tapes are preferable.

 Now, having acquired a suitable cassette recorder, connect it to the computer: one
lead should connect the microphone input socket on the recorder to the socket marked
'MIC' on the side of the ZX81, & the other connects the earphone output socket on the
recorder to the 'EAR' socket on the ZX81. Make sure that the leads are not crossed over
(although you won't damage the ZX81 if they are.)

 Type some program into the computer, say the character set program in chapter 11.
You are going to have to give the program a name when you save it, & it is a good idea
to put this name into the program so that it appears in listings - the easiest way is with a
REM statement. So type

 5 REM "CHARACTERS"

 Now - & this is just a dry run, so that you can see what happens, - type

 SAVE "CHARACTERS"

& watch the television. For five seconds it will just be a greyish colour, then for about six
seconds there will be a distinctive pattern of thin black & white stripes, & then the screen
will go white with the report 0/0. The computer was sending a signal to the 'MIC' socket;
but it was also sending the same signal to the television, producing the picture that you
saw. The grey part was a silent lead-in, & the black & white part was the program.

 What you want to do, of course, is catch that signal on tape, so let's do it properly this
time.

Chapter 16

108

Saving a program

1. Position the tape in a part either that is blank, or that you are prepared to overwrite.

2. Using a microphone, record yourself saying 'characters'. This is not essential, but it
will make it easier to find the program afterwards. Reconnect the computer to the tape
recorder.

3. Type

 SAVE "CHARACTERS" (without NEWLINE)

4. Start the tape recorder recording.

5. Press NEWLINE.

6. Watch the television as before. When it has finished (with the report 0/0), stop the tape
recorder.

 To make sure that this has worked, you should now listen to the tape through the tape
recorder's own loudspeaker. (You will probably have to unplug the lead from the
earphone socket on the tape recorder.) Rewind the tape to where you started before, &
play it back.

 First, you will hear your own voice saying 'characters'.

 After that, comes a soft, humming buzz. This is not really part of the recording, but the
end of the signal for the television (before you pressed NEWLINE), which happens to
have been sent to the tape recorder as well.

 Next come five seconds of silence, the beginning of the proper tape signal. This
corresponds to the period when the television screen went grey.

 Next come about six seconds of a very harsh high-pitched buzz, & at full volume this
should be very unpleasantly loud. This is a recording of the program, & corresponds to
the black & white patterns on the television screen.

 Finally, the soft humming buzz will return.

 If you did not hear these various hums & buzzes, then check that you had the
computer & tape recorder properly connected up. It happens with some tape recorders
that the jack plug dies not make contact if it is pushed right in. Try pulling it out about a
tenth of an inch - you can sometimes feel it settling down into a more natural position.

 Now let us suppose that the recoding sounds all right to the human ear, & you want to
try to load it back into the computer.

Loading a program with a name

1. Rewind the tape to the place where you started.

2. Make sure that the 'EAR' socket on the computer is connected to the earphone socket
on the tape recorder.

Chapter 16

109

3. Turn the volume control on the tape recorder to about three quarters of the maximum
volume; if it has tone control then adjust them so that treble is high & bass is low (so that
it sounds hissy).

4. Type

 LOAD "CHARACTER" (again, without NEWLINE)

5. Start the tape recorder playing.

6. Press NEWLINE.

 Again, you will be able to see pictures of the recording in the television, but they will
look different this time, everything being a black & white pattern. The two parts, the
silence & the program, will be less easily distinguished, but you should be able to see
that the program part has much broader, more defined lines. (Try exercise 1 some time.)

 After fifteen seconds it should have loaded & stopped with report 0/0. Otherwise,
press the BREAK key (space), which should let it out of its misery.

 The most likely thing to have been wrong is the volume level: this should be

 (i) loud enough for the program part to be picked up by the computer,

 (ii) not so loud that the program part is distorted (this is actually fairly rare),

& (iii) quiet enough for the silent part to be recognized as silent by the computer.

 The best adjustment is to turn the volume up as loud as it will go without making the
silent part at all noisy; you can do this while listening to the recording through the
loudspeaker. If the silence is incorrigibly noisy, then you may have other problems:

 Some tape recorders form a feedback loop with the ZX81. This can only happen when
the EAR & MIC leads are both in at the same time, so the cure is to SAVE with the EAR
lead disconnected.

 Some tape recorders can record a mains hum. This is cured by operating them on
batteries.

 Some tape recorders - especially old, worn ones - are intrinsically noisy. This may be
helped by using a better quality tape, although this should not be necessary.

 Try cleaning the tape head in the cassette recorder, in case it is dirty.

 Finally, there may be the same problem about pushing the plug right into the earphone
socket as was mentioned for the microphone socket.

 If you've got a program on tape & you can't remember its name, you can still load it.
(Try this with the program "CHARACTERS" that you were using before.)

Loading a program without a name

1. Position the tape in the silent lead-in.

Chapter 16

110

2. Check everything & adjust the controls as before. You might well find that you have to
be more careful with the volume level than you did when you knew the name.

3. Type

 LOAD "" (without NEWLINE)

4. Start the tape recorder playing.

5. Press NEWLINE.

6. The rest is as before.

 The idea is that if the name of the program you ask to be loaded is the empty string,
then the computer loads the first program it comes across. Note that when you save a
program, you cannot make its name the empty string - if you try then you will get error F.

 LOAD & SAVE can also be used in programs. With SAVE, the program will save itself
in such a state then when loaded it will immediately carry on executing from the line after
the SAVE statement.

 For example, type in

 5 REM "USELESS"

 10 PRINT "THIS IS ALL IT DOES"

 20 STOP

 100 SAVE "USELESS"

 110 GOTO 10

 Connect up the tape recorder, type

 RUN 100 (without NEWLINE),

start the tape recorder recording, & press NEWLINE. When the program has saved
itself, it will continue running. You will discover afterwards that the last S in USELESS in
line 100 has changed to inverse video, but this is nothing to worry about.

 To load it, rewind the tape to somewhere before the beginning of the program, type

 LOAD "USELESS" (without NEWLINE),

start playing back the tape into the computer, & press NEWLINE. When it has loaded, it
will carry on with line 110 & execute itself without any effort on your part.

 Note how putting the SAVE statement at the end of the program means that to run it
without the SAVE you just type RUN - you don't have to jump round the SAVE
statement.

 Don't SAVE from within a GOSUB routine - it won't work properly.

 Don't put inverse video characters in a program name. Any part of the name after the
inverse video character gets lost.

 The name should not contain more than 127 characters.

Chapter 16

111

 The name in a LOAD or SAVE does not have to be a string constant, it can be any
string-valued expression, like A$ or CHR$ 100.

Summary

 Saving a program on tape

 Loading a named program from tape

 Loading the first available program from tape

 Saving a program so that it will load & then run itself

 Statements: SAVE, LOAD

Note

 You cannot load programs that were saved from any other kinds of computer or from
the ZX80 with its own integer BASIC. Your saved programs cannot be loaded into other
kinds of computer or the ZX80 with integer BASIC. The ZX80 with ZX81 BASIC, on the
other hand is compatible with the ZX81; saved programs from either can be loaded to
the other. After loading a ZX80 program, the ZX81 will be in fast mode.

Exercises

1. Make a tape with loads of short programs, start playing it back into the computer, &
type

 LOAD "NOT THE NAME OF A PROGRAM"

You should easily be able to see the difference on the television between the empty
stretches on the tape (with a fairly unstructured black & white pattern) & the programs
(with more definite lines). Both patterns are different from what you see when you save.
If you turn the volume down while a program is going past, you can see the picture
switching to the empty space pattern while the signal goes too quiet to look like program.

2. Make a tape on which the first program, when loaded, prints a menu (a list of the other
programs on the tape), asks you to choose a program, & then loads it.

3. Type in the program "CHARACTERS" again, & then type

 LET X=7

Chapter 16

112

so that - although it doesn't appear in the program - the computer now contains a
variable X with value 7. Now save the program, turn the computer off & on (to make sure
there's no cheating), & load the program back again. Type

 PRINT X

& you will get the answer 7. The SAVE statement saved not only the program, but also
all the variables - including X.

 If you want to keep these variables when you execute the program, you must
remember to use GOTO & not RUN (as was mentioned in chapter 9). You can avoid
having to remember this by making the program execute itself (using SAVE as a
program line).

4. Type in a very long program, & them momentarily disconnect the power supply. This
sort of thing sometimes happens spontaneously; it is not a bug, but a glitch. There is
nothing you can do about it except cry. It if happens more often than you can bear then
there is probably something wrong, but it would be worth saving the incomplete program
on tape half-way through.

Chapter 17

115

Printing with frills
You will recall that a PRINT statement has a list of items, each one an expression (or
possibly nothing at all), & that they are separated by commas or semicolons. There are
two more kinds of PRINT item which are used to tell the computer not what, but where to
print. For example, PRINT AT 11,16; "*" prints a star in the middle of the screen.

AT line, column

 moves the PRINT position (the place where the next item is to be printed) to the line &
column specified. Lines are numbered from 0 (at the top) to 21, & columns from 0 (on the
left) to 31.

TAB column

 moves the PRINT position to the column specified. It stays on the same line, or, if this
would invoke back-spacing, moves on to the next one. Note that the computer reduces
the column number modulo 32 (it divides by 32 & takes the remainder); so TAB 33
means the same as TAB 1.

 For example

 PRINT TAB 30,1;TAB 12;"CONTENTS";AT 3,1;"CHAPTER";TAB 24;"PAGE"

 (This is how you might print out the heading of a Contents page, with 1 as the page
numbers.)

 Some small points:

 (i) These new items are best terminated with semicolons, as we have done above.
You can use commas (or nothing, at the end of the statement), but this means that after
having carefully set up the PRINT position you immediately move it on again - not
usually terribly useful.

 (ii) Although AT & TAB are not functions, you have to type the function key (shifted
NEWLINE) to get them.

 (iii) You cannot print on the bottom two lines (22 & 23) of the screen because they are
reserved for commands, INPUT data, reports and so on. References to the 'bottom line'
usually mean line 21.

 (iv) You can use AT to put the PRINT position even where there is already something
printed; the old stuff will be overwritten.

 There are two more statements connected with PRINT, namely CLS & SCROLL.

 CLS Clears the Screen (but nothing else).

 SCROLL moves the whole display up one line (losing the top line) & moves the
PRINT position to the beginning of the bottom line.

Chapter 17

116

 To see how this works, run this program:

 10 SCROLL

 20 INPUT A$

 30 PRINT A$

 40 GOTO 10

Summary

 PRINT items: AT, TAB

 Statements: CLS, SCROLL

Exercises

1. Try running this:

 10 FOR I=0 TO 20

 20 PRINT TAB 8*I;I;

 30 NEXT I

 This shows what is meant by the TAB number's being reduced modulo 32. For a more
elegant example, change the 8 in line 20 to a 6.

Chapter 18

119

Graphics
 Here are some of the most elegant features of the ZX81; they use what are called
pixels (picture elements). The screen you can display on has 22 lines & 32 columns,
making 22*23 = 704 character positions, & each of these contains 4 pixels, divided up
like a slice of Battenburg cake.

 A pixel is specified by two numbers, its coordinates. The first, its x-coordinate, says
how for it is across from the extreme left-hand column (remember, X is ACROSS), & the
second, its y-coordinate, says how far if is up from the bottom. These coordinates are
usually written as a pair in brackets, so (0,0), (63,0), (0,43) & (63,43) are the bottom left-,
bottom right-, top left-, & top right-hand corners.

 The statement

 PLOT x-coordinate, y-coordinate

blacks in the pixel with these coordinates, while the statement

 UNPLOT x-coordinate, y-coordinate

blanks it out.

 Try this measles program:

 10 PLOT INT (RND*64),INT (RND*44)

 20 INPUT A$

 30 GOTO 10

 This plots a random point each time you press NEWLINE.

 Here is a rather more useful program. It plots a graph of the function SIN (a sine
wave) for values between 0 & 2ð.

 10 FOR N=0 TO 63

 20 PLOT N, 22+20*SIN (N/32*PI)

 30 NEXT N

 This next one plots a graph of SQR (part of a parabola) between 0 & 4:

 10 FOR N=0 TO 63

 20 PLOT N,20*SQR (N/16)

 30 NEXT N

 Notice that pixel coordinates are rather different from the line & column in an AT item.
At the end of this chapter is a diagram which you may find useful in working out pixel
coordinates & line & column numbers.

Chapter 18

120

Exercises

1. There are three differences between the numbers in an AT item & pixel coordinates;
what are they?

 Suppose that the PRINT position corresponds to AT L,C (for line & column). Prove to
yourself that the four pixels in that position have x-coordinates 2*C or 2*C+1, & y-
coordinates 2*(21-L) or 2*(21-L)+1. (Look at the diagram.)

2. Make a cheese nibbler by altering the measles program so that it first fills the screen
with black (a black square is an inverse video space), & then unplots random points, if
you have only 1K of memory - that is to say, the standard machine without any extra
memory, - you will find yourself running out of store, so you will have to fix the program
so that it uses only part of the screen.

3. Modify the SIN graph program so that before plotting the graph itself it prints a
horizontal line of "-"s for an x-axis, & a vertical line of "/"s for a y-axis.

4. Write programs to plot graphs of more functions, e.g. COS, EXP, LN, ATN, INT & so
on. For each one you will have to make sure that the graph fits the screen, so you will
need to consider

 (i) over what range you are going to take the functions (corresponding to the range 0
to 2ð for the SIN graph).

 (ii) whereabouts on the screen to put the x-axis (corresponding to 22 in line 20 in the
SIN graph program).

 (iii) how to scale the y-axis of the graph (corresponding to 20 in line 20 of the SIN
graph program).

 You will find that COS is the easiest - it's just like SIN.

5. Run this:

 10 PLOT 21,21

 20 PRINT "HEAVY QUOTES"

 30 PLOT 46,21

 PLOT moves on the PRINT position. (UNPLOT does too.)

6. This subroutine draws a (fairly) straight line from the pixel (A,B) to the pixel (C,D).

 Use it as part of some main program that supplies the value of A, B, C & D.

Chapter 18

121

 (If you have not got a memory expansion board then you'll probably need to omit the
REM statements.)

 1000 LET U=C-A

 1005 REM U SHOWS HOW MANY STEPS ALONG WE NEED TO GO

 1010 LET V=D-B

 1015 REM V SHOWS HOW MANY STEPS UP

 1020 LET D1X=SGN U

 1030 LET D1Y=SGN V

 1035 REM (D1X,D1Y) IS A SINGLE STEP IN A DIAGONAL DIRECTION

 1040 LET D2X=SGN U

 1050 LET D2Y=0

 1055 REM (D2X,D2Y) IS A SINGLE STEP LEFT OR RIGHT

 1060 LET M=ABS U

 1070 LET N=ABS V

 1080 IF M>N THEN GOTO 1130

 1090 LET D2X=0

 1100 LET D2Y=SGN V

 1105 REM NOW (D2X,D2Y) IS A SINGLE STEP UP OR DOWN

 1110 LET M=ABS V

 1120 LET N=ABS U

 1130 REM M IS THE LARGER OF ABS U & ABS V, N IS THE SMALLER

 1140 LET S=INT (M/2)

 1145 REM WE WANT TO MOVE FROM (A,B) TO (C,D) IN M STEPS USING N
UP- DOWN OR RIGHT-LEFT STEPS D2, & M-N DIAGONAL STEPS D1,
DISTRIBUTED AS EVENLY AS POSSIBLE

 1150 FOR I=0 TO M

 1160 PLOT A,B

 1170 LET S=S+N

 1180 IF S<M THEN GOTO 1230

 1190 LET S=S-M

 1200 LET A=A+D1X

 1210 LET B=B+D1Y

 1215 REM A DIAGONAL STEP

Chapter 18

122

 1220 GOTO 1250

 1230 LET A=A+D2X

 1240 LET B=B+D2Y

 1245 REM AN UP-DOWN OR RIGHT-LEFT STEP

 1250 NEXT I

 1260 RETURN

 The last part (lines 1150 on) mixes the
M-N step D1 evenly with the N steps D2.
Imagine a Monopoly board with M squares
round the edge, numbered from 0 to M-1.
The square you are on at any time is
number S, starting at the corner opposite
G0. Each move takes you N squares round
the board, & in the straight line on the
screen you make either a left-right/ up-down
step (if you pass GO on the board), or a
diagonal step otherwise. Since your total
journey on the board is M*N steps, or right
round N times, you pass GO N times &
evenly spaced out in your M steps are N
left-right/up-down steps.

 Adjust the program so that if another parameter, E, is 1 then the line is drawn in black
(as here), & if it is 0 then the line is drawn in white (using UNPLOT). You can then rub
out a line you've just drawn by undrawing it.

Chapter 18

123

Chapter 19

127

Time & motion
Quite often you will want to make the program take a specified length of time, & for this
you will find the PAUSE statement useful (especially in fast mode):

 PAUSE n

stops computing & displays the picture for n frames of the television (at 50 frames per
second, or 60 in America). n can be up to 32767, which gives you just under 11 minutes;
if n is any bigger then it means 'PAUSE for ever'.

 A pause can always be cut short by pressing a key (note that a space, or £, will cause
a break as well). You have to press the key down after the pause has started.

 At the end of the pause, the screen will flash.

 If a PAUSE statement is used in a program that will be run in FAST mode or on the
old ZX80 with the new 8K ROM, then the PAUSE statement must be followed by POKE
16437,355. The PAUSE will appear to work without doing this, but it will probably result
in your program being wiped out.

 This program works the second hand (here just a single dot on the edge) of a clock.

 5 REM FIRST WE DRAW THE CLOCK FACE

 10 FOR N=1 TO 12

 20 PRINT AT 10-10*COS (N/6*PI),10+10*SIN (N/6*PI);N

 30 NEXT N

 35 REM NOW WE START THE CLOCK

 40 FOR T=0 TO 10000

 45 REM T IS THE TIME IN SECONDS

 50 LET A=T/30*PI

 60 LET SX=21+18*SIN A

 70 LET SY=22+18*COS A

 200 PLOT SX,SY

 300 PAUSE 42

 310 POKE 16437,255

 320 UNPLOT SX,SY

 400 NEXT T

 (Miss out the REM statements unless you have a memory expansion board.)

 This clock will run down after about 2 3/4 hours because of line 40, but you can easily
make it run longer. Note how the timing is controlled by line 300. You might expect
PAUSE 50 to make it tick once a second, but the computing takes a bit of time as well &
has to be allowed for. This is best done by trial & error, timing the computer clock against

Chapter 19

128

a real one, & adjusting line 300 until they agree. (You can't do this very accurately; an
adjustment of one frame in one second is 2% or half an hour a day.)

 The function INKEY$ (which has no argument) reads the keyboard. If you are
pressing exactly one key (or the shift key and one other key) then the result is the

character that the key gives in mode; otherwise the result is the empty string. The
control characters do not have their usual effect, but give results like CHR$ 118 for
newline - they are printed as "?".

 Try this program, which works like a typewriter.

 10 IF INKEY$<>"" THEN GOTO 10

 20 IF INKEY$="" THEN GOTO 20

 30 PRINT INKEY$;

 40 GOTO 10

 Here line 10 waits for you to lift your finger off the keyboard & line 20 waits for you to
press a new key.

 Remember that unlike INPUT, INKEY$ doesn't wait for you. So you don't type
newline, but on the other hand if you don't type anything at all then you've missed your
chance.

Exercises

1. What happens if you miss out line 10 in the typewriter program?

2. Why can you not type space or £ in the typewriter program?

 Here is a modified program that gives you a space if you type cursor right (shifted 8).

 10 IF INKEY$<>"" THEN GOTO 10

 20 IF INKEY$="" THEN GOTO 20

 30 LET A$=INKEY$

 40 IF A$=CHR$ 115 THEN GOTO 110

 90 PRINT A$;

 100 GOTO 10

 110 PRINT " ";

 120 GOTO 10

 Note how we read INKEY$ into A$ in line 30. It would be possible to miss this out &
replace A$ by INKEY$ in lines 40 & 0, but there would always be a chance that INKEY$
could change between the lines.

Chapter 19

129

 Add some more programs so that if you type NEWLINE (CHR$ 118) it gives you a
new line.

3. Another way of using INKEY$ is in conjunction with PAUSE, as in this alternative
typewriter program.

 10 PAUSE 40000

 20 POKE 16437,255

 30 PRINT INKEY$

 40 GOTO 10

 To make this work, why is it essential that a pause should not finish if it finds you
already pressing a key when it starts?

 This method has the disadvantage that the screen flashes, but in fast mode it is the
only way of doing it. Run the program in fast mode, & notice that the computer takes the
opportunity of a pause to display the television picture.

4. This one will drive you mad. The computer displays a number, which you (or an
innocent victim) shall type back. To begin with you have a second to do it in, but if you
get it wrong you get a longer time for the next number, while if you get it right you get
less time for the next one. The idea is to get it going as fast as possible, & then press Q
to see your score - the higher the better.

 10 LET T=50

 15 REM T=NUMBER OF FRAMES PER GO-INITIALLY 50 FOR 1 SECOND

 20 SCROLL

 30 LET A$=CHR$ INT (RND*10+CODE "0")

 35 REM A$ IS A RANDOM DIGIT

 40 PRINT A$

 45 PAUSE T

 50 POKE 16437,255

 60 LET B$=INKEY$

 70 IF B$="Q" THEN GOTO 200

 80 IF A$=B$ THEN GOTO 150

 90 PRINT "NO GOOD"

 100 LET T=T*1.1

Chapter 19

130

 110 GOTO 20

 150 PRINT "OK"

 160 LET T=T*0.9

 170 GOTO 20

 200 SCROLL

 210 PRINT "YOUR SCORE IS "; INT (500/T)

5. (Only for those with extra RAM.) Using the straight line routine in chapter 15, change
the second hand program so that it also shows minute & hour hands, drawing them
every minute. (Make the hour hand shorter.) If you're feeling ambitious, arrange so that
every quarter of an hour it puts on some kind of a show.

6. (For fun.) Try this:

 10 IF INKEY$ = "" THEN GOTO 10

 20 PRINT AT 11.14; "OUCH"

 30 IF INKEY$<>"" THEN GOTO 30

 40 PRINT AT 11,14; " "

 50 GOTO 10

Chapter 20

133

The ZX81 Printer
If you have got a ZX81 printer, you will have some operating instructions with it. This
chapter covers the BASIC statements needed to make it work.

 The first two, LPRINT & LLIST, are just like PRINT and LIST, except that they use the
printer instead of the television. (The L is a historical accident. When BASIC was
invented it usually used an electronic typewriter instead of a television, so PRINT really
did mean print. If you wanted messages of output you would use a very fast line printer
attached to the computer, & an LPRINT statement meaning 'Line printer PRINT'.)

 Try this program for example.

 10 LPRINT "THIS PROGRAM:",,,,

 20 LLIST

 30 LPRINT ,,"PRINTS OUT THE CHARACTER SET.",,,

 40 FOR N=0 TO 255

 50 LPRINT CHR$ N;

 60 NEXT N

 The third statement, COPY, prints out a copy of the television screen. For instance,
get a listing on the screen of the program above, & type

 COPY

 You can always stop the printer when it is running by pressing BREAK key (space).

 If you execute these statements without the printer attached, it should just lose all the
output & carry on with the next statement. However, sometimes it might get stuck, &
when this happens the break key will bring it out.

Summary

 Statements: LPRINT, LLIST, COPY

Note: None of these statements is standard BASIC, although LPRINT is used by some
other computers.

Exercises

1. Try this:

 10 FOR N=31 TO 0 STEP -1

 20 PRINT AT 31-N,N;CHR$ (CODE "0" +N);

 30 NEXT N

Chapter 20

134

 You will see a pattern of letters working down diagonally from the top right-hand
corner until it reaches the bottom of the screen, when the program stops with error
report 5.

 Now change 'AT 31-N,N' in line 20 to 'TAB N'. The program will have exactly the
same effect as before.

 Now change PRINT in line 20 to LPRINT. This time there will be no error 5, which
should not occur with the printer, & the pattern will carry on an extra ten lines with the
digits.

 Now change 'TAB N' to 'AT 21-N,N' still using LPRINT. This time you will get just a
single line of symbols. The reason for the difference is that the output from the LPRINT
is not printed straight away, but arranged in a buffer store a picture one line long of what
the computer will print when it gets round to it. The printing takes place

 (i) when the buffer is full,

 (ii) after an LPRINT statement that does not end in a comma or semicolon.

 (iii) when a comma or TAB item requires a new line.

or (iv) at the end of a program, if there is anything left unprinted.

 (iii) explains why our program with TAB works the way it does. As for AT, the line
number is ignored & the LPRINT position (like the PRINT position, but for the printer
instead of the television) is changed to the column number. An AT item can never cause
a line to be sent to the printer. (Actually, the line number after AT is not completely
ignored; it has to be between -21 & +21 or an error will result. For this reason it is safest
always to specify line 0. The item 'AT 21-N,N' in the final version of our program would
be much better albeit less illustrative if replaced by 'AT 0,N'.)

2. Make a printed graph of SIN by running the program in chapter 18 & then using
COPY.

Chapter 21

137

Substrings
Given a string, a substring of it consists of some consecutive characters from it, taken in
sequence. Thus "STRING" is a substring of "BIGGER STRING", but "B STRING" & "BIG
REG" are not.

 There is a notation called slicing for describing substrings, & this can be applied to
arbitrary string expressions. The general form is

 string expression (start TO finish)

so that, for instance,

 "ABCDEF" (2 TO 5) = "BCDE"

 If you omit the start, then 1 is assumed; if you omit the finish then the length of the
string is assumed. Thus

 "ABCDEF" (TO 5) = "ABCDEF" (1 TO 5) = "ABCDE"

 "ABCDEF" (2 TO) = "ABCDEF" (2 TO 6) = "BCDEF"

&

 "ABCDEF" (TO) = "ABCDEF" (1 TO 6) = "ABCDEF"

(you can also write this last one as "ABCDEF" (), for what it's worth.)

 A slightly different for misses out the TO & just has one number:

 "ABCDEF" (3) = "ABCDEF" (3 TO 3) = "C"

 Although normally both start & finish must refer to existing parts of the string, this rule
is overridden by one other: if the start is more than the finish, then the result is the empty
string. So

 "ABCDEF" (5 TO 7)

gives error 3 (subscript error) because, the string only contains 6 characters, & 7 is too
many, but

 "ABCDEF" (8 TO 7) = ""

&

 "ABCDEF" (1 TO 0) = ""

 The start & finish must not be negative, or you get error B.

Chapter 21

138

 This next program makes B$ equal to A$, but omitting any trailing spaces.

 10 INPUT A$

 20 FOR N=LEN A$ TO 1 STEP -1

 30 IF A$(N)<>"" THEN GOTO 50

 40 NEXT N

 50 LET B$=A$(TO N)

 60 PRINT """";A$;"""","""";B$;""""

 70 GOTO 10

 Note how if A$ is entirely spaces, then in line 50 we have N = 0 & A$(TO N) = A$(1
TO 0) = "".

 For string variables, we can not only extract substrings, but also assign to them. For
instance type

 LET A$="LOR LOVE A DUCK"

& then

 LET A$(5 TO 8)="******"

&

 PRINT A$

 Notice how since the substring A$(5 TO 8) is only 4 characters long, only the first four
stars have been used. This is a characteristic of assigning to substrings: the substring
has to be exactly the same length afterwards as it was before. To make sure this
happens, the string that is being assigned to it is cut off on the right if it is too long, or
filled out with spaces if it is too short - this is called Procrustean assignment after the inn-
keeper Procrustes who used to make sure that his guests fitted the bed by either
stretching them out on a rack or cutting their feet off.

 If you now try

 LET A$()="COR BLIMEY"

&

 PRINT A$;"."

you will see that the same thing has happened again (this time with spaces put in)
because A$() counts as a substring.

 LET A$="COR BLIMEY"

will do it properly

 Slicing may be considered as having priority 12, so, for instance

 LEN "ABCDEF"(2 TO 5) = LEN("ABCDEF"(2 TO 5)) = 4

Chapter 21

139

Complicated string expressions will need brackets round them before they can be sliced.
For example,

 "ABC"+"DEF"(1 TO 2) = "ABCDE"

 ("ABC"+"DEF")(1 TO 2) = "AB"

Summary

 Slicing, using TO. Note that this notation is non-standard.

Exercises

1. Some BASICs (not the ZX81 BASIC) have functions called LEFT$, RIGHT$, MID$ &
TL$.

 LEFT$(A$,N) gives the substring of A$ consisting of the first N characters.

 RIGHT$(A$,N) gives the substring of A$ consisting of the characters from the Nth on.

 MID$(A$,N1,N2) gives the substring of A$ consisting of N2 characters starting at the
N1th.

 TL$(A$) gives the substring of A$ consisting of all its characters except the first.

 How would you write these in ZX81 BASIC? Would your answers work with strings of
length 0 or 1?

2. Try this sequence of commands:

 LET A$="X*+*Y"

 LET A$(2)=CHR$ 11 [the string quote character]

 LET A$(4)=CHR$ 11

 PRINT A$

 A$ is now a string with string quotes inside it! So there is nothing to stop you doing this
if you are persevering enough, but clearly if you had originally typed

 LET A$="X"+"Y"

the part to the right of the equals sign would have been treated as an expression, giving
A$ the value "XY".

 Now type

 LET B$="X""+""Y"

 You will find that although A$ & B$ look the same when printed out, they are not equal
- try

Chapter 21

140

 PRINT A$=B$

 Whereas B$ contains mere quote image characters (with code 192), A$ contains
genuine string quote characters (with code 11).

3. Run this program:

 10 LET A$="LEN ""ABDC"""

 100 PRINT A$;" = ";VAL A$

 This will fail because VAL does not treat the quote image "" as a string quote.

 Insert some extra lines between 10 & 100 to replace the quote images in A$ by string
quotes (which you must call CHR$ 11), & try again.

 Make the same modifications to the program in chapter 9, exercise 3, & experiment
with it.

4. This subroutine deletes every occurrence of the string "CARTHAGO" from A$.

 1000 FOR N=1 TO LEN A$-7

 1020 IF A$(N TO N+7)="CARTHAGO" THEN LET A$(N TO N+7)="********"

 1030 NEXT N

 1040 RETURN

 Write a program that gives A$ various values (e.g. "DELENDA EST CARTHAGO.") &
applies the subroutine.

Chapter 22

143

Arrays
Suppose you have a list of numbers, for instance the number of income tax collectors
that have died each month in the current financial year. To store them in a computer you
could set up a single variable for each month, but you would find this very awkward. You
might decide to call the variables ALAS NO MORE 1, ALAS NO MORE 2, & so on up to
ALAS NO MORE 12, but the program to print out these twelve numbers would be rather
long & boring to type in.

 How much nicer it would be if you could type this:

 5 REM THIS PROGRAM WILL NOT WORK

 10 FOR N=1 TO 12

 20 PRINT ALAS NO MORE N

 30 NEXT N

 Well, you can't.

 However, there is a mechanism by which you can apply this idea, & it uses arrays . An
array is a set of variables, or elements, all with the same name, & distinguished only by a
number (the subscript) written in brackets after the name. In our example the name
would be A (like control variables for FOR-NEXT loops, the name of an array must be a
single letter), & the twelve variables would then be A(1), A(2), & so on up to A(12).

 The elements of an array are called subscripted variables, as opposed to the simple
variables that you are already familiar with.

 Before you can use an array, you must reserve some space for it inside the computer,
& you do this using a DIM (for dimension) statement.

 DIM A(12)

sets up an array called A with dimension 12 (i.e. there are 12 subscripted variables
A(1),...,A(12)), & initializes the 12 values to 0. It also deletes any array called A that
existed previously. (But not a simple variable. An array & a simple variable with the same
name can coexist, & there shouldn't be any confusion between them because the array
variable always has a subscript.)

 The subscript can be an arbitrary numerical expression, so now you can write

 10 FOR N=1 TO 12

 20 PRINT A(N)

 30 NEXT N

 You can also set up arrays with more than one dimension. In a two- dimensional array
you need two numbers to specify one of the elements - rather like the line & column
numbers to specify a character position on the television screen - so it has the form of a
table. Alternatively, if you imagine the line & column numbers (two dimensional) as
referring to a page printed, you could have an extra dimension for the page numbers. Of

Chapter 22

144

course, we are talking about numeric arrays; so the elements would not be printed
characters as in a book, but numbers. Think of the elements of a three-dimensional array
C as being specified by C (page number, line number, column number).

 For example, to set up a two-dimensional array B with dimensions 3 & 6, you use a
DIM statement

 DIM B(3,6)

 This then gives you 3*6 = 18 subscripted variables

 B(1,1), B(1,2),..., B(1,6)

 B(2,1), B(2,2),..., B(2,6)

 B(3,1), B(3,2),..., B(3,6)

 The same principal works for any number of dimensions.

 Although you can have a number & an array with the same name, you cannot have
two arrays with the same name, even if they have different numbers of dimensions.

 There are also string arrays. The strings in an array differ from simple strings in that
they are of fixed length & assignment to them is always

Procrustean - another way of thinking of them is as arrays (with one extra dimension) of
single characters. The name of a string array is a single letter followed by $, & a string
array & a simple string variable cannot have the same name (unlike the case for
numbers).

 Suppose then, that you want an array A$ of five strings. You must decide how long
these strings are to be - let us suppose that 10 characters each is long enough. You then
say

 DIM A$(5,10) (type this in)

 This sets up a 5*10 array of characters, but you can also think of each row as being a
string:

 A$(1)=A$(1,1) A$(1,2) ... A$(1,10)

 A$(2)=A$(2,1) A$(2,2) ... A$(2,10)

 : : : : : :

 A$(5)=A$(5,1) A$(5,2) ... A$(5,10)

 If you give the same number of subscripts (two in this case) as there were dimensions
in the DIM statement, then you get a single character; but if you miss the last one out,
then you get a fixed length string. So, for instance, A$(2,7) is the 7th character in the
string A$(2); using the slicing notation, we could also write this as A$(2)(7). Now type

 LET A$(2)="1234567890"

&

 PRINT A$(2),A$(2,7)

Chapter 22

145

You get

 1234567890 7

 For the last subscript (the one you can miss out), you can also have a slice, so that for
instance

 A$(2,4 TO 8) = A$(2)(4 TO 8) = "45678"

Remember:

 In a string array, all the strings have the same, fixed length.

 The DIM statement has an extra number (the last one) to specify this length.

 When you write down a subscripted variable for a string array, you can put in an extra
number, or a slicer, to correspond with the extra number in the DIM statement.

Summary

 Arrays (the way the ZX81 handles string arrays is slightly non-standard.)

 Statements: DIM

Exercises

1. Set up an array M$ of twelve strings in which M$(N) is the name of the Nth month.
(Hint: the DIM statement will be DIM M$(12,9).) Test it by

printing out all the M$(N) (use a loop). Type

 PRINT "NOW IS THE MONTH OF ";M$(5);"ING";"WHEN MERRY LADS ARE
PLAYING"

 What can you do about all those spaces?

2. You can have string arrays with no dimensions. Type

 DIM A$(10)

& you will find that A$ behaves just like a string variable, except that it always has length
10, & assignment to it is always Procrustean.

3. READ, DATA & RESTORE; who needs them?

 Most BASICs (but not the ZX81 BASIC) have three statements called READ, DATA &
RESTORE.

 A DATA statement is a list of expressions, & taking all the DATA statements in the
program gives one long list of expressions, the DATA list.

 READ statements are used to assign these expressions, one by one, to variables:

 READ X

Chapter 22

146

for instance, assigns the current expression in the DATA list to the variable X, & moves
on to the next expression for the next READ statement.

 [RESTORE moves back to the beginning of the DATA list.]

 In theory, you can always replace READ & DATA statements by LET statements;
however, one of their major uses is in initializing arrays, as in this program:

 5 REM THIS PROGRAM WILL NOT WORK IN ZX81 BASIC

 10 DIM M$(12,3)

 20 FOR N=1 TO 12

 30 READ M$(N)

 40 NEXT N

 50 DATA "JAN","FEB","MAR","APR"

 60 DATA "MAY","JUN","JUL","AUG"

 70 DATA "SEP","OCT","NOV","DEC"

 If you only want to run this program once, you might as well replace line 30 with an
INPUT statement thus:

 10 DIM M$(12,3)

 20 FOR N=1 TO 12

 30 INPUT M$(N)

 40 NEXT N

& you will have no extra typing to do. However, if you want to save the program, you will
certainly not want to type the months in every time you

run it.

 We suggest that you use this method:

 (i) Initialize the array using a program like the one above.

 (ii) Edit out the initialization program. (Don't use NEW , because you want to preserve
the array.)

 (iii) Type in the rest of the program, & save it. This will save the variables as well,
including the array.

 (iv) When you load the program back, you will also load the array.

 (v) When you execute the program, do not use RUN, which clears the variables. Use
GOTO with a line number instead.

 You may alternatively be able to use the LOAD & execute technique of chapter 16, &
its exercise 3. Then in stage (iii) above you will use a SAVE statement in the program, &
stage (v) will be omitted altogether.

Chapter 23

149

When the computer gets full
The ZX81 has a limited amount of internal storage, and it is not hard to fill it up. The best
sign of this happening is usually an error report 4, but other things can happen and some
of them are rather strange. The exact behaviour depends on whether you have a
memory expansion board attached, so first let us assume that you have not. If you have,
take it off (after first switching off the computer).

 The display file, that is to say the area inside the computer where it stores the
television picture, is cunningly designed so that it only takes up space for what has been
printed so far: a line in the display consists of up to 32 characters and then a NEWLINE
character. This means that you can run out of memory by printing something, and the
most obvious place is while making a listing. Type

 NEW

 DIM A(150)

 10 FOR N=1 TO 15

 20 PRINT N

 Here comes the first surprise: line 10 disappears from the listing. The listing is bound
to include the current line, 20, and there is not room for both lines. Now type

 30 NEXT N

Again, there is only room for line 30 in the listing. Now type

 40 REM X (without NEWLINE)

and you will see line 30 disappear and line 40 jump to the top of the screen. It has not
been entered in the program - you still have the cursor and can move it about. All you
have seen is some obscure mechanism that gives the bottom half of the screen 24 lines
to give it priority over the top half. Now type

 XXXXXX (still without NEWLINE)

and the cursor will disappear - there is no room to display it. Type another X, without
NEWLINE, and one of the Xs will disappear. Now type NEWLINE. Everything will
disappear, but the program is still in the computer, as you can prove by deleting line 10
and using & . Now type

 10 FOR N=1 TO 15

again - it will move up to the top of the screen as line 40 did. But when you press
NEWLINE, it will not be entered, although there is no error message or marker to say
that anything is wrong. This is the result of there being no room to check the syntax of a
line, and usually happens only for lines that contain numbers (other than the line number
at the beginning).

Chapter 23

150

 The only cure is to make some space somehow, but first delete the line 10 that won't
go in. Press EDIT: the screen will go blank, because there is no room to bring the line
down.

 When EDIT does not work it is sometimes possible to make space by typing a number
of spaces until the cursor moves up the screen.

 Press NEWLINE, and you will get part of the listing back. Now delete the line 40
(which you didn't really want anyway) by typing

40 (& NEWLINE)

 Now try typing in line 10 again - and it still won't go. Rub it out again. You must still
find some extra space somewhere. Bear in mind that the reason that line 10 was
rejected was probably that there was no room to check the syntax of the two numbers, 1
& 15: so if you delete line 20 in the program you might have room to enter line 10, and
still have room to re-enter line 20 (which contains no number) afterwards. Try this. Type

 20

 10 FOR N=1 TO 15

 20 PRINT N

and the program is entered properly.

 Type

 GOTO 10

and again you will find that this line is rejected because its syntax cannot be checked;
however, of you rub it out and type

 RUN

it will work. (RUN clears out the array, making plenty of space.)

 Now type in the same as before from NEW up to line 30, and then

 40 REM XXXXXXXXXXXX

(12 Xs), which will end up looking like 40 RE. When you press NEWLINE, the listing will
just consist of line 30, and in fact line 40 has been completely lost. This is because it was
simply too long to fit in the program. The effect is a bit worse when the line is a
lengthened version of a line that is already in the program, for you will lose both the old
line from the program and the new line that was to replace it.

Chapter 23

151

 The ultimate cure for this is to buy a RAM pack, which fits on the back of the
computer. The Sinclair 16K RAM pack gives the computer sixteen times as much
memory as it has in its unexpanded form.

 If you have an old ZX80 3K RAM pack, it will not work on the ZX81.

 The behaviour with the RAM pack is rather different, because the display file is filled
out with spaces to make each line 32 characters long (note that SCROLL upsets this -
see chapter 27). Now printing and listing will not make the computer run out of memory,
and you will not see all these shortened listings, and jumping around; but you will see the
lines sticking or getting lost, and again the only cure is to find some spare space.

 If you have a memory expansion board, put it on and go through the typing in this
chapter, using

 DIM A(3069)

to replace DIM A(150).

 To summarize, this is a tangled tale and the moral is to avoid getting an absolutely
jam-packed computer if you can. However, the second moral is that things are not
usually as bad as they look.

1. If the listing starts shortening or things start jumping around, then the space is getting
tight.

2. If NEWLINE seems to have no effect at the end of a line, then there is probably no
room to deal with a number. Rub out the line using EDIT-NEWLINE or RUBOUT.

3. NEWLINE might lose a line altogether.

 For all these oddities, the cure is the same. Don't panic, and look for some spare
space.

 The first thing to consider is CLEAR. If you have some variables and you do not mind
losing any of them, then this is the thing to do.

 Failing this, look for unnecessary statements in the program, such as REM
statements, and delete some of those.

Summary

 When the memory fills up odd things can happen; but they are not usually fatal.

Chapter 24

155

Counting on your fingers
The next chapter digs inside the computer a bit, but before we look at that it would be as
well to describe how computers count: they do it using the binary system, which means
that they have no fingers - they are all thumbs.

 Most European languages count using a more or less regular pattern of tens - in
English, for example, although it starts off a bit erratically, it soon settles down into
regular groups:

 twenty, twenty one, twenty two,...,twenty nine

 thirty, thirty one, thirty two,...,thirty nine

 forty, forty one, forty two, ...,forty nine

& so on, & this is made even more systematic with the Arabic numerals that we use.
However, the only reason for using ten is that we happen to have ten fingers & thumbs.

 Now suppose Martians have three extra fingers on each hand (in so far as one can
call them fingers): so instead of using our decimal system, with ten as its base, they use
a hexadecimal (or hex, for short) system, based on sixteen. They need six extra hex
digits in addition to the ten that we use, & they happen to write them as A, B, C, D, E &
F. And what comes after F? Just as we, with ten fingers, write 10 for ten, so they, with
sixteen, write 10 for sixteen. Their number system starts off:

 Hex English
 0 nought
 1 one
 2 two
 : :
 : :
 9 nine

just as ours does, but then it carries on
 A ten
 B eleven
 C twelve
 D thirteen
 E fourteen
 F fifteen
 10 sixteen
 11 seventeen
 : :
 : :
 19 twenty five
 1A twenty six

Chapter 24

156

 1B twenty seven
 : :
 : :
 1F thirty one
 20 thirty two
 21 thirty three
 : :
 : :
 9E a hundred & fifty eight
 9F a hundred & fifty nine
 A0 a hundred & sixty
 A1 a hundred & sixty one
 : :
 : :
 FE two hundred & fifty four
 FF two hundred & fifty five
 100 two hundred & fifty six

 If you are using hex notation & you want to make the fact quite plain, then write 'h' at
the end of the number, & say 'hex'. For instance, for a hundred & fifty eight, write '9Eh' &
say 'nine E hex'.

 You will be wondering what all this has to do with computers. In fact, computers
behave as though they had only two digits, represented by a low voltage, or off (0), & a
high voltage, or on (1). This is called the binary system, & the two binary digits are called
bits: so a bit is either 0 or 1.

 In the various systems, counting starts off

English Decimal Hexadecimal Binary
nought 0 0 0 or 0000
one 1 1 1 or 0001
two 2 2 10 or 0010
three 3 3 11 or 0011
four 4 4 100 or 0100
five 5 5 101 or 0101
six 6 6 110 or 0110
seven 7 7 111 or 0111
eight 8 8 1000
nine 9 9 1001
ten 10 A 1010
eleven 11 B 1011
twelve 12 C 1100
thirteen 13 D 1101

Chapter 24

157

fourteen 14 E 1110
fifteen 15 F 1111
sixteen 16 10 10000

 The important point is that sixteen is equal to two raised to the fourth power, & this
makes converting between hex & binary very easy.

 To convert hex to binary, change each hex digit into four bits, using the table above.

 To convert binary to hex, divide the binary number into groups of four bits, starting on
the right, & then change each group into the corresponding hex digit.

 For this reason, although strictly speaking computers use a pure binary sys tem,
humans often write the numbers stored inside a computer using hex notation.

 The bits inside the computer are mostly grouped into sets of eight, or bytes. A single
byte can represent any number from nought to two hundred & fifty five (11111111 binary
or FF hex), or alternatively any character in the ZX81 character set. Its value can be
written with two hex digits.

 Two bytes can be grouped together to make what is technically called a word. A word
can be written using sixteen bits of hex digits, & represents a number from 0 to (in
decimal) 216-1 = 65535.

 A byte is always eight bits, but words vary from computer to computer.

Summary

 Decimal, hexadecimal & binary systems.

 Bits & bytes (don't confuse them) & words.

Exercises

1. The Martian unit of currency is the pound, & it is divided into sixteen ounces. How
would you convert from pounds & ounces to ounces & back again

 (i) when all the numbers are written in decimal?

 (ii) when all the numbers are written in hex?

2. How would you convert between decimal & hex? (Hint: exercise 1.)

 When programs on the ZX81 to convert numerical values into the strings giving their
hex representation, & vice versa. (This is what STR$ & VAL do with decimal
representations.)

3. Suppose people from Venus have a total of eight fingers, without thumbs, how would
their octal (base eight) counting be useful with computers?

Chapter 25

161

How the computer works
The illustration overleaf shows the inside of the ZX81 (but don't take it apart yourself
because it can be a tricky business putting it together again).

 As you can see, everything has a three letter abbreviation (TLA).

 The pieces of plastic with lots of metal legs are the wondrous silicon chips, which have
brought you not only digital watches, but also the Sinclair ZX81. Inside each piece of

plastic is a piece of silicon about the size of the cursor, joined by wires to the metal
legs.

 The brains behind the operation is the processor chip, often called the CPU (Central
Processor Unit). This particular one is a Z80 processor (actually a Z80A, which goes
faster).

 The processor controls the whole computer, does the arithmetic, considers what keys
you've pressed, decides what to do as a result, & coordinates the television picture.
However, for all its cleverness, it could not do all this on its own. Left to itself, it knows
nothing about BASIC, floating point arithmetic, or televisions, & it has to get all its
instructions from another chip, the ROM (Read Only Memory). The ROM is just a long
list of instructions that make a complete computer program telling the processor what to
do under all foreseeable circumstances. This program is written not in BASIC, but in
what is called Z80 machine code, & takes the form of a long sequence of bytes.
(Remember that a byte is just a number between 0 & 255.) Each byte has an address
showing whereabouts in the ROM it is; the first one has address 0, the second has
address 1, & so on up to 8191. That makes altogether 8192 = 8*1024 bytes, which is
why this ZX81 BASIC is sometimes called an 8K BASIC. 1K is 1024, or 210.

 Although there are similar chips in many different machines, this particular sequence
of instructions is unique to the ZX81 & was written specially for it by a small firm of
Cambridge mathematicians.

 You can see what byte is at a given address using the function PEEK. For example,
this program prints out the first 21 bytes in the ROM (& their addresses).

 10 PRINT "ADDRESS";TAB 8;"BYTE"

 20 FOR A = 0 TO 20

 30 PRINT A;TAB 8;PEEK A

 40 NEXT A

 The next chip to consider is the memory, or RAM (Random Access Memory) chip.
This is where the processor stores the information that it wants to keep - your BASIC
program, variables, the picture for the television, & various notes (the system variables)
of what sort of state the computer is in.

Chapter 25

162

Chapter 25

163

 Like the ROM, the memory is arranged into bytes, each with an address: the
addresses range from 16384 to 17407 (or possibly up to 32767 if you have a 16K RAM
pack.) Again as with the ROM you can find the values of these bytes using PEEK, but
the big difference from the ROM is that you can also change them. (The ROM, of course,
is fixed & unalterable.)

Type

 POKE 17300,57

 This makes the byte at address 17300 have the value 57. If you now type

 PRINT PEEK 17300

you get your number 57 back. (Try poking in other values, to prove that there's no
cheating.)

 Note that the address has to be between 0 & 65535; & most of these will refer to bytes
in ROM or nowhere at all, & so have no effect. The value must be between -255 & +255,
& if it is negative it gets 256 added to it.

 The ability to poke gives you immense power over the computer if you know how to
use it; however, the necessary knowledge is rather more than can be imparted in an
introductory manual like this.

 The last big chip is the logic chip, or SCL (Sinclair Computer Logic) chip. Again, this
was specially designed & made for the ZX81, & it connects the other chips together in
rather a clever way to make them do more than they normally would.

 The modulator converts the computer's television output into a form suitable for the
television, & the regulator converts the smoothed, but unregulated 9 volts of the power
supply to a regulated 5 volts.

Summary

 Chips

 Statements: POKE

 Functions: PEEK

Chapter 26

167

Using machine code
This chapter is written for those that understand Z80 machine code, the set of
instructions that the Z80 processor chip uses. If you do not, but you would like to, there
are books about it; two introductory ones are 'Programming the Z80' by Rodnay Zaks,
published by Sybex at about £10 and 'Z80 and 8080 Assembly language programming'
by Rathe Spracklen, published by Hayden at £5.25.

 The ultimate authority is the 'Z80 Assembly Language Programming Manual' together
with the 'Z80-CPU, Z80A-CPU Technical Manual', published by Zilog at about £6 for the
pair, but these could hardly be recommended for beginners.

 Machine code routines can be executed from within a BASIC program using the
function USR. The argument of USR is the starting address of the routine, and its result
is a two byte unsigned integer, the contents of the bc register pair on return. The return
address to the BASIC is tacked in the usual way, so return is by a Z80 ret instruction.

 There are certain restrictions on USR routines:

 (i) On return, the iy & i registers must have the values 4000h & 1 Eh.

 (ii) The display routine uses the a', f', ix, iy & r registers, so a USR routine should not
use these if compute & display is operating. (It is not even safe to read the af' pair.)

 The control, data & address busses are all exposed at the back of the ZX81, so you
can do almost anything with a ZX81 that you can with a Z80. The ZX81 hardware might
sometimes get in the way, though, especially in compute and display. Here is a diagram
of the exposed connections at the back.

 A piece of machine code in the middle of memory runs the risk of being overwritten by
the BASIC system. Some safer places are

 (i) In a REM statement: type in a REM statement with enough characters to hold your
machine code, which you then poke in. Make this the first line in the program, or it might
move about. Avoid halt instructions, since these will be recognized as the end of the
REM statement.

 (ii) In a string: set up a long enough string, and then assign a machine code byte to
each character. Strings are always liable to move about in the memory.

Chapter 26

168

 In appendix A, the character set, you will find the characters and Z80 instructions
written down side by side in order, & you may well find this useful when entering code.

 (iii) At the top of the memory. When the ZX81 is switched on, it tests to see how much
memory there is and puts the machine stack right at the top so that there is no space for
USR routines there. It stores the address of the first non-existent byte (e.g. 17K, or
17408, if you have 1K of memory) in a system variable known as RAMTOP, in the two
bytes with addresses 16388 & 16389. NEW on the other hand, does not do a full
memory test, but only checks up as far as just before the address in RAMTOP. Thus if
you poke the address of an existing byte into RAMTOP, for NEW all the memory from
that byte on is outside the BASIC system and left alone. For instance, suppose you have
1K of memory and you have just switched on the computer.

 PRINT PEEK 16388+256*PEEK 16389

tells you the address (17408) of the first non-existent byte.

 Now suppose you have a USR routine 20 bytes long. You want to change RAMTOP to
17388 = 236 + 256*67 (how would you work th is out on the computer?), so type

 POKE 16388,236

 POKE 16389,67

and then NEW . The twenty bytes of memory from address 17388 to 17407 are now
yours to do what you like with. If you then type NEW again it will not affect these twenty
bytes.

 The top of memory is a good place for USR routines, safe (even from NEW) and
immobile. Its main disadvantage is that it is not saved by SAVE.

Summary

 Functions: USR

 Statements: NEW

Exercises

1. Make RAMTOP equal to 16700 and then execute NEW . You will get an idea of what
happens when the memory gets full.

Chapter 27

171

Organization of memory
The memory is sorted into different areas for storing different kinds of information. The
areas are only large enough for the information that they actually contain, & if you insert
some more at a given point (for instance by adding a program line or variable) space is
made by shifting up everything above that point. Conversely, if you delete information
then everything above it is shifted down.

 The system variables contain various pieces of information that tell the computer what
sort of state the computer is in. They are listed fully in the next chapter, but for the
moment note that there are some (called D_FILE, VARS, E_LINE & so on) that contain
the addresses of the boundaries between the various areas in the memory. These are
not BASIC variables, & their names will not be recognized by the computer.

 Each line in the program is stored as:

Chapter 27

172

 Note that, in contrast with all other cases of two-byte numbers in the Z80, the line
number here (& also in a FOR-NEXT control variable) is stored with its most significant
byte first: that is to say, in the order that you would write them down in.

 A numerical constant in the program is followed by its binary form, using the character
CHR$ 126 followed by five bytes for the number itself.

 The display file is the memory copy of the television picture. It begins with a NEWLINE
character, & then has the twenty four lines of text, each finishing with a NEWLINE. The
system is so designed that a line of text does not need space a full thirty two characters:
final spaces can be omitted. This is used to save space when the memory is small.

 When the total amount of memory (according to the system variable RAMTOP) is less
than 3 1/4 K, then a clear screen - as set up at the start or by CLS - consists of just
twenty five NEWLINEs. When the memory is bigger than a clear screen is padded out
with 24*32 spaces & on the whole it stays at its full size; SCROLL, however, & certain
conditions where the lower part of the screen expands to more than two lines, can upset
this by introducing short lines at the bottom.

 The variables have different formats according to their different natures.

 Number whose name is one letter only:

 Number whose name is longer than one letter:

Chapter 27

173

Array of numbers:

The order of the elements is:

 first, the elements for which the first subscript is 1

 next, the elements for which the first subscript is 2

 next, the elements for which the first subscript is 3

& so on for all possible values of the first subscript.

 The elements with a given first subscript are ordered in the same way using the
second subscript, & so on down to the last.

 As an example, the elements of the 3 x 6 array B in chapter 22 are stored in the order

 B(1,1),B(1,2),B(1,3),B(1,4),B(1,5),B(1,6),B(2,1),B(2,2),...,B(2,6),B(3,1),B(3,2),...,B(3,6).

 Control variable of a FOR-NEXT loop:

Chapter 27

174

 String:

 Array of characters:

 The part string at E_LINE contains the line being typed (as a command, a program
line, or INPUT data) & also some work space.

 The calculator is the part of the BASIC system that deals with arithmetic, & the
numbers on which it is operating are held mostly in the calculator stack.

 The spare part contains the space so far unused.

 The machine stack is the stack used by the Z80 chip to hold return addresses & so on.

 The GOSUB stack was mentioned in chapter 14.

 The space for USR routines has to be set aside by you, using NEW as described in
the last chapter.

Chapter 28

177

The system variables
The bytes in memory from 16384 to 16508 are set aside for specific uses by the system.
You can peek them to find out various things about the system, & some of them can be
usefully poked. They are listed here with their uses.

 These are called system variables, & have names, but do not confuse them with the
variables used by BASIC. The computer will not recognize the names as referring to
system variables, & they are given solely as mnemonics for you humans.

 The abbreviations in column 1 have the following meanings:

X The variable should not be poked because the system might crash.

N Poking the variable will have no lasting effect.

S The variable is saved by SAVE.

 The number in column 1 is the number of bytes in the variable. For two bytes, the first
one is the less significant byte - the reverse of what you might expect. So to poke a value
v to a two-byte variable at address n, use

 POKE n,v-256*INT (v/256)

 POKE n+1,INT (v/256)

& to peek its value, use the expression

 PEEK n + 256*PEEK (n+1)

Notes Address Name Contents
1 16384 ERR_NR 1 less than the report code. Starts off at 255 (for - 1), so PEEK

16384, if it works at all, gives 255. POKE 16384,n can be used
to force an error halt: 0 ≤ n ≤ 14 gives one of the usual reports,
15 ≤ n ≤ 34 or 99 ≤ n ≤ 127 gives a non-standard report, and
35 ≤ n ≤ 98 is liable to mess up the display file.

X1 16385 FLAGS Various flags to control the BASIC system.
X2 16386 ERR_SP Address of first item on machine stack (after GOSUB returns).
2 16388 RAMTOP Address of first byte above BASIC system area. You can poke

this to make NEW reserve space above that area (see chapter
26) or to fool CLS into setting up a minimal display file
(chapter 27). Poking RAMTOP has no effect until one of these
two is executed.

Chapter 28

178

Notes Address Name Contents
N1 16390 MODE Specified K, L, F or G cursor.
N2 16391 PPC Line number of statement currently being executed. Poking

this has no lasting effect except in the last line of the
program.

S1 16393 VERSN 0 Identifies ZX81 BASIC in saved programs.
S2 16394 E_PPC Number of current line (with program cursor).
SX2 16396 D_FILE See chapter 27.
S2 16398 DF_CC Address of PRINT position in display file. Can be poked so

that PRINT output is sent elsewhere.
SX2 16400 VARS See chapter 27.
SN2 16402 DEST Address of variable in assignment.
SX2 16404 E_LINE See chapter 27.
SX2 16406 CH_ADD Address of the next character to be interpreted: the character

after the argument of PEEK, or the NEWLINE at the end of a
POKE statement.

S2 16408 X_PTR Address of the character preceding the marker.
SX2 16410 STKBOT See chapter 27.
SX2 16412 STKEND See chapter 27.
SN1 16414 BERG Calculator's b register.
SN2 16415 MEM Address of area used for calculator's memory. (Usually

MEMBOT, but not always.)
S1 16417 not used

SX1 16418 DF_SZ The number of lines (including one blank line) in the lower
part of the screen.

S2 16419 S_TOP The number of the top program line in automatic l istings.
SN2 16421 LAST_K Shows which keys pressed.
SN1 16423 Debounce status of keyboard.
SN1 16424 MARGIN Number of blank lines above or below picture: 55 in Britain,

31 in America.
SX2 16425 NXTLIN Address of next program line to be executed.
S2 16427 OLDPPC Line number of which CONT jumps.
SN1 16429 FLAGX Various flags.
SN2 16430 STRLEN Length of string type destination in assignment.
SN2 16432 T_ADDR Address of next item in syntax table (very unlikely to be

useful).
S2 16434 SEED The seed for RND. This is the variable that is set by RAND.

Chapter 28

179

Notes Address Name Contents
S2 16436 FRAMES Counts the frames displayed on the television. Bit 15 is 1.

Bits 0 to 14 are decremented for each frame set to the
television. This can be used for timing, but PAUSE also uses
it. PAUSE resets to 0 bit 15, & puts in bits 0 to 14 the length
of the pause. When these have been counted down to zero,
the pause stops. If the pause stops because of a key
depression, bit 15 is set to 1 again.

S1 16438 COORDS x-coordinate of last point PLOTted.
S1 16439 y-coordinate of last point PLOTted.
S1 16440 PR_CC Less significant byte of address of next position for LPRINT

to print as (in PRBUFF).
SX1 16441 S_POSN Column number for PRINT position.
SX1 16442 Line number for PRINT position.
S1 16443 CDFLAG Various flags. Bit 7 is on (1) during compute & display mode.
S33 16444 PRBUFF Printer buffer (33rd character is NEWLINE).
SN30 16477 MEMBOT Calculator's memory area; used to store numbers that cannot

conveniently be put on the calculator stack.
S2 16507 not used

Exercises

1. Try this program

 10 FOR N=0 TO 21

 20 PRINT PEEK (PEEK 16400+256*PEEK 16401+N)

 30 NEXT N

 This tells you the first 22 bytes of the variables area: try to match up the control
variable N with the description in chapter 27.

2. In the program above, change line 20 to

 20 PRINT PEEK (16509+N)

 This tells you the fist 22 bytes of the program area. Match these up with the program
itself.

Appendix A

181

The character set

This is the complete ZX80 character set, with codes in decimal & hex. If one imagines
the codes as being Z80 machine code instructions, then the right hand columns give the
corresponding assembly language mnemonics. As you are probably aware if you
understand these things, certain Z80 instructions are compounds starting with CBh or
EDh; the two right hand columns give these.

Code Character Hex Z80 assembler - after CBh
0 space 00 nop rlc b
1 01 ld bc,NN rlc c
2 02 ld (bc),a rlc d
3 03 inc bc rlc e
4 04 inc b rlc h
5 05 dec b rlc l
6 06 ld b,N rlc (hl)
7 07 rlca rlc a
8 08 ex a,af' rrc b
9 09 add hl,bc rrc c
10 0A ld a,(bc) rrc d
11 " 0B dec bc rrc e
12 £ 0C inc c rrc h
13 $ 0D dec c rrc l
14 : 0E ld c,N rrc (hl)
15 ? 0F rcca rrc a
16 (10 djnz DIS rl b
17) 11 ld de,NN rl c
18 > 12 ld (de),a rl d
19 < 13 inc de rl e
20 = 14 inc d rl h
21 + 15 dec d rl l
22 - 16 ld d,N rl (hl)
23 * 17 rla rl a
24 / 18 jr DIS rr b
25 ; 19 add hl,de rr c
26 , 1A la a,(de) rr d
27 . 1B dec de rr e
28 0 1C inc e rr h
29 1 1D dec e rr l
30 2 1E ld e,N rr (hl)
31 3 1F rra rr a

Appendix A

182

Code Character Hex Z80 assembler -after CBh -after EDh
32 4 20 jr nz,DIS sla b
33 5 21 ld hl,N sla c
34 6 22 ld (NN),hl sla d
35 7 23 inc hl sla e
36 8 24 inc h sla h
37 9 25 dec h sla l
38 A 26 ld h,N sla (hl)
39 B 27 daa la a
40 C 28 jr z,DIS sra b
41 D 29 add hl,hl sra c
42 E 2A ld hl,(NN) sra d
43 F 2B dec hl sra e
44 G 2C inc l sra h
45 H 2D dec l sra l
46 I 2E ld l,N sra (hl)
47 J 2F cpl sra a
48 K 30 jr nc,DIS
49 L 31 ld sp,NN
50 M 32 ld (NN),a
51 N 33 inc sp
52 O 34 inc (hl)
53 P 35 dec(hl)
54 Q 36 ld (hl),N
55 R 37 scf
56 S 38 jr c,DIS srl b
57 T 39 add hl,sp srl c
58 U 3A ld a,(NN) srl d
59 V 3B dec sp srl e
60 W 3C inc a srl h
61 X 3D dec a srl l
62 Y 3E ld a,N srl (hl)
63 Z 3F ccf srl a
64 RND 40 ld b,b bit 0,b in b,(c)
65 INKEY$ 41 ld b,c bit 0,c out (c),b
66 PI 42 ld b,d bit 0,d sbc hl,bc
67 not used 43 ld b,e bit 0,e ld (NN),bc
68 not used 44 ld b,h bit 0,h neg
69 not used 45 ld b,l bit 0,l retn
70 not used 46 ld b,(hl) bit 0,(hl) im 0

Appendix A

183

Code Character Hex Z80 assembler -after CDh -after EDh
71 not used 47 ld b,a bit 0,a ld i,a
72 not used 48 ld c,b bit 1,b i c,(c)
73 not used 49 ld c,c bit 1,c out (c),c
74 not used 4A ld c,d bit 1,d adc hl,bc
75 not used 4B ld c,e bit 1,e ld bc,(NN)
76 not used 4C ld c,h bit 1,h
77 not used 4D ld c,l bit 1,l reti
78 not used 4E ld c,(hl) bit 1,(hl)
79 not used 4F ld c,a bit 1,a ld r,a
80 not used 50 ld d,b bit 2,b ld d,(c)
81 not used 51 ld d,c bit 2,c out (c),d
82 not used 52 ld d,d bit 2,d sbc hl,de
83 not used 53 ld d,e bit 2,e ld (NN),de
84 not used 54 ld d,h bit 2,h
85 not used 55 ld d,l bit 2,l
86 not used 56 ld d,(hl) bit 2,(hl) im 1
87 not used 57 ld d,a bit 2,a ld a,i
88 not used 58 ld e,b bit 3,b in e,(c)
89 not used 59 ld e,c bit 3,c out (c),e
90 not used 5A ld e,d bit 3,d adc hl,de
91 not used 5B ld e,e bit 3,e ld de,(NN)
92 not used 5C ld e,h bit 3,h
93 not used 5D ld e,l bit 3,l
94 not used 5E ld e,(hl) bit 3,(hl) im 2
95 not used 5F ld e,a bit 3,a ld a,r
96 not used 60 ld h,b bit 4,b in h,(c)
97 not used 61 ld h,c bit 4,c out (c),h
98 not used 62 ld h,d bit 4,d sbc hl,hl
99 not used 63 ld h,e bit 4,e ld (NN),hl
100 not used 64 ld h,h bit 4,h
101 not used 65 ld h,l bit 4,l
102 not used 66 ld h,(hl) bit 4,(hl)
103 not used 67 ld h,a bit 4,a rrd
104 not used 68 ld l,b bit 5,b in l,(c)
105 not used 69 ld l,c bit 5,c out (c),l
106 not used 6A ld l,d bit 5,d adc hl,hl
107 not used 6B ld l,e bit 5,e ld de.(NN)
108 not used 6C ld l,h bit 5,h
109 not used 6D ld l,l bit 5,l

Appendix A

184

Code Character Hex Z80 assembler -after CBh -after EDh
110 not used 6E ld l,(hl) bit 5,(hl)
111 not used 6F ld l,a bit 5,a rld
112 cursor up 70 ld (hl),b bit 6,b
113 cursor down 71 ld (hl),c bit 6,c
114 cursor left 72 ld (hl),d bit 6,d sbc hl,sp
115 cursor right 73 ld (hl),e bit 6,e ld (NN),sp
116 GRAPHICS 74 ld (hl),h bit 6,h
117 EDIT 75 ld (hl),l bit 6,l
118 NEWLINE 76 halt bit 6,(hl)
119 RUBOUT 77 ld (hl),a bit 6,a
120 / mode 78 ld a,b bit 7,b in a,(c)
121 FUNCTION 79 ld a,c bit 7,c out (c),a
122 not used 7A ld a,d bit 7,d adc hl,sp
123 not used 7B ld a,e bit 7,e ld sp,(NN)
124 not used 7C ld a,h bit 7,h
125 not used 7D ld a,l bit 7,l
126 number 7E la d,(hl) bit 7,(hl)
127 cursor 7F ld a,a bit 7,a
128 80 add a,b res 0,b
129 81 add a,c res 0,c
130 82 add a,d res 0,d
131 83 add a,e res 0,e
132 84 add a,h res 0,h
133 85 add a,l res 0,l
134 86 add a,(hl) res 0,(hl)
135 87 add a,a res 0,a
136 88 add a,b res 1,b
137 89 add a,c res 1,c
138 8A add a,d res 1,d
139 inverse " 8B adc a,e res 1,e
140 inverse £ 8C adc a,h res 1,h
141 inverse $ 8D adc a,l res 1,l
142 inverse : 8E adc a,(hl) res 1,(hl)
143 inverse ? 8F adc a,a res 1,a
144 inverse (90 sub b res 2,b
145 inverse) 91 aub c res 2,c
146 inverse > 92 sub d res 2,d
147 inverse < 93 sub e res 2,e

Appendix A

185

Code Character Hex Z80 assembler -after CBh -after EDh
148 inverse = 94 sub h res 2,h
149 inverse + 95 sub l res 2,l
150 inverse - 96 sub (hl) res 2,(hl)
151 inverse * 97 sub a res 2,a
152 inverse / 98 sbc a,b res 3,b
153 inverse ; 99 sbc a,c res 3,c
154 inverse , 9A sbc a,d res 3,d
155 inverse . 9B abc a,e res 3,e
156 inverse 0 9C abc a,h res 3,h
157 inverse 1 9D abc a,l res 3,l
158 inverse 2 9E abc a,(hl) res 3,(hl)
159 inverse 3 9F abc a,a res 3,a
160 inverse 4 A0 and b res 4,b ldi
161 inverse 5 A1 and c res 4,c cpi
162 inverse 6 A2 and d res 4,d ini
163 inverse 7 A3 and e res 4,e outi
164 inverse 8 A4 and h res 4,h
165 inverse 9 A5 and l res 4,l
166 inverse A A6 and (hl) res 4,(hl)
167 inverse B A7 and a res 4,a
168 inverse C A8 xor b res 5,b ldd
169 inverse D A9 xor c res 5,c cpd
170 inverse E AA xor d res 5,d ind
171 inverse F AB xor e res 5,e outd
172 inverse G AC xor h res 5,h
173 inverse H AD xor l res 5,l
174 inverse I AE xor (hl) res 5,(hl)
175 inverse J AF xor a res 5,a
176 inverse K B0 or b res 6,b ldir
177 inverse L B1 or c res 6,c cpir
178 inverse M B2 or d res 6,d inir
179 inverse N B3 or e res 6,e otir
180 inverse O B4 or h res 6,h
181 inverse P B5 or l res 6,l
182 inverse Q B6 or (hl) res 6,(hl)
183 inverse R B7 or a res 6,a
184 inverse S B8 cp b res 7,b lddr
185 inverse T B9 cp c res 7,c cpdr
186 inverse U BA cp d res 7,d indr

Appendix A

186

Code Character Hex Z80 assembler -after CBh -after EDh
187 inverse V BB cp e res 7,e otdr
188 inverse W BC cp h res 7,h
189 inverse X BD cp l res 7,l
190 inverse Y BE cp (hl) res 7,(hl)
191 inverse Z BF cp a res 7,a
192 "" C0 ret nz set 0,b
193 AT C1 pop bc set 0,c
194 TAB C2 jp nz,NN set 0,d
195 not used C3 jp NN set 0,e
196 CODE C4 call nz,NN set 0,h
197 VAL C5 push bc sel 0,l
198 LEN C6 add a,N set 0,(hl)
199 SIN C7 rst 0 set 0,a
200 COS C8 ret z set 1,b
201 TAN C9 ret set 1,c
202 ASN CA jp z,NN set 1,d
203 ACS CB set 1,e
204 ATN CC call z,NN set 1,h
205 LN CD call NN set 1,l
206 EXP CE adc a,N set 1,(hl)
207 INT CF rst 8 set 1,a
208 SQR D0 ret nc set 2,b
209 SGN D1 pop de set 2,c
210 ABS D2 jp nc,NN set 2,d
211 PEEK D3 out N,a set 2,e
212 USR D4 call nc,NN set 2,h
213 STR$ D5 push de set 2,l
214 CHR$ D6 sub N set 2,(hl)
215 NOT D7 rst 16 set 2,a
216 ** D8 ret c set 3,b
217 OR D9 exx set 3,c
218 AND DA jp c,NN set 3,d
219 <= DB in a,N set 3,e
220 >= DC call c,NN set 3,h

221 <> DD prefixes instructions
using ix set 3,l

222 THEN DE sbc a,N set 3,(hl)
223 TO DF rst 24 set 3,a
224 STEP E0 ret po set 4,b

Appendix A

187

Code Character Hex Z80 assembler -after CBh
225 LPRINT E1 pop hl set 4,c
226 LLIST E2 jp po,NN set 4,d
227 STOP E3 ex (sp),hl set 4,e
228 SLOW E4 call po,NN set 4,h
229 FAST E5 push hl set 4,l
230 NEW E6 and N set 4,(hl)
231 SCROLL E7 rst 32 set 4,a
232 CONT E8 ret pe set 5,b
233 DIM E9 jp (hl) set 5,c
234 REM EA jp pe,NN set 5,d
235 FOR EB ex de,hl set 5,e
236 GOTO EC call pe,NN set 5,h
237 GOSUB ED set 5,l
238 INPUT EE xor N set 5,(hl)
239 LOAD EF rst 40 set 5,a
240 LIST F0 ret p set 6,b
241 LET F1 pop af set 6,c
242 PAUSE F2 jp p,NN set 6,d
243 NEXT F3 di set 6,e
244 POKE F4 call p,NN set 6,h
245 PRINT F5 push af set 6,l
246 PLOT F6 or N set 6,(hl)
247 RUN F7 rst 48 set 6,a
248 SAVE F8 ret m set 7,b
249 RAND F9 ld sp,hl set 7,c
250 IF FA jp m,NN set 7,d
251 CLS FB ei set 7,e
252 UNPLOT FC call m,NN set 7,h

253 CLEAR FD prefixes instructions
using iy set 7,l

254 RETURN FE cp N set 7,(hl)
255 COPY FF rst 56 set 7,a

Appendix B

189

Report codes

This table gives each report code with a general description & a list of the situations
where it can occur. In appendix C, a more detailed description of what error reports
mean is given under each statement or function.

Code Meaning Situations

0 Successful completion, or jump to line number
bigger than any existing. A report with code 0 does
not change the line number used by CONT.

Any

1 The control variable does not exist (has not been set
up by a FOR statement) but there is an ordinary
variable with the same name.

NEXT

2 An undefined variable has been used.

For a simple variable this will happen if the variable
is used before it has been assigned to in a LET
statement.

For a subscripted variable it will happen if the
variable is used before it has been dimensioned in a
DIM statement.

For a control variable this will happen if the variable
is used before it has been set up as a control
variable in a FOR statement, when there is no
ordinary simple variable with the same name.

Any

3 Subscript out of range.

If the subscript is hopelessly out of range (negative,
or bigger than 65535) then error B will result.

Subscripted variables

4 Not enough room in memory. Note that the line
number in the report (after the /) may be incomplete
on the screen, because of the shortage of memory:
for instance 4/20 may appear as 4/2. See chapter
23. For GOSUB see exercise 6 of chapter 14.

LET, INPUT, DIM, PRINT,
LIST, PLOT, UNPLOT,
FOR, GOSUB. Sometimes
during function evaluation.

5 No more room on the screen. CONT will make room
by clearing the screen.

PRINT, LIST.

Appendix B

190

Code Meaning Situations

6 Arithmetic overflow: calculations have led to a
number greater than about 1038.

Any arithmetic

7 No corresponding GOSUB for a RETURN
statement.

RETURN

8 You have attempted INPUT as a command (not
allowed).

INPUT

9 STOP statement executed. CONT will not try to re-
execute the STOP statement.

STOP

A Invalid argument to certain functions. SQR, LN, ASN, ACS

B Integer out of range. When an integer is required,
the floating point argument is rounded to the nearest
integer. If this is outside a suitable range then error
B results.

For array access, see also report 3.

RUN, RAND, POKE, DIM,
GOTO, GOSUB, LIST,
LLIST, PAUSE, PLOT,
UNPLOT, CHR$, PEEK,
USR

Array access

C The text of the (string) argument of VAL does not
form a valid numerical expression.

VAL

D (i) Program interrupted by BREAK.

(ii) The INPUT line starts with STOP.

At end of any statement,
or in LOAD, SAVE,
LPRINT, LLIST or COPY.

INPUT

E Not used

F The program name provided is the empty string. SAVE

Appendix C

191

The ZX81 for those that understand BASIC

General

If you already know BASIC then you should not have much trouble using the ZX81; but it
has one or two idiosyncrasies.

 (i) Words are not spelled out, but have keys of their own - this is dealt with in chapter 2
(for keywords & shifted keys) & chapter 5 (for function names). In the text, these words
are printed in BOLD TYPE.

 (ii) ZX81 BASIC lacks READ, DATA & RESTORE (but see exercise 3 of chapter 22
concerning this), user-defined functions (FN & DEF; but VAL can sometimes be used), &
multi -statement lines.

 (iii) The string handling facilities are comprehensive but non-standard - see chapter
21, & also chapter 22 (for string arrays).

 (iv) The ZX81 character set is completely its own.

 (v) The television display is not in general memory-mapped.

 (vi) If you are accustomed to using PEEK & POKE on a different machine, remember
that all the addresses will be different on the ZX81.

Speed

The machine works at two speeds, called compute & display mode, & fast mode.

 In compute & display, the television picture is generated continuously & computing is
done during the blank parts at the top & bottom.

 In fast mode, the television picture is turned off during computing, & is only displayed
at the end of the program, while waiting for INPUT data, or during a pause (see PAUSE).

 Fast mode runs about four times as fast, & should be used for programs with a lot of
computing as opposed to output, or when typing in long programs.

 Switching between speeds is done with the FAST & SLOW statements (q.v.).

The keyboard

ZX81 characters comprise not only the single symbols (letters, digits, etc.), but also the
compound tokens (keywords, function names, etc.; these are printed here in BOLD
TYPE) & all these are entered from the keyboard rather than being spelled out. To fit this
in, some keys have up to five distinct meanings, given partly by shifting the keys (i.e.
pressing the SHIFT key at the same time as the required one) & partly by having the
machine in different modes.

 The mode is indicated by the cursor, an inverse video letter that shows where the next
character from the keyboard will be inserted.

Appendix C

192

mode (for keywords) occurs automatically when the machine is expecting a command
or program line (rather than INPUT data), & from its position on the line it knows it should
expect a line number or a keyword. This is at the beginning of the line, or just after some
digits at the beginning of the line, or just after THEN. If unshifted, the next key will be
interpreted as either a keyword (these are mostly written above the keys), or a digit.

mode (for letters) normally occurs at all other times. If unshifted, the next key will be
interpreted as the main symbol on that key.

 In both & modes, shifted keys will be interpreted as the subsidiary red character
in the top right-hand corner of the key.

mode (for functions) occurs after FUNCTION (shifted NEWLINE) is pressed, & lasts
for one key depression only. That key will be interpreted as a function name, these
appearing under the keys.

mode for graphics occurs after GRAPHICS (shifted 9) is pressed, and lasts until it is

pressed again. An unshifted key will give the inverse video of its mode interpretation;
a shifted key will as well, provided that it is a symbol, but if the shifted key would
normally give a token, in graphics mode it gives the graphics symbol that appears in the
bottom right hand corner of the key.

The screen

This has 24 lines, each 32 characters long, and is divided into two parts. The top part is
at most 22 lines, and displays either a listing or program output. The bottom part, at least
two lines, is used for inputting commands, program lines and INPUT data, and also for
displaying reports.

 Keyboard input: this appears in the bottom half of the screen as it is typed, each
character (single symbol or compound token) being inserted just before the cursor. The
cursor can be moved left with (shifted 5) or right with (shifted 8). The character
before the cursor can be deleted with RUBOUT (shifted 0). (Note:- the whole line can be
deleted by typing EDIT (shifted 1) followed by NEWLINE; or, if it is INPUT data, just by
typing EDIT.)

 When NEWLINE is pressed, the line is executed, entered into the program, or used as
INPUT data as appropriate, unless it contains a syntax error. In this case the symbol
appears just before the error.

 As program lines are entered, a listing is displayed in the top half of the screen. The
manner in which the listing is produced is rather complicated, and explained more fully in
chapter 9, exercise 6. The last line to be entered is called the current line and indicated

by the symbol , but this can be changed using the keys (shifted 6) and (shifted
7). If EDIT (shifted 1) is pressed, the current line is brought down to the bottom part of
the screen and can be edited.

Appendix C

193

 When a command is executed or a program run, the screen is first of all cleared, &
then output is displayed in the top half of the screen and remains until a program line is
entered, or NEWLINE is pressed with an empty line, or or is pressed. In the
bottom part appears a report of the form m/n where m is a code showing what happened
(see appendix B), & n is the number of the last line executed - or 0 for a command. The

report remains until a key is pressed (and indicates mode).

 In certain circumstances, the SPACE key acts as a BREAK, stopping the computer
with report D. This is recognized

 (i) at the end of a statement while a program is running,

 (ii) while the computer is looking for a program on tape,

or (iii) while the computer is using the printer (or by accident trying to use it when it is
not there).

The BASIC

Numbers are stored to an accuracy of 9 or 10 digits. The largest number you can get is
about 1038, & the smallest (positive) number is about 4 * 10-39.

 A number is stored in the ZX81 in floating point binary with one exponent byte e (1 ≤
e ≤ 255), & four mantissa bytes m (½ ≤m ≤ 1). This represents the number m * 2e-128.

 Since ½ ≤ m ≤ 1, the most significant bit of the mantissa m is always 1. Therefore in
actual fact we can replace it with a bit to show the sign - 0 for positive numbers, 1 for
negative.

 Zero has a special representation in which all 5 bytes are 0.

 Numeric variables have names of arbitrary length, starting with a letter and continuing
with letters and digits. All these are significant, so that for instance LONGNAME &
LONGNAMETOO are distinct names. Spaces are ignored.

 Control variables for FOR-NEXT loops have names a single letter long.

 Numeric arrays have names a single letter long, which may be the same as the name
of a simple variable. They may have arbitrarily many dimensions of arbitrary size.
Subscripts start at 1.

 Strings are completely flexible in length. The name of a string consists of a single
letter followed by $.

 String arrays can have arbitrarily many dimensions of arbitrary size. The name is a
single letter followed by $ and may not be the same as the name of a string. All the
strings in a given array have the same fixed length, which is specified as an extra, final
dimension in the DIM statement. Subscripts start at 1.

 Slicing: Substrings of strings may be specified using slicers.

 A slicer can be

Appendix C

194

 (i) empty

or

 (ii) numerical expression

or

 (iii) optional numerical expression TO optional numerical expression

& is used in expressing a substring either by

 (a) string expression (slicer)

or by

 (b) string array variable (subscript,...,subscript, slicer)

which means the same as

 string array variable (subscript,...,subscript)(slicer)

 In (a), suppose the string expression has the value s$.

 If the slicer is empty, then the result is s$ considered as a substring of itself.

 If the slicer is a numerical expression with value m, then the result is the mth character
of s$ (a substring of length 1).

 If the slicer has the form (iii), then suppose the first numerical expression has the
value m (the default value is 1), & the second, n (the default value is the length of s$).

 If 1 ≤ m ≤ n ≤ the length of s$ then the result is the substring of s$ starting with the mth
character & ending with the nth.

 If 0 ≤ n ≤ m then the result is the empty string.

 Otherwise, error 3 results.

 Slicing is performed before functions or operations are evaluated, unless brackets
dictate otherwise.

 Substrings can be assigned to (see LET).

 The argument of a function does not need brackets if it is a constant or a (possibly
subscripted or sliced) variable.
Function Type of operand

(x)
Result

ABS number Absolute magnitude.
ACS number Arccosine in radians.

Error A if x not in the range -1 to +1.
AND binary operation, right

operand always a
number

Numeric left operand: A AND B = A if B ≠ 0, 0 if B = 0
String left operand: A$ AND B = A$ if B ≠ 0, "" if B = 0

ASN number Arcsine in radians.
Error A if x not in the range -1 to +1.

Appendix C

195

Function Type of operand Result
ATN number Arctangent in radians.
CHR$ number The character whose code is x, rounded to the nearest

integer.
Error B if x not in the range 0 to 255.

CODE string The code of the first character in x (or 0 if x is the
empty string).

COS number (in radians) Cosine
EXP number ex
INKEY$ none Reads the keyboard. The result is the character

representing (in mode) the key pressed if there is
exactly one, else the empty string.

INT number Integer part (always rounds down).
LEN string Length
LN number Natural logarithm (to base e) Error A if x ≤ 0
NOT number 0 if x ≠ 0, 1 if x = 0.

NOT has priority 4.
OR binary operation, both

operands numbers
A OR B = 1 if B ≠ 0, A if B = 0
OR has priority 2.

PEEK number The value of the byte in memory whose address is x
(rounded to the nearest integer).
Error B if x not in the range 0 to 65535.

PI none π (3.14159265..)
RND none The next pseudo-random number y in a sequence

generated by taking the powers of 75 modulo 65537,
subtracting 1 & dividing by 65536. 0 ≤ y ≤ 1.

SGN number Signum: the sign (-1, 0 or +1) of x.
SIN number (in radians) Sine
SQR number Square root. Error B if x < 0
STR$ number The string of characters that would be displayed if x

were printed.
TAN number (in radians) Tangent
USR number Calls the machine code subroutine whose starting

address is x (rounded to the nearest integer). On
return, the result is the contents of the bc register pair.
Error B if x is not in the range 0 to 65535.

VAL string Evaluates x (without its bounding quotes) as a
numerical expression.
Error C if x contains a syntax error, or gives a string
value.
Other errors possible, depending on the expression.

- number Negation

Appendix C

196

The following are binary operations:
+ Additional (on numbers), or concatenation (on strings).
- Subtraction
* Multiplication
/ Division
** Raising to a power. Error B if the left operand is negative.
= Equals*
> Greater than*
< Less than*
<= Less than or equal to*
>= Greater than or equal to*
<> Not equal to*

* Both operands must be of the same type. The result is a number, 1 if the comparison
holds & 0 if it does not.

Functions & operations have the following priorities:
Operation Priority
Subscripting & slicing 12
All functions except NOT and unary minus 11
** 10
Unary minus 9
* , / 8
+ , - (binary -) 6
= , > , < , <= , >=, <> 5
NOT 4
AND 3
OR 2

Statements

 In this list,
α represents a single letter
v represents a variable
x,y,z represent numerical expressions
m,n represent numerical expressions that are rounded to the nearest integer
e represents an expression
f represents a string valued expression
s represents a statement

 Note that arbitrary expressions are allowed everywhere (except for the line numbers at
the beginning of a statement).

Appendix C

197

 All statements except INPUT can be used either as commands or in programs
(although they may be more sensible in one than the other).

CLEAR Deletes all variables, freeing the space they occupied.
CLS (Clear Screen) Clears the display file. See chapter 27 concerning

the display file.
CONT Suppose p/q was the last report with a non-zero. Then CONT has

the effect GOTO q if p ≠ 9, GOTO q+1 if p = 9 (STOP statement)
COPY Sends a copy of the display to the printer, if attached; otherwise

does nothing.
Unlike all other commands, a COPY command does not clear the
screen first. There must be no spaces before COPY.
Report D if BREAK pressed.

DIM α(n1,...,nk) Deletes any array with the name α, & sets up an array á of
numbers with k dimensions n 1,...,nk. Initializes all the values to 0.
Error 4 occurs if there is no room to fit the array in. An array is
undefined until it is dimensioned in a DIM statement.

DIM α$(n1,...,nk) Deletes any array or string with the name α$, & sets up an array
á$ of characters with k dimensions n1,...,nk. Initializes all the
values to "". This can be considered as an array of strings of fixed
length nk, with k-1 dimensions n 1,...,nk-1.
Error 4 occurs if there is no room to fit the array in. An array is
undefined until it is dimensioned in a DIM statement.

FAST Starts fast mode, in which the display file is displayed only at the
end of the program, while INPUT data is being typed in, or during
a pause.

FOR α=x TO y FOR α=x TO y STEP 1

FOR α=x TO y STEP
z

Deletes any simple variable á, & sets up a control variable with
value x, limit y, step z, & looping address 1 more than the line
number of the FOR statement (-1 if it is a command). Checks if
the initial value is greater (if step ≥ 0) or less (if step < 0) than the
limit, & if so then skips to statement NEXT á at the beginning of a
line.
See NEXT α.
Error 4 occurs if there is no room for the control variable.

GOSUB n Pushes the line number of the GOSUB statement onto a stack;
then as GOTO n
Error 4 can occur if there are not enough RETURNs.

GOTO n Jumps to line n (or, if there is none, the first line after that).
IF x THEN s If x is true (non-zero) then s is executed. The form 'IF x THEN line

number' is not allowed.

Appendix C

198

INPUT v Stops (with no special prompt) & waits for the user to type in an

expression; the value of this is assigned to v. In fast mode, the
display file is displayed. INPUT cannot be used as a command;
error 8 occurs if you try.
If the first character in the INPUT line is STOP, the program stops
with report D.

LET v=e Assigns the value of e to the variable v.
LET cannot be omitted.
A simple variable is undefined until it is assigned to in a LET or
INPUT statement.
If v is a subscripted string variable, or a sliced string variable
(substring), then the assignment is Procrustean: the string value
of e is either truncated or filled out with spaces on the right, to
make it the same length as the variable v.

LIST LIST 0
LIST n Lists the program to the television, starting at line n, & makes n

the current line.
Error 4 or 5 if the listing is too long to fit on the screen; CONT will
do exactly the same again.

LLIST LLIST 0
LLIST n Like LIST, but using the printer instead of the television.

Should do nothing if the printer is not attached.
Stops with report D if BREAK pressed.

LOAD f Looks for a program called f on tape, & loads it & its variables.
If f = "", then loads the first program available.
If BREAK is pressed or a tape error is detected, then
 (i) if no program has yet been read from tape, stops with report
D & old program;
 (ii) if part of a program has been read in, then executes NEW .

LPRINT ... Like PRINT, but using the printer instead of the television. A line
of text is sent to the printer.
 (i) when printing spills over from one line to the next,
 (ii) after an LPRINT statement that does not end in a comma or
a semicolon,
 (iii) when a comma or TAB item requires a new line, or
 (iv) at the end of the program, if there is anything left unprinted.
In an AT item, only the column number has any effect; the line
number is ignored (except that the same error conditions arise as
for PRINT if it is out of range). An AT item never sends a line of
text to the printer.
There should be no effect if the printer is absent. Stops with report
D if BREAK is pressed.

Appendix C

199

NEW Starts the BASIC system off anew, deleting program & variables,
& using the memory up to but not including the byte whose
address is in the system variable RAMTOP (bytes 16388 &
16389).

NEXT α (i) Finds the control variable á.
 (ii) Adds its step to its value.
 (iii) If the step ≥ 0 & the value > the limit; or if the step < 0 & the
value < the limit, then jumps to the looping line.
Error 1 if there is a simple variable α.
Error 2 if there is no simple or control variable α.

PAUSE n Stops computing & displays the display file for n frames (at 50
frames per second) or until a key is pressed.
0 ≤ n ≤ 65535, else error B. If n ≥ 32767 then the pause is not
timed, but lasts until a key is pressed.

PLOT m,n Blacks in the pixel ( m  , n ); moves the PRINT position to
just after that pixel.
0 ≤  m  ≤ 63, 0 ≤  n  ≤ 43, else error B.

POKE m,n Writes the value n to the byte in store with address m.
0 ≤ m ≤ 65535, -255 ≤ n ≤ 255, else error B.

PRINT ... The '...' is a sequence of PRINT items, separated by commas or
semicolons, & they are written to the display file for display on the
television. The position (line & column) where the next character
is to be printed is called the PRINT position.
A PRINT item can be
(i) empty, i.e. nothing
(ii) a numerical expression.
 First, a minus sign is printed if the value is negative. Now let x
be the modulus of the value.
 If x ≤ 10-5 or x ≥ 1013, then it is printed using scientific notation.
The mantissa part has up to eight digits (with no trailing zeros), &
the decimal point (absent if only one digit) is after the first. The
exponent part is E, followed by + or -, followed by one or two
digits.
 Otherwise x is printed in ordinary decimal notation with up to
eight significant digits, & no trailing zeros after the decimal point.
A decimal point right at the beginning is always followed by a
zero, so for instance .03 & 0.3 are printed as such.
 0 is printed as a single digit 0.

Appendix C

200

(iii) a string expression.
 The tokens in the string are expanded, possibly with a space
before or after.
 The quote image character prints as ".
 Unused characters & control characters print as ?.
(iv) AT m,n
 The PRINT position is changed to line m (counting from the
top, column n (counting from the left).
 0 ≤  m  ≤ 21, else error 5 if  m  = 22 or 23, error B otherwise.
 0 ≤  n  ≤ 31, else error B.
(v) TAB n
 n is reduced modulo 32. Then, the PRINT position is moved to
column n, staying on the same line unless this would involve
backspacing, in which case it moves on to the next line.
 0 ≤ n ≤ 255, else error B.
 A semicolon between two items leaves the PRINT position
unchanged, so that the second item follows on immediately after
the first. A comma, on the other hand, moves the PRINT position
on at least one place, & after that, however many as are
necessary to leave it in column 0 or 16, throwing a new line if
necessary.
 At the end of the PRINT statement, if it does not end in a
semicolon or comma, a new line is thrown.
Error 4 (out of memory) can occur with 3K or less of memory.
Error 5 means that the screen is filled.
In both cases, the cure is CONT, which will clear the screen &
carry on.

RAND RAND 0

RAND n Sets the system variable (called SEED) used to generate the next
value of RND. In n ≠ 0, then SEED is given the value n; if n = 0
then it is given the value of another system variable (called
FRAMES) that counts the frames so far displayed on the
television, & so should be fairly random.
Error B occurs if n is not in the range 0 to 65535.

REM ... No effect. '...' can be any sequence of characters except
NEWLINE.

RETURN Pops a line number from the GOSUB stack, & jumps to the line
after it.
 Error 7 occurs when there is no line number on the stack.
There is some mistake in your program; GOSUBs are not
properly balanced by RETURNs.

Appendix C

201

RUN RUN 0

RUN n CLEAR, & then GOTO n.

SAVE f Records the program & variables on tape, & calls it f. SAVE

should not be used inside a GOSUB routine.
 Error F occurs if f is the empty string, which is not allowed.

SCROLL Scrolls the display file up one line, losing the top line & making an
empty line at the bottom.
NB the new line is genuinely empty with just a NEWLINE
character & no spaces. (See chapter 27).

SLOW Puts the computer into compute & display mode, in which the
display file is displayed continuously, & computing is done during
the spaces at the top & bottom of the picture.

STOP Stops the program with report 9. CONT will resume with the
following line.

UNPLOT m,n Like PLOT, but blanks out a pixel instead of blacking it in.

Index

203

Index
 The index includes the keys on the keyboard & how to obtain them (the mode - ,

, or - & whether shifted or not), & their codes.

 Usually an entry is referenced only once per chapter, so having found one reference,
look through the rest of the chapter including the exercises.

A

ABS , on G. Code 210. 31

accuracy 28
ACS , on S. Code 203. Arccosine. 31

addition of strings 43
address 161
 - of a byte 161
 return address 93
algebra 37
ALGOL 21
alphabetical order 67, 80
AND or , shifted 2. Code 218. 68
antilog 28
APL 21
argument 31
arithmetic expression 26
array 143
ASN , on A. Code 202. Arcsine. 31

assign 37
AT , on C. Code 193. 44, 115, 133

ATN , on D. Code 204. Arctangent. 31

B

bar chart 79
BASIC 21, 193
binary
 - operation 26, 71
 - system 155
bit 156
BOLD TYPE 14, 191
bracket 26
BREAK On SPACE. Only recognized as BREAK in

certain situations.
60, 109

buffer 179

Index

204

bug 101
byte 157

C

call 93
cassette recorder 8, 107
character 77
 - position 119
 - set 77, 181
 control character 79
CHR$, on U. Code 214. 77
CLEAR , on X. Code 253. 38, 57

CLS , on V. Code 251. 115
COBOL 21
CODE , on I. Code 196. 77

code 77, 161, 167
 machine code 161, 167
command 13, 60
comparison 67
 - of numbers 67
 - of strings 67
compute & display 89
concatenation 43
condition 67
conditional expression 72
CONT , on C. Code 232. 58
control
 - character 79
 - variable 84
coordinate 119
COPY , on Z. Code 255. 58, 133

COS , on W. Code 200. 31

CPU 161
current line 50, 62
cursor 14

 cursor 31

 cursor 77

 cursor 14

 cursor 14

 program cursor () 50

Index

205

D

DATA 145
decimal system 155
degree 33
DIM , on D. Code 233. 143
dimension 143
display file 149, 171

E

 - in exponent part 26, 40
EDIT or , shifted 1. Code 117. 50
element 173
empty string 45, 77
entry point 97
execute 50
EXP , on X. Code 206. 32, 40

exponent 26
 - byte 172
 - part 26
expression 26
 arithmetic expression 26
 conditional expression 72
 logical expression 69
 numeric expression 26
 string expression 44

F

 mode 31
false 68
FAST or , shifted F. Code 229. 89

fast mode 89
floating point 28
flowchart 101
FOR , on F. Code 235. 84

FORTRAN 21
FUNCTION or , shifted NEWLINE. Code 121. 31

function 31
 - mode 31

G

 mode 77

Index

206

glitch 111
GOSUB , on H. Code 237. 93, 102

 - stack 93
GOTO , on G. Code 236. 57, 95
graph 119
graphics 77, 119
 - symbol 77
 - mode 77
GRAPHICS , or , shifted 9. Code 116. 77, 119

grey characters 79

H

hex 155
hexadecimal 155

I

if 67
IF , on U. Code 250. 67
initial value 84
INKEY$, on B. Code 65. 127

INPUT , on I. Code 238. 57, 67
 - mode 57
INT , on R. Code 207. 32
integer 28
inverse 33
 - functions 33
 - video 77
item 43
 PRINT item 43

J

jack plug 7

K

 mode 14
keyboard 17
keyword 13
 - mode 14

Index

207

L

 mode 14
LEFT$ 139
LEN , on K. Code 198. 43

LET , on L. Code 241. 37
letter mode 14
limit 84
line
 - number 49, 119
 current line 50, 62
 looping line 84
 program line 15, 49, 60
 top line 62
LIST , on K. Code 240. 52, 61
listing 50, 61
LLIST or , shifted G. Code 226. 133

LN , on Z. Code 205. 31
LOAD , on J. Code 239. 108

logic
 - chip 161
 - al operation 68
logs 28, 31
Loop 83
 - ing line 84
LPRINT or , shifted S. Code 225. 133

M

machine code 161, 167
main program 95
mantissa 28, 172
memory 150
 - expansion board 149
menu 111
MID$ 139
mode 14
 command mode 14
 compute & display mode 89
 fast mode 89

 function mode () 31

 graphics mode () 77

Index

208

 INPUT mode 57
 keyword mode () 14

 letter mode () 14
Modulo 34, 116
Modulus 31

N

Name
 - of a variable 37
 - of a program 107
Nesting 85
NEW , on A. Code 230. 57, 168

NEWLINE Code 118. 14, 25
NEXT , on N. Code 243. 84

NOT , on N. Code 215. 31, 68
nullary operation 32
null string 45
Numeric
 - expression 26
 - variable 37

O

Octal 157
ON 73
on-line 21
operand 25
operation 25
 binary operation 26, 71
 logical operation 68
 nullary operation 32
 unary operation 26
OR or , shifted W. Code 217. 68

P

PASCAL 21
PAUSE , on M. Code 242. 127

PEEK , on O. Code 211. 161

PI , on M. π. Code 66. 32
pixel 119
PL-1 21
PLOT , on Q. Code 246. 44, 119

Index

209

POKE , on O. Code 244. 127, 163
POP-2 21
position 119
 LPRINT position 134
 PRINT position 115
power 25
 - supply 7
PRINT , on P. Code 245. 13, 25, 115
 - item 43
 - position 115
printer 133
priority 26
processor 161
Procrustean assignment 138
program 49, 95
 - cursor 50
 - line 15, 49, 60
pseudorandom 32

Q

quote 43
 - image 45
 string quote 43, 59

R

radian 31
RAM 161
RAMTOP 168
RAND , on T. Code 249. 32
random 32
READ 145
recursive 96
register 167
relation 67
REM , on E. Code 234. 57, 102, 107

report 15, 103, 189
RESTORE 145
result 31
RETURN , on Y. Code 254. 93

return address 93
RIGHT$ 139
RND , on T. Code 64. 32

Index

210

ROM 161
rounding (inc. to nearest integer) 28, 34, 80
RUBOUT , or , shifted O. Code 119. 16, 77

RUN , on R. Code 247. 50, 59, 97

S

SAVE , on S. Code 248. 107

scientific notation 26
SCROLL , on B. Code 231. 115

SGN , on F. Code 209. 31
shift 14
 - ed key 14
sign, signum 31
simple variable 143
SIN , on Q. Code 199. 31
slice 137
SLOW or , shifted D. Code 228. 89

space 151
SQR , on H. Code 208. 32

stack 167
 calculator stack 171
 GOSUB stack 93, 171
 machine stack 171
statement 13
STEP or , shifted E. Code 224. 84
STOP or , shifted A. Code 227. 57, 67

STR$, on Y. Code 213. 44
string 43
 - addition 43
 - expression 44
 - quote 43, 59
 - variable 43
subroutine 93
subscript 137, 143
 - ed variable 143
substring 137
symbol 77
 - graphics symbol 77
syntax 16
system variable 161, 177

Index

211

T

TAB , on P. Code 194. 115, 134
TAN , on E. Code 201. 31

tape 8, 107
 - recorder 107
 - storage 8
television 67
THEN or , shifted 3. Code 222. 139
TL$ 84
TO or , shifted 4. Code 223. 77

token 62
top line 31
trigonometrical functions 68
true

U

unary operation 26
unless 72
UNPLOT , on W. Code 252. 44, 119

USR , on L. Code 212. 167

V

VAL , on J. Code 197. 44

value 37
 initial value 84
variable 37, 43, 84
 control variable 84
 numeric variable 37
 simple variable 143
 string variable 43
 subscripted variable 143
 system variable 161, 177

W

word 157

X

x-coordinate 119

Index

212

Y

y-coordinate 119

Z

Zilog Z80 167
ZX80 127

. or . Code 27. Full stop or decimal point. 26
, or , shifted full stop. Code 26. Comma. 26

; or , shifted X. Code 25. Semicolon. 26
: or , shifted Z. Code 14. Colon.
? or , shifted C. Code 15. Question mark.
“ or , shifted P. Code 11. String quote. 43
“” or , shifted Q. Code 192. Quote image. 45

(or , shifted I. Code 16. Open bracket. 26
) or , shifted O. Code 17. Close bracket. 26

£ or , shifted space. Code 12. Pound. 95
$ or , shifted U. Code 13. Dollar. 43

+ or , shifted K. Code 21. Plus. 14
- or , shifted J. Code 22. Minus. 25

* or , shifted B. Code 23. Times. 25
/ or , shifted V. Code 24. Divide. 25

** or , shifted H. Code 216. To power. 25

= or , shifted L. Code 20. Equals. 49, 67
> or , shifted M. Code 18. Greater than. 67

< or , shifted N. Code 19. Less than. 67
<= or , shifted R. Code 219. Less than or

equal to.

67

>= or , shifted Y. Code 220. Greater than or
equal to.

67

<> or , shifted T. Code 221. Not equal to. 67

 or , shifted 5. Code 114. Cursor left. 16

 or , shifted 6. Code 113. Cursor down. 52

 or , shifted 7. Code 112. Cursor up. 52

 or , shifted 8. Code 115. Cursor right. 16

Printed at The Leagrave Press Limited, Luton & London

Sinclair Research Limited

6 King’s Parade,
Cambridge CB2 1SN
England

This PDF version of

“ZX81 BASIC Programming” by Steven Vickers

was created by Robin Stuart (robin.stuart^nospam^@blueyonder.co.uk)

using Microsoft Word 2000 and Adobe Acrobat 4.0.

The HTML version of this document was produced with Microsoft FrontPage
2000.

The copyright for this work is owned by Amstrad plc (http://www.amstrad.com),
who have given permission for it to be distributed freely on the Internet.

I would like to thank Russell Marks for his help with the HTML version of this
book, which was used to construct this PDF file, and Peter Liebert-Adelt and
Christopher Adams for their encouragement.

Here is a short list of URLs which you might find of interest:

ZX-TEAM Homepage – Peter Liebert-Adelt’s ZX81 page:

http://home.t-online.de/home/p.liebert/f_zx81_e.htm

The ZX81 Web-Ring – For access to more ZX81 info:

http://home.t-online.de/home/sinclair_zx81/zx81_wbr.htm

The World of Spectrum – Tons of info and games for the ZX81’s big brother:

http://www.worldofspectrum.org/

The BBC Lives! – Information and games for another classic 80’s computer:

http://www.nvg.ntnu.no/bbc/

