
THE
AMSTRAD CPC464
DISC SYSTEM
INCLUDING CP/M AND PRINTERS

The Amstrad CPC464 Disc
System

Including CP/M and Printers

Other books for Amstrad users

Amstrad Computing
Ian Sinclair
0 00 383120 5

Sensational Games for the Amstrad CPC464 and CPC664
Jim Gregory
0 00 383121 3

Adventure Games for the Amstrad CPC464
A. J. Bradbury
0 00 383078 0

40 Educational Games for the Amstrad CPC464
Vince Apps
0 00 383119 1

Practical Programs for the Amstrad CPC464
Audrey Bishop and Owen Bishop
0 00 383082 9

Filing Systems and Databases for the Amstrad CPC464
A. P. Stephenson and D. J. Stephenson
0 0 383102 7

The Amstrad
CPC464 Disc

System

Including CP/M and
Printers

Ian Sinclair

COLLINS
8 Grafton Street, London W1

Collins Professional and Technical Books
William Collins Sons & Co. Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Collins Professional and Technical Books 1985
Reprinted 1985 (twice)

Distributed in the United States of America
by Sheridan House, Inc.

Copyright © Ian Sinclair 1985

British Library Cataloguing in Publication Data
Sinclair, Ian R.
The Amstrad CPC464 disc system: including CP/M and printers.
1. Amstrad CPC464 (Computer) 2. Data disk drives
3. Printers (Data processing systems)
I. Title
001.64’4 QA76.8.A4

ISBN 0-00-383177-9

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or transmitted,
in any form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the
publishers.

Contents

Preface vi

1 About Discs and Disc Systems 1

2 The Disc Filing System 13

3 Digging Deeper 21

4 The CP/M Operating System 32

5 BASIC Filing Techniques 47

6 A Database Example - Filing Cabinet 60

7 Printers 75

8 Disc Utility Programs 91

Appendix A: The ASCII Codes in Hex 113

Appendix B: Use of the CTRL Key in CP/M 115

Index 117

Preface

Sooner or later the serious programmer will become frustrated with using
cassettes, and will turn to disc drives. The good BASIC, the large memory
size, and the easy use of machine code of the Amstrad CPC464 all combine
to make it very attractive to serious programmers, so it is inevitable that
many CPC464 users are acquiring, or intend to acquire, disc systems. The
Amstrad disc system, however, is unique to this machine, and its operation
is not obvious to a beginner. Even an experienced programmer who has
worked with other disc systems may find that the Amstrad DDI-1 is by no
means easy to understand. In particular, the presence of both the Amstrad
disc operating system and a version of the well-known CP/M 2.2 on the
same Master disc is unusual, and the CP/ M commands are not explained at
great length in the Manual. For CP/ M information, the reader is referred by
the Manual to a publication which was certainly not available at the time
when the disc drives first appeared!

This book is intended as a beginner’s introduction to the DDI-1 disc
system that is currently available for the CPC464 machine, and which will
be used in built-in form on others. By ‘beginner’, 1 don’t necessarily mean a
beginner to computers, but a beginner to disc systems. At the same time, 1
hope that this book will be intelligible and useful to the beginner to
computing who has a disc-equipped Amstrad CPC464. This book will
concentrate on extended explanations of what disc operation is about, and
how to make the most effective use of discs. This is not always apparent to
the newcomer to disc systems, even after considerable experience of using
the cassette-based machine. I shall not assume, as so many books on disc
operation seem to, that the reader is at ease with machine code or
hexadecimal notation, so these points will be explained as they are
introduced.

The book also covers the use of some of the ‘disc utilities’ - the programs
(which are supplied on disc) which can provide some useful actions for the
disc user. To help the disc user further, some listings of my own utilities are
provided too.

The beginner generally finds the action of disc utilities very confusing, and
so 1 have included some examples of how such utilities can be of very great

viii Preface

help, for example, in reading data from a disc, and in retitling a program
without requiring to switch to CP/M. Only a small part of the book is
devoted to CP/ M, for reasons that are dealt with in more detail in the text.
The main reason is that CP/ M is likely to be used only as a way of running
some specialised programs, not as a way of using the disc with programs in
BASIC. At the time of writing, very few CP/M programs were available on
the 3-inch disc format.

Since the serious programmer is bound to want to use a printer, I have
included a chapter on printers. The printer which is available from Amstrad
is reasonably described in its own manual, and I have concentrated on other
printers, such as the Epson series. These printers are used extensively both
by the more serious programmer and by the business user, and the action of
printers such as the Juki daisywheel printer and the Tandy CGP-115
graphics printer has been added. Since combined typewriter/printers can
now be obtained at very attractive prices, the buyer should have as wide a
choice as possible, and this book describes what is available and how it can
be used.

As always, the book owes its creation to a number of people. I would
particularly like to thank my long-suffering friends at Collins Professional
and Technical Books. Richard Miles commissioned the manuscript, Sue
Moore and Janet Murphy performed miracles on my typescript, and the
typesetters and printers worked at breakneck speed to bring the book
quickly into existence. I am deeply grateful to all of them.

Note: The spelling ‘disc’ has been used throughout. This is the spelling
which is used by Amstrad, as distinct from the US version ‘disk’. The
difference is important, because the CPC464 disc system will reject the word
‘disk’ used in a command.

Ian Sinclair

Chapter One

About Discs and Disc
Systems

Why use discs

One of the questions that a beginner to computing inevitably asks is - why
use discs? The obvious reasons are not necessarily the most important ones.
The novice owner will see more clearly the advantages of using discs only
after some time spent using cassettes. We’ll start, then, by showing why the
use of discs is so important for the more advanced programmer and
experienced user alike.

To start with, a disc offers much faster operation. If you use a machine to
load one program, and then use that program (a game perhaps) for several
hours, this speed advantage may be of little use. It certainly would not justify
the cost of a disc system. On the other hand, if you are developing programs
for yourself, you may want to load a program, make changes, and save it
again before you try out the new version. This can be very tedious if you
have to wait for cassettes to load and save. It’s even more tedious because
cassette operation is not automatic. You have to either store each version of
the program on a new cassette, or use a long cassette (C60 or C90), with each
program version noted as a starting point on the tape counter. If you use
separate cassettes, you may find yourself holding a dozen of them by the
time the program is complete. If you use C90s, you will need paper to note
the tape count positions of each version of the program. Either way, it’s
tedious.

This is particularly true for the machine code programmer who is using
the Amsoft DEVPAC of assembler, editor and monitor. Because of the
nature of machine code, any fault in a program which is being developed
may require the machine to be switched off and then on again in order to
regain control. This inevitably results in the loss of the stored programs, so
that the M0NA3 monitor and the GENA3 assembler have to be reloaded,
then the assembly language text file, before the program can be reassembled
and revised. Since the DEVPAC programs are large (MONA3 is 7K and
GEN A3 is 9K) cassette loading takes a long time, and the development of a
large machine code program under these circumstances is not really feasible.

Another class of user who will benefit greatly from the use of discs is the

2 The Amstrad CPC464 Disc System

text writer. If you use the Amstrad CPC464, as many users do, to create and
edit text with the EASI-AMSWORD or AMSWORD 1 text editor
programs, then the time that is needed for cassettes to load or save the data is
a definite handicap. If you want to load a piece of text, change a few words,
and then store the new version, the loading and saving time is a very large
part of the total. From experience, I can testify that word processing with
cassettes is very little better than using the old-fashioned typewriter, and
that the real advantages of word processing are apparent only when a disc
system is used.

The overwhelming advantage of using a disc system, however, is
automatic operation. The CPC464 cassette system does, at least, permit the
motor of the cassette recorder to be controlled, and it allows programs or
data files to be referred to by name. If you try to load a program called
“TEXINDEX”, however, without winding the cassette back to the
beginning, you may find that the program cannot be loaded. This is because
recording on tape is ‘serial’ - you start recording at the beginning of the tape,
and wind it on to the end. If you then want to load something which is at the
start of the tape, you have to rewind it for yourself. The computer does not
control the actions of fast forward and reverse, because the cassette recorder
was not designed for it to do so. The disc system, by contrast, is completely
computer controlled. The only manual action is that of putting in the correct
disc, and making sure that it is the right way round. On loading, the
computer will use its disc operating system to find the program or other
material that you want, from its title. Having located the start, it will then
load the data into the computer in only a few seconds. Saving is just as
automatic. The SAVE command is followed by a filename (and other
information in some cases), and pressing ENTER carries out the actions of
finding unused space on the disc, and saving the data. The automatic nature
of this action also means that a ‘catalogue’ can be kept on the disc itself. This
means that you can insert a disc and obtain information on what is stored on
it without the need to play back the whole disc. Though you can also find the
names of programs on a cassette you have to replay a whole cassette in order
to see its catalogue.

In addition to these compelling reasons for using discs, are the extra
commands that the disc operating system permits. Some computers go
much further in this respect, so that their disc system adds a BASIC of its
own. In the CPC464 disc system the new commands are all closely tied to the
use of the disc system itself, and we shall examine them in detail. Several of
the extra commands, however, allow you to obtain a lot more information
about how the data is stored on the disc. This will not be of immediate use to
you if you haven’t used discs before, but its usefulness will be apparent
before long.

Finally, the use of discs can bring order and reliability to what can be a
very haphazard business. When you use cassettes for filing programs and
data, you inevitably end up with a very large number of cassettes, all of

About Discs and Disc Systems 3

which have to be catalogued. I had over two hundred cassettes at one stage!
It can take a considerable time to locate a program on a cassette. Because the
CPC464 disc makes use of both sides, it can hold just as much information
as the whole of a C90 cassette, and the information is much easier to get at.
This encourages you to use the whole of a disc, whereas you might use only
the first ten minutes of a C90 cassette. It’s quite possible to find, for example,
that you can keep all of the programs that you want to use on one single disc!
This alone is such a liberation that by itself it almost justifies the use of discs.
Discs are slim and compact to store, so that a box of ten discs, holding a
huge number of programs, will take up little more space than a couple of
cassettes. The reliability of disc recording means that you can make a
backup copy of a valuable program, and be fairly certain that you will never
need it. Unless you spill coffee all over a disc, demagnetise it or smash
through its protective cover, it’s unlikely that you will lose a program.
Cassettes are never so reliable.

What is a disc system

Disc system is the name that is given to a complicated combination of
hardware and software. Hardware means the equipment in boxes, software
is programming which can be on a disc or in the form of chips that plug into
the machine. A disc system comprises the disc drive (or drives), the disc
controlling circuits, and the disc operating system.

Different manufacturers approach the design of disc systems in different
ways. The Amstrad approach has been to use an ‘interface’ along with the
disc drive. The interface is the small box which plugs into the ‘floppy disc’
connector at the back of the computer. This unit contains‘firmware’; chips
which hold some of the programs that are needed to control the action of the
disc drive. Other parts of the control programs are held on the Master disc
(the system disc) which comes along with the drive. The interface is, in fact, a
miniature computer in its own right, complete with its own memory. The
drive is linked to the Amstrad CPC464 by means of the data cable which is
(permanently) attached to the interface. This terminates in two 34-way
connectors at the far end, so that two disc drives can be attached. The
manual that comes with your disc drive shows very clearly how these
connectors are to be attached. When you buy a second disc drive you do not
need another interface, and the second drive can be connected to the second
connector of the existing cable.

The disc.drive also comes with a mains cable to which no plug has been
connected. Figure 1.1 is a reminder of how a suitable plug should be
attached. You must be sure that a suitable fuse is fitted in the plug; a 3A fuse
rather than the 13 A one which usually comes with the plug. It’s preferable to
plug the disc unit into the same source of power as the computer, so a four
way socket strip, as illustrated in Figure 1.2 will be very useful to you. This

4 The Amstrad CPC464 Disc System

Earth (not used)

Figure 1.1. Connecting the mains plug. Use a 3Afuse, not the 1 3A fuse that is
supplied with the plug.

allows sockets for the CPC464, the disc drive, and a printer.
The controlling circuits for the disc system are contained mainly within

the interface unit along with the disc filing system (DFS). A ‘file’ in this sense
means any collection of data which can be stored on the disc. The DFS
consists of a program, and most computers use a ‘DOS disc’ to hold this
program. DOS is short for ‘disc operating system. When this is done, a lot of
the RAM memory (the memory that is free for you to use) is needed for
holding the DFS. The Amstrad CPC464, however, uses chips within the
interface to hold much of this information, which leaves most of the
memory of the CPC464 free when you are using the normal AMSDOS
system. Some memory has to be used, and this is also fitted to the disc drive

Figure 1.2. A four-way socket that allows you to operate a complete system
from one wall-socket.

About Discs and Disc Systems 5

unit, so that only about 1.3K. of the 41 K of the CPC464 normally available
to you for BASIC programs need be taken up when the disc system is used.

Tracks, sectors and density

The language of disc recording is very different from that of cassette
recording. If your sole concern is to save and load programs in BASIC, you
may possibly never need to know much about these terms. A working
knowledge of how disc storage operates, however, is useful. To start with, it
can clarify the reasons for the differences between using cassettes and discs.
At a more advanced level, it can allow you to extract information from
damaged discs, and to make changes to the information that is stored on
discs.

Unlike tape, which is pulled in a straight line past a recording/replay
head, a disc spins around its centre. When you insert a disc into a drive, the
protective shutter is rotated so as to expose part of the disc. When the drive
is activated a hub engages the central hole of the disc, clamps it, and starts to
spin it at a speed of about 300 revolutions per minute. The disc itself is a
circular flat piece of plastic which has been coated with magnetic material. It
is enclosed in a hard plastic case to reduce the chances of damage to the
surface. The hub part of the disc is also built up in plastic to avoid damage to
the disc surface when it is gripped by the drive. The surface of each disc is
smooth and Hat, and any physical damage, such as a fingerprint or a scratch,
can cause loss of recorded data. The jacket has slots and holes cut into it so
that the disc drive can touch the disc at the correct places. The slot and one
hole (one of each on each side) are covered by a metal shutter when the disc
is withdrawn from the drive. You can see the disc surface if, holding the ‘A’
side uppermost, you insert your thumbnail into the slot at the right-hand
side of the disc casing, near the front. By sliding your nail back, you engage
the sliding peg which acts on the shutter, and you can turn the shutter until
the disc surface is visible. Do not touch the disc surface, sneeze on it, or do
anything which could leave any marks on the surface.

Through the slot that is cut in the casing (Figure 1.3), the head of the disc
drive can touch the surface of the disc. This head is a tiny electromagnet, and
it is used both for writing data and reading. When the head writes data,
electrical signals through the coils of wire in the head cause changes of
magnetism. These in turn magnetise the disc surface. When the head is used
for reading, the changing magnetism of the disc as it turns causes electrical
signals to be generated in the coils of wire. This recording and replaying
action is very similar to that of a cassette recorder, with one important
difference. Cassette recorders were never designed to record digital signals
from computers, but the disc head is. Even the cassette mechanism of your
CPC464 cannot cope really well with digital signals, because it is limited by
having to use ordinary cassettes. The reliability of recording on a disc is

6 The Amstrad CPC464 Disc System

Slot for head
- covered by shutter

Shutter
release

Figure 1.3. The slot in the casing of the disc is there to allow the head of the
drive to touch the disc surface.

therefore very much better than you can ever hope for from a cassette.
Unlike the head of a cassette recorder, which does not move once it is in

contact with the tape, the head of a disc drive moves quite a lot. If the head is
held steady, the spinning disc will allow a circular strip of the magnetic
material to be affected by the head. By moving the head in and out, to and
from the centre of the disc, the drive can make contact with different circular
strips of the disc. These strips are called ‘tracks’. Unlike the groove of a
conventional record, these are circular, not spiral, and they are not grooves
cut into the disc. The track is invisible, just as the recording on a tape is
invisible. What creates the tracks is the movement of the recording/replay
head of the disc drive. A rather similar situation is the choice of twin-track or
four-track on cassette tapes. The same tape can be recorded with two or four
tracks depending on the heads that are used by the cassette recorder. There is
nothing on the tape which guides the heads, or which indicates to you how
many tracks exist.

The number of tracks therefore depends on your disc drives. The vast
majority of disc drives for other machines use larger discs with either 40 or
80 tracks. Forty-track drives use 48 tracks per inch, and 80-track drives use
96 tracks per inch. The DDI-l disc drive uses a 3-inch disc with 40 tracks,

About Discs and Disc Systems 7

but with 96 tracks per inch. This forces you to find a source of these special
discs, however, which are by no means common at the time of writing. In
fact, at the time of writing these discs were in very short supply, and of the
independent suppliers, only Disking were advertising them. Be very careful
when you send for discs that you specify the 3-inch type. Several business
computers, such as Apricot, have standardised on the Sony 3/2-inch disc,
and this size is quite easy to find. It is, however, not suitable foryourDDI-1
disc drive.

Once you have accepted the idea of invisible tracks, it’s not quite so
difficult to accept also that each track can be divided up invisibly. The
reason for this is organisation the data is divided into ‘blocks’, or sectors,
each of 512 bytes. A byte is the unit of computer data; it’s the amount of
memory that is needed for storing one character, for example. Each track of
the disc is divided into a number of‘sectors’, and each of these sectors can
store 512 bytes. Conventional 40 or 80-track discs use ten sectors per track,
but the DD1-1 system uses 9 sectors per track, allowing 512X9 = 4608 bytes
to be recorded on each track. Two tracks are reserved on the Master disc
(the system disc) for holding essential data, leaving 38 tracks for your use.
This corresponds to a total of 175104 bytes free, which is 171K. It is possible
to make use of the reserved tracks if you are, for example, storing only word
processing text on a disc. In this way, 180K can then be stored on the disc.

The next thing that we have to consider is how the sectors are marked out.
Once again, this is not a visible marking, but a magnetic one. The system is
called ‘soft-sectoring’. Each disc has a small hole punched into it at a
distance of about 14 mm from the centre. There is a hole cut also through the
disc jacket, so that when the shutter is swung aside and the disc is turned
round, it possible to see right through the hole when it comes round. When
the disc is held in the disc drive, and spun, this position can be detected using
a beam of light. This is the ‘marker’, and the head can use this as a starting
point, putting a signal on to the disc at this position and at eight others,
equally spaced, so as to form sectors (Figure 1.4). This sector marking has to
be carried out on each track of the disc, which is part of the operation that is
called ‘formatting’.

Formatting discs

Formatting discs, as we have seen, consists partly of the action of‘marking
out’ the sectors on a disc. The formatting action, however, should also test
the disc. This is done by writing a pattern to each sector, and checking that
an identical pattern is read back later. Failure to do so indicates a faulty
sector, and a disc with such a fault should be returned to the supplier with a
request for a replacement. These small discs cost three times as much as a
conventional floppy disc, and they ought to be perfect. The prices will

8 The Amstrad CPC464 Disc System

Track

Sector
boundaries

Figure 1.4. How the disc sectors are arranged. These are not visible, because
they consist only of magnetic signals.

probably come down from their present levels, and some of the large
suppliers are already quoting prices of around £39.90 for a box of ten.

Formatting, then, consists of marking out sectors and testing them. This
takes about half a minute, and will normally end with a message which asks
you if you want to format another disc. Any fault which is found at the
formatting stage will be reported. This does not necessarily imply a disc fault
however. All 3-inch discs make use of a small sliding shutter (Figure l.5)
which exposes or covers a hole at the front left-hand side of the disc casing. If

Shutter open
- write protected

Srutter closed
- not protected

Figure 1.5. The write-protect hole and its shutter. You will need the tip of a ball
pen to slide this shutter in and out.

About Discs and Disc Systems 9

this hole is exposed, the disc is ‘write-protected’ which means that it cannot
be formatted. Now if the disc is protected in this way. it’s probably because
you wanted to preserve some information that has been recorded on it.
Since formatting will wipe the disc clean, the message is a warning to you
that you might want to think again. If you really want to format, then you
have to slip the plastic cover over the write-protect hole. Note that if you
have been used to ordinary Hoppy discs of 5'/4-inch size, that this protection
action works in the opposite way. On the ordinary Hoppy, a slot has to be
covered to protect the disc; on the 3-inch disc, the hole has to be open for
protection.

The formatting action is carried out when a set of instructions has been
typed and entered. The CPC464 disc system uses two controller programs,
called AMSDOS and CP/M 2.2 respectively. Of the two, AMSDOS is
intended for use with the Locomotive BASIC language of the CPC464, and
it’s the system that you will use along with programs that are written in
BASIC. CP/M 2.2 is a more general disc system, which handles some of the
tasks that are common to all disc operations, like formatting. In other
words, if you want to format a new disc or reformat an old one, you have to
make use of the CP/M operating system. First of all, you will need the
Master disc. Make sure that the write-protect hole is exposed, because you
cannot take risks with this disc it is valuable. If you don’t believe me, then
just try getting a replacement! Insert the Master disc in the drive, making
sure that it is the correct way round. The discs are double-sided, with the
sides labelled as ‘A’ or ‘B’ at the front left-hand side, next to the write-protect
hole. The actual recording and reading is carried out on the under side of the
disc, but the labelling is placed so that side A or 1 is the one being used when
this number is uppermost. The flap on the front of the drive unit is opened
when you push the disc into the slot. Hold your Master disc with the ‘A’ side
facing up. On the label of the Master disc, incidentally, side A is labelled as
‘1’ and side B as ‘2’, and this system is used on other labels. Slide the disc into
the slot. Don’t use any force to do this, because you can jam the disc if you
do so. Press the disc in firmly until it stays put and clicks into place. The disc
is now ready for formatting.

You then have to type the command which will allow the CP/M system to
take control of the disc drive. This command is;

|CPM (or |cpm)

then press ENTER. As in Amstrad BASIC, commands can be in upper or
lower case. To avoid confusion with other text, however, all command
words will be printed in upper case in this book. We’ll look later in more
detail at the effect of this and similar commands. You will see the red ‘drive
working’ light brighten, and hear the disc drive motor whirring. Soon the
screen will clear to a bright pale-blue colour, change to 80-column mode,
and display the message:

CP/M 2.2 Amstrad Consumer Electronics pic

10 The Amstrad CPC464 Disc System

followed on the next line by the prompt A> and the cursor. This distinctive
screen layout is used to remind you that you are using CP/M and not
AMSDOS. I, for one, find the letters hard to read in this format, and
numbers very difficult to distinguish. If you find the same difficulty, then be
particularly careful when you are using this mode.

You must now type the word ‘format’, and press ENTER. This will bring
up the message:

Please insert the disc to be formatted into drive A
then press any key:

followed by the cursor. You must now remove the Master disc, and insert
the disc which you want to format. Make sure that this disc is the correct
way up for the side that you want to format (I or 2 uppermost), and then
press the spacebar or the ENTER key. Unless the disc is write-protected,
you should then find that the formatting action takes place. If the disc is
write-protected and you change your mind about formatting it, then press
CTRL-C (CTRL key and C key together). This will abort the formatting
program, and produce the message:

Please insert a CP/M system disc into drive A then press any key:-

You should then insert the Master disc, A side up, into the drive and press
the spacebar or ENTER key. The drive will spin briefly, restoring the action
of the main CP/M program. This same message will also appear if
formatting has been successful, and you have answered ‘N’ to the question:

Do you want to format another disc (Y/N):

Finally, you will need to return to the Amstrad operating system if you want
to make use of the disc with BASIC programs. With the Master disc in
place, either side up, type AMSDOS (or amsdos) and press ENTER. This
will restore the familiar screen with 40 characters per line, and the ‘Amstrad
BASIC l.O’ message.

The formatting action reserves some sectors on the third track of the disc.
This portion is reserved as a way of storing information about the contents
of the disc. T o put it crudely, the disc system reads the first few sectors of this
track to find if the filename for a program is stored on the disc, and then to
find at which sector the program starts. With this information, the head can
then be moved to the start of the program, and loading can begin. This part
of the track is known as the directory, which keeps a record of what tracks
and sectors have been used, and which are free for further use. The directory
entries consist of filenames and numbers which indicate which track and
sector is used for the start of each program or other file that is stored on the
disc. The filename for a disc consists of up to eight letters for the main name,
and (optionally) three letters for the ‘extension’. It’s easy to forget the
limitation on filename length if you have been using cassettes for some time,
because the cassette system allows filenames of up to sixteen characters. The

About Discs and Disc Systems 11

‘extension’ is also a novelty, and we’ll deal with it later. To wipe a program or
some data from the disc, simply remove its directory entry the data
remains stored on the disc until it is replaced by new data. This can
sometimes allow you to recover a program that you thought you had erased.

Storage space

How much can you store on a disc? The Amstrad system uses 9 sectors on
each track, and a maximum of 40 tracks; 38 tracks on discs which contain
the CP/M system program. This makes a maximum of 360 sectors, if the
system tracks are used as well. Of these, up to 4 sectors will be used for the
directory entries, and this leaves 356 sectors free for you to use.

Each of these sectors will store 512 bytes, which is half of a kilobyte. If you
take 356/2, giving 178, you end up with a figure of 178K on a single side of a
40 track drive. N ot all of this will normally be usable, however, because data
is not stored at every possible point on the disc. This is because the disc
operating system works in complete sectors only. Suppose you have a
program that is 1027 bytes long. The disc operating system will split this into
groups of 512 bytes, because it can record 512 bytes on one sector. When you
divide 1027 by 512, you get 2 and a fraction but the DFS does not deal with
fractions of a sector. Three sectors will be used, even though the last sector
has only 3 of its 512 bytes recorded. When the next program is saved it will
start at the next clear sector, so that the unused bytes are surrounded, and
there is no simple way of making use of them. If you save many short
programs on the disc you will find that a lot of space may be wasted in this
way. A set of short BASIC programs, for example, will use one sector each.
There is another way in which space can be wasted if you keep a large
number of very short programs on a disc. Each program will have a separate
directory entry, and when the directory track is full no more entries can be
accepted. The system, however, allows up to 64 directory entries on a disc, so
you would have to be very fond of short programs to run out of directory
space!

The large amount of storage space, theoretically up to 180K, on a disc
contrasts with the 41 K. or so which you have available for BASIC programs
on the CPC464. For long programs, then, a disc system can be used as a
form of extra memory. If a long program is split into sections, the sections
can be recorded on a disc, and a master program entered into the computer.
This master program can then call up different sections from the disc as
needed, giving the impression that a very large program is, in fact, operating.
The use of a disc system therefore allows you not only to load programs
more quickly and store a lot of data, but also to use the computer as if it had
a very much larger amount of memory.

Finally, Figure l .6 lists some precautions on the care of discs. These may
look rather restrictive, but remember that a disc is precious. It can contain a

12 The Amstrad CPC464 Disc System

Care of discs
1. Keep discs in their protective boxes when they are not inserted in the
drive. If you drop a box, it will chip, but this is better than chipping the disc
jacket.
2. Buy discs from a reputable source, such as Amsoft or one of the large disc
suppliers. At these prices, you can’t afford to take risks.
3. Never pull back the protective shutter unless you need to which is
normally never!
4. Never touch any part of the inner disc.
5. Keep your discs away from dust, liquids, smoke, heat and sunlight.
6. Avoid at all costs magnets and objects that contain magnets. These
include electric motors, shavers, TV receivers and monitors, telephones,
tape erasers, electric typewriters, and many other items which have surfaces
that you might lay discs onto.
7. Label your discs well. If the label on the disc is not large enough, use self-
adhesive labels in addition but don't cover any of the shutters.
8. Remember that the disc is read and written from the underside.

Figure 1.6. Taking care of your discs. They are not as fragile as this might
suggest, but remember that each disc can hold a lot of valuable programs.

lot of data, perhaps all of your programs. An accident to one disc, then, can
wipe out all your work at the keyboard, or all the programs you have bought
over the course of a year! Always make a backup copy, and always take
good care of your discs. If you leave a fingerprint on a piece of tape, you may
cause some loading difficulties on that piece of tape, but it’s unlikely that
you will lose a whole program. A fingerprint on the surface of a disc could
make the directory impossible to read, so that the whole disc is useless.
Similarly, a disc can be demagnetised by strong magnetic fields. These fields
can be around loudspeakers, TV receivers or monitors, headphones, and
electric motors. All of these should be regarded as potential disc-killers and
avoided. Take very careful note of the advice in the DDI-1 Manual about
siting the disc drive. You are told to avoid the left-hand side of the monitor,
because this is where the magnetic fields are strongest. If you place your disc
drive close to this side of the monitor, you may find that discs will not format
correctly, and that you continually get error messages when you try to write
or read discs. Even a small change of position may make a lot of difference,
and it is a pity that the connecting cable between the interface and the disc
drive is not longer so as to give you more scope for locating the drive in a
good position.

Chapter Two

The Disc Filing System

What does the DFS do?

The disc filing system or DFS is, as we have seen, a program. This program
is not written in BASIC, but in the form of direct commands in number
code to the microprocessor (the Z80) which operates the Amstrad CPC464.
Code of this kind is called ‘machine code’. If you want, or need, to know
more about machine code, then I suggest that you turn to my book
Introducing Amstrad CPC464 Machine Code, also published by Collins.
The purpose of the DFS is to interpret the disc commands that you type, and
convert these into signals that can be used to control the disc system and
shift data to and from it.

Note that the name is disc filing system, not simply disc system. Filing
implies the storage of data (such as string or number arrays) as well as
BASIC or machine code programs. The DFS is therefore equipped to carry
out the organisation of data which is needed to store it on disc and recover it
later. That’s something we’ll come back to later in Chapter 5. Meantime
we’ll keep to the more straightforward uses of the DFS. Rather than looking
at the commands of the DFS in alphabetical order, we’ll look at them in the
order that is most likely to be of use to you, starting with the use of discs for
storing programs. First, however, we need to look at how the use of a DFS
modifies the Amstrad CPC464 machine, and what problems this can create
for you.

The first thing that you have to get used to is the order of switching on and
off. When the disc system is switched on, it needs a short time to prepare for
being used, and in this time it’s important that it should receive no signals
from the computer. It’s equally important that there should be no disc in the
drive. As you switch on the components of your system, then, you must
always ensure that there is no disc in the drive, and that the disc drive is
switched on before the computer. If you find that you have managed to
reverse the order, then switch both off and start again. The method that 1 use
is to keep the disc drive’s own mains switch permanently on. When I switch
off, 1 switch off at the computer and the monitor, then at the mains. This
ensures that when I switch on. I switch the mains first, which will switch on

14 The Amstrad CPC464 Disc System

the disc drive. I can then switch on the monitor and the computer, in that
order. Y ou will see on the front of the disc drive a pair of lights. The one next
to the Amstrad name, at the lower part of the panel is green, and it simply
indicates that the power is switched on to the drive unit. The red light above
it and to the left is a ‘busy’ warning, and it will be on brightly while the disc
unit is operating. While the disc unit is awaiting a command, this light is
dim. You must never take a disc out of the drive or put another disc in while
this light is fully on. A few programs as they operate will cause the red light
to flash irregularly, but you will hear the drive whirring round as well,
indicating that this is not an error. When you switch on the drive, you will
see the green light come on, and the red light appears very dim. When you
switch on the computer, the red light brightens slightly. You should not have
any disc in the drive while you switch it on, because there is a chance of
corrupting a disc if you do this.

Using your memory

Memory is one of the vital statistics of a computer, and it is organised in
units that are called bytes. Each byte can store one character, but numbers
are coded to make more efficient use of memory than having one byte
allocated for each digit. The total amount of memory that the
microprocessor of the machine can cope with in one lump is 65536 bytes. To
distinguish one byte from another we number them, starting with 0 and
going up to 65535 in our ordinary counting scale. Since 1024 bytes, in
computing language, is IK of memory, the Amstrad CPC464 is described as
having 64K of memory, since 64X 1024 = 65536. Most modern computers
use this amount of memory, but the important quantity is how much of the
memory is available for you to use. The CPC464 allows you to use almost
41K of the total of 64K for BASIC programs or for machine code.

An important difference which has been mentioned earlier, however, is
that adding a disc system takes only 1284 bytes of memory from the
computer. One manufacturer sells a 16K computer which has only 7K left
when the disc system is added! Adding a disc system to your CPC464 leaves
you with almost as much memory as you had before. This is a very great
advantage, because it allows you to transfer programs from cassette form to
disc form with less risk of running out of memory. The price that you pay for
this convenience is that you can use only an Amstrad disc drive - the disc
drives that you see at such tempting prices in the shops are for any other
machine, but not Amstrad! You may, however, find that some suppliers
will offer disc drives which have been modified to fit the CPC464. You
should think twice before being tempted with bargain disc drives, however,
because you may be cutting yourself off from a lot of useful software by
having a non-standard system.

The Disc Filing System 15

Loading and saving

We dealt with the formatting of a disc in the previous chapter. Once a disc
has been formatted, you can use it for storage. The method that you follow
for BASIC programs is very similar to the method used for cassette storage,
and the form of the commands is almost identical. The most important
difference is that you wust use a filename for both LOAD and SAVE. You
may have become accustomed to using LOAD“” with the cassette system to
load the next program on a tape. If you use this command with the disc
system, you will get the error message ‘Bad command’. On a disc there is no
‘next program’, because all of the programs are obtained by finding a name
in the directory, and then locating the correct sector. Similarly, a command
such as SAVE“” is rejected. When you switch on a disc-equipped machine,
the disc system is automatically switched in, so that all LOAD and SAVE
commands refer to the disc system. If you want to make use of cassettes, you
will have to signal this to the system.

If, for example, you have some BASIC programs on a cassette that you
want to save on to a disc, then the procedure is as follows. Place the cassette
that you want to use in the recorder. This should be a cassette whose
program is not ‘protected’ in any way - if you understand machine code
programming, you will know how to remove the protection from a program
on cassette. Alternatively, you can buy one of the advertised ‘unlocking’
programs - they do work! Another option is to type and use the tape to disc
utility program in Chapter 8 of this book. Place a formatted disc, with no
write-protection, into the disc drive. Now ifyou simply used LOAD to try to
get the program from tape, you would not succeed, because the effect of
LOAD and SAVE are to make use of the disc system. You can, however,
overrule this by using the command:

|TAPE.IN (ENTER)

first. This changes the coding in the computer so that you can LOAD from a
cassette, but SAVE on the disc. You can then load in the program that you
want to save. You will have to start by typing LOAD “NAME” (or just
LOAD"” if you want the next program on the tape) and pressing ENTER.
You will get the familiar message:

Press PLAY then any key:

and when you do this, the program will start to load. This action of loading
from tape should present no problem other than the time it takes. Once the
program has loaded, you may want to check it briefly by listing it or running
it, just to make sure that it is the program which you want. Now type SAVE
“MYPROG” using whatever filename you have decided to give the
program. Remember that the disc system permits filenames of up to eight
characters. You must use a filename when you load or save using discs.
When you press ENTER, the disc drive will click, and almost immediately

1 6 The Amstrad CPC464 Disc System

(unless it is a very long program) you will see the prompt reappear to
indicate that the transfer is complete. Shortly after this, the red disc drive
light will go out, and you will hear the disc motor stop. That’s it! If you want
to carry out the (unlikely) action of loading from disc and saving to tape,
then you would use (TAPE.OUT instead of |TAPE.IN. The command
|TAPE switches entirely to tape operation, both loading and saving, and
| DISC switches back to 100% disc action. The presence of these DISC and
TAPE.IN (and .OUT) commands makes it possible to carry out every
conceivable transfer between tape and disc.

To load a program that is on disc, you can type LOAD “M YPROG” (or
whatever filename you have chosen) and press the ENTER key. If the disc is
correctly inserted in the drive, it will spin, and the ‘Ready’ prompt will
reappear shortly to indicate that the program is loaded and ready. If you
used the wrong filename, you will either get the wrong program or an error
message, depending on whether a file of that name exists. If there is no
program called MYPROG on the disc, for example, you will get the error
message:

MYPROG . not found

Not all programs will load in this way. You will find, for example, that the
ROIN1IME demonstration program on the Master disc will not load in this
way. That’s because, like most games programs fortheCPC464, it is written
in protected machine code rather than in BASIC. A protected machine code
program has to be RUN rather than just loaded, and if you try to use a
LOAD command, you will get some form of error message. If, for example,
you use LOAD“ROINTIME”, you will get the ‘not found’ message. If you
notice that the full title of the program is RO1NTIME.DEM, and you use
this filename, you will get the ‘memory full’ error message. You can make
use of the program only by typing RUN “ROINT1ME.DEM”, and then
ENTER. This loads and runs the program, but you will find that you need to
press CTRL SHIFT ESC to leave the program. Once again, you can copy
such programs only if you are reasonably proficient in machine code, or
have purchased an unlocking program.

The ordinary LOAD command fails also to load the LOGO program
which is on the B side of the Master disc. This is because LOGO is in
machine code and has been saved by using CP/ M. To load it, then, you must
switch to CP/M, and because of the way that DR. LOGO has been
recorded, this will also load the LOGO. Switch to CP/M by typing|CPM
(ENTER), and wait. You will see the A> prompt, then the name LOGO and
a copyright message. The more normal way of loading a CP/ M program is
to type | CPM, wait until the disc is ready, then type the name of the
program, and then press ENTER. This is all that you need to load normally
when CP/M is in use. U nless you use some of the (very expensive) business
programs which have been transferred on to 3-inch discs, however, LOGO
might be the only program that you are likely to load from CP/M!

The Disc Filing System 17

Loading is generally much faster than storing, because the DFS carries out
a check on data when it records, but not when it replays. If you get any sort of
error message when you are saving a program, then it’s wise to assume
that the program has not been saved, and to save it again. When you have
saved a program on disc, it’s time to take a look at the way the disc keeps
track of your program. This is done by reading the directory of the disc.
Make sure that you are using AMSDOS (dark blue background, orange
yellow print), and then type CAT and press ENTER. If you happen to be
using CP/M, then type DIR instead of CAT. The AMSDOS CAT
command gives you a list, in alphabetical order, of the filenames, file types
and size of each stored file. It also shows under this list how many kilobytes
of storage remain unused and available on the disc. This is a more useful
display than the one you get by using DIR in CP/M, because the DIR
display does not show the file sizes, nor does it show the remaining space. On
CP/M, however, you can find the size of a file by using STAT. Typing, for
example, STAT ED.COM will produce the file size and arrangement on the
disc of the file called ED.COM. When you use STAT, you have to follow it
with the full filename, including the three letters which follow the dot.

You can also print out the DIR display, assuming that you have a printer
connected. If you type DIR, and then follow it with CTRL P before pressing
ENTER, the directory will be printed on paper as well as appearing on the
screen. It’s very convenient to keep printouts of your directories because you
can then find what is on each disc without having to insert the disc and use
CAT or DIR. With over one hundred discs in use, I wouldn’t want to be
without this facility!

Remember that each disc has two sides, but only one side can be read by a
drive. You will have to turn the disc over to CAT or DIR the other side. If
you have only one drive, the commands that we have looked at are all you
need, but with two drives, you will have to select the drive that you want to
use before you attempt to LOAD or SAVE or CAT that drive. The first
drive is labelled ‘A’, and is the one which is attached to the connector at the
far end of the cable. The cable has another connector, and the drive on this
connector is labelled ‘B’. At switch-on, drive A is always selected. If you
want to select drive B, then type | B if you are using AMSDOS, or B: if you
are using CP/M. In CP/M, you can add the drive letter to a filename. This
means that you can be using drive A normally, but load a file called
ADDFILE from drive B by using:

B:ADDF1LE

which will load this file from drive B, and then switch back to using drive A
again. You should not attempt to use :B if you have only one drive, because
this can cause the operating system to become jammed in a loop. T o recover,
press CTRL SHIFT and ESC together.

You must keep a careful record of the filenames that you use. This is
because the disc drive will quite happily replace one program with another

ED.COM
ED.COM

18 The Amstrad CPC464 Disc System

of the same name. If you have just completed a program and you want to
save it, then always use CAT to read the directory to find if you have used a
filename already. The old program is not, however, wiped from the disc.
Instead, it is renamed with the extension label BAK. For example, suppose
you wanted to save a BASIC program called “EFFORTS”. If there is
another BASIC program of this name on the disc, it will appear in the
catalogue as EFFORTS .BAS - the extension name of BAS has been placed
there automatically by the action of the system. When you record your new
program using the same name, it gets the name of EFFORTS .BAS, and the
other program is renamed EFFORTS .BAK. You can do this only once,
though. If you save yet another program with the file name EFFORTS, then
the first one will be wiped from the disc, the second one will be renamed
EFFORTS .BAK, and the latest one will be labelled EFFORTS .BAS.

If you really want to prevent the replacing of a program, however, this can
be done. For details, see the chapter on CP/M operations (Chapter 4).
Though the protection is carried out by using CP/M, it is recognised by
AMSDOS, and in a catalogue the filename is marked with an asterisk. Any
attempt to save a file with the same name will then bring up an error message
which shows the filename followed by the message ‘is read only’. This rather
cumbersome but useful protection should be applied to all valuable files.
When you have a number of valuable files on a disc, you should write
protect the whole disc by flipping back the small shutter with the end of a
ball-point pen or a nail-file. This will protect all of your files on that disc
from being written over. It can’t protect them from coffee or from stray
magnetic fields, though!

Disc commands

Because the disc system for the CPC464 contains its own computing
circuits, complete with some memory, many of the actions that we use to
control the disc system have to be carried out by sending command words to
the disc system itself. The words SAVE and LOAD are CPC464 command
words, which operate on the cassette system if you have used |TAPE and
forgotten to use |DISC later. There is another set of commands, however,
which applies to the disc system only, and which has to be sent to the disc
drive. These commands are all distinguished by the use of the sign before
the command name (like | TAPE and | DISC), and by the way that filenames
can be included. Many of these commands are also available in slightly
different form when you are using CP/M.

Retitling and erasing

As your use of discs increases, you may find that you want to group files that
are related in some way on to one disc. It would then be very helpful if you

The Disc Filing System 19

could give this disc a title which would remind you of what it contains. This
is possible on a number of other disc systems, but not alas on the AMSDOS.
You can, however, delete and rename individual files and groups of files.
The system for doing this is not exactly simple or straightforward compared,
for example, with that of the BBC disc system, so a bit of practice with it will
be useful.

Starting with deleting files, the keyword here is ERA(ERAse). You might
think that this could be used in the form ERA “FILENAME”, but it can’t.
Instead, you have to pass to the disc system the address in memory of where
this name is placed. The BASIC of the CPC464 has provided for this by the
command @. If you precede a variable name, number or string, with the @
sign, then the effect is to locate whereabouts in the memory that variable
value is stored. For example, if you type X$ = “FILE” (ENTER) and then
follow it with ?@X$, you will see a number (such as 374) appear on the
screen. This is a memory address the number of the first of a set of bytes in
memory that ‘points to’ the variable name. By ‘points to’, I mean that the
contents of these bytes contain information on the length of a string and its
location in memory. This is the way in which such information must be
passed to the disc system when the | commands are used.

Suppose, for example, that we want to erase a file which is called
ALLWORK. This has to be done in two steps. The first step is to assign
“ALLWORK” to a variable name, such as X$. The second is to apply ERA
to @X$. The two lines of commands are therefore:

X$ = “ALLWORK” (ENTER)
|ERA,@X$ (ENTER)

and the file will be erased from the directory after the second command has
been executed. This is possible only if the file has not been protected. If the
file has been made ‘read only’ by using the CP/M STAT command (see
later), or if the whole disc is write-protected because of the write-protect
shutter being pulled back, then the erasure cannot take place. If you want to
erase a number of files which have very different names, then you can use a
loop in BASIC which reads each filename from a DATA list, assigns each in
turn to X$, and then carries out the ERA action.

ERA, however, is one of the many commands that can make use of the
‘wildcard’ character, *. The asterisk can be used to mean any collection of
characters, so that if you assigned X$ = “E*”, then this would mean any
name which started with E. The asterisk can be used in various parts of a
filename. For example, *.BAK would mean any ‘old version’ file, because it
would refer to any filename followed by .BAK, like ERROR.BAK or
PASSIT.BAK and so on. A ‘name’ such as would mean any file. This
wildcard system can be useful but you have to be careful with it, especially
when you are erasing files.

Renaming a file makes use of the REN command. The form of the
command is | REN,@N$,@X$, with the @ sign placed before each variable

20 The Amstrad CPC464 Disc System

name. NS in this case means the new name that you want to use, and X$ is
the ‘ex-name’, the one you want to replace. Using X$ is preferable to using
OS, because O and 0 are too easily confused. A renaming command needs
three lines, with two assignments. For example:

N$ = “NEWFILE” (ENTER)
X$ = “OLDFILE.BAS” (ENTER)
|REN,@N$,@XS (ENTER)

will rename the file that was called OLDFILE to the name NEWFILE. As
usual, the disc must not be write-protected, and the name NEWFILE must
not already exist on the disc. The full name of the old file, including
extension, must be used in the assignment of the old string, X$. If this is not
done, the change of name will not take place and you will get an error
message such as:

OLDFILE . not found

to show that the extension was omitted. Putting a ‘wildcard’ into the old
filename will cause a ‘Bad command’ error message. Because this command
is so fussy about its syntax, you should always type it carefully and check
each line before entering it. Remember that you won’t have to repeat each
part of the command if you want to try again. You will probably need to
repeat only one of the assignments and the REN part if you have slipped up
somewhere. If you want to rename a number of files, then set up a loop in
BASIC, reading the old names and the new names from DATA lines.

Chapter Three

Digging Deeper

Hexadecimal codes

Unless you program in machine code, you probably haven’t encountered the
hexadecimal scale. If you use your disc system only as a convenient way of
storing BASIC programs and data, and you have no intention of trying to
read data from damaged discs or write machine code disc routines, altering
CP/M routines, or transferring to disc programs from tapes which are copy
protected, then you can skip what follows, and reserve it for later. At some
stage, however, you will probably want to make use of this information, and
this is as good a place for it as any other.

Hexadecimal means scale of sixteen, and it’s a way of writing numbers
that is much better suited to the way the computer uses number codes. Our
ordinary number scale is denary, scale of ten. This means that we count
numbers up to nine, and the next higher number is shown as two digits, 10,
meaning one ten and no units. Similarly, 123 means one hundred, two tens
and three units. This counting scale, invented by the Arabs, replaced the
Roman numbering system many centuries ago (except, oddly enough, for
writing the dates of films and TV programs!). The unit of memory in the
CPC464 and all other machines in its class is the byte, which can store a
number between 0 and 255 (inclusive). A denary number for a byte may
therefore be one figure (like 4) or two (like 17) or three (like 143). Hex (short
for hexadecimal) is a much more convenient code for these numbers, and for
address numbers. All single-byte numbers can be represented by just two
hex digits, and any two-byte address by four hex digits.

One hex digit, then, can represent a number which, written in ordinary
denary, can be between 0 and 15. Since we don’t have symbols for digits
higher than 9, we have to use the letters A,B,C,D,E, and F to supplement the
digits 0 to 9 in the hex scale, as Figure 3.1 illustrates. The advantage of using
hex is that we can see much better how address numbers are related. For
example, consider the address for the start of BASIC in the ROM of the
CPC464. This is the address which is used when you type RUN and press
ENTER. In hex, this is 0170, whereas in ordinary denary numbers it is 368.
Similarly, the address which is the start of the set used for screen memory is
C000 in hex, 49152 in denary.

22 The Amstrad CPC464 Disc System

Denary Hex Denary Hex

1 01 9 09
2 02 10 0A
3 03 11 0B
4 04 12 0C
5 05 13 0D
6 06 14 0E
7 07 15 0F
8 08 16 10

Figure3.1. How numbers 1 to 1 6 are written in hex.

The hex scale

The hexadecimal scale consists of sixteen digits, starting as always with 0
and going up in the usual way to 9. The next figure is not 10, however,
because this would mean one sixteen and no units, and since we aren’t
provided with symbols for digits beyond 9, we use the letters A to F. The
number that we write as 10 (ten) in denary is written as 0A in hex, eleven as
OB, twelve as 0C and so on up to fifteen, which is OF. The zero doesn’t have
to be written, but programmers get into the habit of writing a data byte with
two digits and an address with four even if fewer digits are needed. The
number that follows OF is 10, sixteen in denary, and the scale then repeats to
IF, thirty-one, which is followed by 20. The maximum size of byte, 255 in
denary, is FF in hex. The maximum size of address in the memory of the
computer, 65535, is hex FFFF. This is the number that we refer to as 64K.
The K. means 1024 in denary, #400 in hex. When we write hex numbers, it’s
usual to mark them in some way so that you don’t confuse them with denary
numbers. There’s not much chance of confusing a number like 3E with a
denary number, but a number like 26 might be hex or denary. The
convention that is followed by machine code programmers of the Amstrad
CPC464 is to mark a hex number with the hash sign (#) placed before the
number. For example, the number #47 means hex 47, but plain 47 would
mean denary forty-seven. The BASIC of the CPC464 will not recognise the
use of # to mark a hex number, so you cannot enter numbers like #2B or
#028A. It will, however, work with hex numbers if you prefix them with‘&’
or ‘&H’. The machine code program-writing pack, called DEVPAC, will
require the use of the hashmark, and another such pack, the very popular
ZEN assembler, needs hex numbers to be followed by the letter H, and will
reject hash marks or ampersands (& signs). If you are using some types of
utility programs that recover data from damaged discs, or which alter the
machine operating system, you may have to enter numbers in hex. These

Digging Deeper 23

utility programs usually contain routines for the conversion of numbers
between hex and denary scales, so that you never need to carry out hex
arithmetic for yourself. In addition, the CPC464 will carry out conversions
for you. To find the equivalent of a denary number you use HEXS(number,
digits). The ‘number’ is the denary number that you want to convert, and
‘digits’ means the number of hex digits that you want to use. This will
normally be two for a byte and four for an address. For example,
?HEX$(210,2) will give the correct hex conversion to #D2, and
?HEX$(23540,4) will give the conversion to #5BF4.

Backing up

One feature of a disc storage system which is less pleasant is that an accident
to a disc can result in the loss of a lot of information. If you break a cassette
tape, it’s possible to splice the tape, and with some juggling, lose only a part
of one program. If you damage a disc, it’s likely that all of the information
on the disc will be lost as far as conventional LOAD commands are
concerned. This does not mean that the information cannot be recovered
from the disc, but this is a desperate measure, not to be undertaken lightly. It
makes sense, then, if you have a disc full of valuable programs or data, to
make a backup copy as soon as possible.

One sensible measure is to make a second copy of each program as you
put in on disc. If you have bought programs on disc, however, you will need
to make a backup copy, or two copies if the disc is a valuable one. The
CPC464 system also allows you to copy the whole of a disc surface. Note
that I mean surface, not disc. The discs are two-sided, and any backup
method will copy only from one side. If you want to back up an entire disc,
you will have to back up each side separately, turning the disc over at some
stage so as to read from the other side. For many purposes, however,
copying a file is enough, because you may only have one valuable program
or data file on the disc. The operating system of the DDI-1 disc drive
provides very well for copying a named file from one disc to another. If you
use AMSDOS only, with programs in BASIC, this involves separate LOAD
and SAVE steps. In other words, you will have to load the file into memory
from one disc, and save it to another. This is straightforward enough when
the files are BASIC programs, but the task is a lot more difficult when the
files are machine code programs or data files. Fortunately, the utility
programs which are part of the CP/ M system are available for carrying out
this essential task. We’ll look at the CP/ M FILECOPY backup utility later.
A ‘utility’ is a program which aids you in some useful task like backing up a
disc, printing what’s on the screen, and so on.

Backing up is particularly easy when you have twin drives. With two
drives in use, you can use a utility program to cause everything on one side of
the disc in drive A to be copied to the disc in drive B, or the other way round.

24 The Amstrad CPC464 Disc System

The process is accompanied by a lot of clicking and whirring, as one disc is
read and the other written, but at least you don’t have to attend to the
process. You can make yourself a cup of coffee while it is all happening. A
low-cost alternative, if you have a lot of spare cassettes, is to keep backup
copies on cassettes. Unless you are using business software, this is a more
logical way to keep your backups, because the Amstrad cassette system is
particularly reliable. For business software, however, it’s much safer to
backup on to another disc, and to keep this backup disc in a cool safe place
well away from all the hazards to discs, such as loudspeakers, TV receivers,
electric motors and anything else that uses magnets of any kind. Later in this
book, we’ll take a look at the sort of utility programs that are available for
the CPC464.

Making backups

Of all the topics in disc use, that of making backup copies of individual files
and of complete discs is the most important. The method which we have
looked at so far, of loading into memory and saving on to disc, is simple
enough for BASIC programs. It is, in fact, the only method that is available
in the AMSDOS operating system. It can cater for machine code programs
also providing that you know the essential information about the program.
For example, if you have a machine code program from which you can
break out into BASIC, then you can save this on disc. You need to know the
address at which this program starts, and the length of the program in bytes.
For example, suppose you have a machine code program which starts at
address #03E8 (denary 1000) and which consists of 9060 bytes (denary).
You can save this on disc by using:

S A V E“ M CODE”, B, 1000,9060 (ENTER)

but this is no great help if you don’t know where the start and end addresses
happen to be. The CAT command applied to tape does not help you very
much on this, because it does not give a display of the tape header. This is the
part of the tape which carries the information about where the program
resides in the memory. As it happens, the skilled machine code programmer
has no problems in finding this information, and by the time this book
appears, there will probably be a rash of programs on tape and on disc which
will help you. In the meantime, however. Figure 3.2 shows a utility call
HEADTST which will read the header of a tape program and print out the
really useful information on it. This uses BASIC for most of its actions, but
includes twelve bytes of machine code which will load the first ‘header’
section of a tape. This ‘header’ consists of 64 bytes which contain, in number
coded form, all the information about the file that follows. Normally, this
loads into the machine memory and is used without being accessible to you,
the user, so that you never know what is on this header. The short piece of

Digging Deeper 25

machine code which is contained in the BASIC program of Figure 3.2 will
load the header part of the tape data into the memory, starting at memory
address 2000 (denary). The BASIC part of the program can then extract
information from the header simply by peeking into this part of the
memory.

10 I TAPE: H=HIMEM: CLS: MEMORY 1980:M7.= 19

81
20 DEF FNGET (X7.)=PEEK(X7.)+256*PEEK(X7.+ 1)

30 FOR N7.=0 TO 11
40 READ DS: POKE M7.+N7., VAL < "Sc"+D*> : NEXT

50 PRINT"Prepare cassette, press spaceba

r to start."
60 KS=INKEYS:IF KS=""THEN 60

70 CALL M7.:M7.=2000
80 PRINT:PRINT"Program
90 FOR N7.=0 TO 15: PRINT CHRS (PEEK (M7.+N7.)

);:NEXT
100 PRINT: IF PEEK (M7.+ 18) AND 1 THEN PRINT

"Protected" ELSE PRINT"Nct protected"

110 PRINT"File type "?
120 X7.=PEEK(M7.+18) AND 14

130 IF X7.=0 THEN PRINT"Coded BASIC"

140 IF X7.=2 THEN PRINT"Machine code"

150 IF X7.=6 THEN PRINT"ASCII characters"

160 IF X7.=4 THEN PRINT"Screen image”
170 PRINT:PRINT"Start address is “JFNGET

(M7.+21)
180 PRINT"Length is "; FNGET (M7.+24)
190 PR I NT "Execute address is "; FNGET CM7.+

26)
200 DATA 21,D0,07,11,40,00,3E,2C,CD,A1,B

C.C9
210 MEMORY H:1DISC

Figure 3.2. A utility which reads a tape header and prints the useful
information.

How to use HEADTST

To use HEADTST, assuming that you have typed in the program and saved
it on disc, load the program, and RUN it. The program allocates a chunk of
memory for its own uses, and automatically switches the operating system

26 The Amstrad CPC464 Disc System

to TAPE, rather than disc. If this is not done, then the program will attempt
to read from the disc. This can be useful, but it’s not what we want at the
moment! You will get the usual message about pressing PLAY, then any
key, at which you should make sure that your cassette is inserted and wound
to the correct place. When you start the cassette, the header part only will be
read. This is the part which sounds like a rapid change of note, and whenever
it has been read the information will appear on the screen. The first line of
information is on the filename. Remember that tape filenames can use up to
16 characters, so don’t expect to be able to use the same filename when you
save to disc. You will then see whether the tape is protected or not. A lot of
machine code tapes are protected in some way, but not all in the way that is
achieved by using SAVE with the P command. Others, however, use a
BASIC ‘loader’ program which loads and calls the machine code, but with
the machine code itself unprotected. The next information is on the file type,
showing whether this is machine code or not. A ‘coded BASIC’ file means
one that is a normal recording of a BASIC program, with each ‘keyword’
(such as PRINT or INKEYS) coded as a single byte. This is a direct copy of
what is stored in memory when such a BASIC program is loaded, and it will
normally be loaded back to the same memory location of 368 (denary). An
ASCII file may be data that has been saved using PRINT#9, or it can be a
BASIC program which has been saved usingSAVE“name”,A. Whicheverit
is, it consists of a set of ASCII codes which are easy to load and to copy. For
a variety of reasons, this is a desirable form to save programs on disc, as we
shall see later. The other possible file type, ‘screen image’, means a set of
bytes which represents a picture on the screen, and has been obtained by
saving the contents of the screen memory.

Following the file type, the program then prints out the start address. This
is the address in the memory at which the first byte of the program is located.
The length figure which follows then shows how many bytes of memory will
be occupied. Finally, the execute address is a figure that is given only for a
machine code program. This is the address at which the machine must start
working on the program. The execute address is often the same as the start
address for a machine code program. One very notable exception occurs
when the machine code has been loaded by a‘BASIC loader’. In such a case,
the execute address is often 0. This will cause the program to crash if RUN“”
is used to start the program, because address 0 is the one which is used when
the machine is switched on from cold. For this reason, it is called the ‘cold
start’ address.

How it works

The first line of the program clears the screen, switches to TAPE, and
reserves memory. The effect of H = HIMEM is to save, as variable H, the
value of the address that is used as the top of memory before the program

Digging Deeper 27

runs. The top of memory is then shifted down to 1980. The effect of
MEMORY 1980 is to ensure that no address higher than 1980 can be used
by the BASIC program. This avoids corrupting the machine code, the bytes
that are read from the tape, or the quantities that are stored near the top of
the memory space for the disc system. Line 20 then defines a function
FNGET, which calculates a number from a pair of bytes peeked in memory.
Integer numbers are stored in memory as two bytes, with the lower byte
storing values up to 255, and the higher byte storing the number of 256s. For
example, the number 320 is 256+64, and would be stored as the two
numbers 64 and 1, meaning 64+ 1*256. A number which is stored as 35 and
7 means 35 + 256*7 = 1827. The function needs the address of the lower byte,
and will calculate the number from this information.

Lines 30 and 40 then read in and place into memory twelve bytes of
instruction codes. These set up and call a routine in the ROM of the CPC464
which will read the header part of a tape and store its 64 bytes in addresses
which begin at 2000 (denary). When this has been done, line 60 provides a
‘press any key’ step, and when a key has been pressed, the CALL M% in line
70 will make the machine code run. This will produce the usual cassette
loading message on the screen, and when the PLAY key is pressed, the
header of the tape is read. After this, M% is reassigned to 2000 so that the
memory from this address can be peeked. Lines 80 and 90 get the filename
(up to 16 characters) which will be stored at addresses 2000 to 2015. The next
address of interest is 2018. If this is odd, then the program is protected, and
the test in line 100 checks for this and prints the appropriate messages. The
rest of this byte is also used to carry information about the type of file that
follows the header. Figure 3.3 shows how this coding system operates, and
why the action of line 120 can detect the codes. The results of this decoding
are printed in lines 130 to 160.

The remaining actions consist of finding number values, using FNGET.
The first important number is the start address. What is actually contained
here is the address at which the bytes were originally stored when the
program was recorded. The address which is passed to FNGET is 2021.
Following this, at address 2024, the total length of the program is stored.
Finally, from 2026, the execute address is read. These are the most
important values to read from the header at this stage - you will find details
of the other codes in the Amsoft publication Amstrad CPC464 Concise
Firmware Specification. The program ends by restoring the original
memory size, and the disc system. Unless the original memory boundary is
reset, you will get a ‘Memory full’ error message when you try to SAVE a
program after using this routine. Note that this program works only on the
header of a tape; it does not load any of the bytes of the tape into memory.
That’s a topic that we’ll deal with at a later stage, in Chapter 8.

28 The Amstrad CPC464 Disc System

Each position can contain a 0 or a 7

011 ASCII coded

Example: If 00000001 appears this means ordinary BASIC, protected.

The action of AND 1 compares the byte No. 18 with 00000001, and gives the
answer TRUE if both bytes contain a 1 in position 0.

AND 14comparesthe byteNo. 18with00001110.This ignores bit0and gives:
00000000 for BASIC
00000010 for m/c
00000100 for screen
00000110 for ASCII

(0 in denary)
(2 in denary)
(4 in denary)
(6 in denary)

Figure 3.3. The coding system for byte No. 18 in the header, and how
information is extracted from it.

Other backups

For backing up programs which are not BASIC, and about which nothing is
known, we have to turn to the other operating system, CP/ M. The CP/ M
package contains several utility programs which are stored on the CP/ M
Master disc, and the two which are of special interest to us at the moment are
FILECOPY and DISCCOPY. You should by this time, have followed the
instructions in the Amstrad DDI-1 Manual about making a backup copy of
your Master disc. If you have not, then this is the time to do it! DISCCOPY
is the utility that allows such a backup copy to be made, and we shall
therefore look at it first. Before we do so, however, you must make sure that
the Master disc is write-protected. This is to prevent any muddle. If you copy
the contents of the Master disc on to a blank disc, all is well. If, by some
terrible blunder, you copy the contents of the blank disc on to the Master
disc, you will have lost the Master disc programs, and you will probably not
have the use of the disc system until you can replace it. Such blunders are
easy to make, especially in the wee sma’ hours of the morning.

To copy the whole disc, as you would for a Master disc, insert the Master
disc in the drive. The label should show side 1 uppermost, and you should
then engage CP/M by typing|CPM. When you press ENTER, the disc will
spin, and after a short time (when CP/M has been loaded) you will see the

Digging Deeper 29

screen change to 80-character mode. This is when you have to be careful,
because some numbers can be very hard to read in this mode, and a mistake
can have unfortunate consequences. Fortuately, for the DISCCOPY
program, no numbers have to be read. You simply type DISCCOPY and
press ENTER. This is the universal CP/M method of loading a named
program - just type the name and (ENTER). You will be asked to insert the
source disc into drive A, and press any key. If you are copying the CP/M
Master disc itself, you don’t need to do anything at this point. If you are
making a complete backup copy of any other disc, you should insert it now.
It’s a good idea to label your discs as ‘SOURCE’ and ‘DESTINATION’
before you start, so as to avoid confusion. This is less likely when you are
copying the Master disc, but when you are backing up another disc, it may
be less clear which is which. As long as you always write-protect the
SOURCE disc, you are not likely to come to grief, but a lot of time can be
saved by using clear labels. The DESTINATION disc need not have been
formatted if you are using DISCCOPY, because DISCCOPY automatic
ally carries out formatting as it operates.

Since a disc can hold much more data than will fit into the memory of the
computer, the complete backup will involve reading data from the
SOURCE disc, storing it in the memory, and then writing it to the
DESTINATION disc. This has to be done five times in all to transfer all the
data from the SOURCE to the DESTINATION. When each read is
complete you will be prompted by a screen message to insert the
DESTINATION disc into the drive, and press any key. As usual, it’s best to
press the spacebar or, if you have a slightly sticky spacebar, the ENTER key.
After the last chunk of data has been read and written, the program repeats,
asking if you want to copy another disc. If you do, you answer with the ‘Y’
key, and the process repeats. If you don’t, then press the‘N’ key, and you will
be instructed to place the CP/ M Master disc into the drive and press CTRL
C. This replaces the DISCCOPY utility with the normal CP/M operating
system again. Figure 3.4 shows the error messages that you might encounter
while using this utility, and their causes. The alternative copying program,
COPYDISC, can be used only if you have two drives. For this reason, it’s
often useful to make a backup copy of the Master disc that is not complete,
but which contains only the utilities that are relevant to your own system. If
you use COPYDISC in place of DISCCOPY (not a difficult mistake to
make), you may find yourself wondering why it doesn’t work, and how you
can get out of it. Individual files are copied by using the other utility,
FILECOPY.

Using FILECOPY

FILECOPY is a utility that allows files to be copied from one disc to another
on a single drive. Unlike DISCCOPY, which was loaded simply by typing

30 The Amstrad CPC464 Disc System

‘You must insert the source disc into drive A’
No disc in the drive.

‘You must insert a CP/M system disc into drive A’
A system disc must be in the drive in order to return to CP/M.

‘You must insert the destination disc into drive A’
There has been no disc in the drive to receive the copy.

‘The destination disc in drive A must be write-enabled’
You have used a disc which has its write-protect shutter drawn back.

‘WARNING: Failed to copy disc correctly. The destination disc should not
be used until it is successfully copied onto’

The program has been abandoned mid-way, and must be started again.
‘The source disc has an unknown format’

Disc cannot be read, program has been abandoned.
‘Failed to read source disc correctly: track x sector y’

Fault in the source disc at the named track/sector location. You may be
able to correct this with a disc editor.

‘Failed to write destination disc correctly: track x sector y’
Bad sector(s) in destination disc, which should be replaced.

‘Failed to read destination disc correctly: track x sector y’
Faulty sectorfs) or magnetic interference. Check position of disc drive and
try again.

‘Failed to verify destination disc correctly: track x sector y’
As above.

‘Failed to format destination disc correctly: track x’
Disc fault or magnetic interference again.

‘AC... aborted’
You typed CTRL-C while the program was waiting for an instruction.
Program abandoned.

Two other messages, ‘Illegal message number’ and ‘Insufficient space’
should not appear unless you have modified your CP/M system.

Figure 3.4. The error messages that you can encounter when using
DISCCOPY.

the name, the name FILECOPY must be followed by information about the
file that is to be copied. If, for example, you want to copy the program
BOOTGEN.COM from the Master disc onto a spare disc, you will have to
use the command FILECOPY BOOTGEN.COM (ENTER). FILECOPY,
used by itself, is meaningless. The DESTINATION disc must be formatted.

Though the FILECOPY command requires a filename, there is nothing
to stop this from containing the ‘wildcard’ asterisk character. If, for
example, you want to copy all the files which are CP/M utilities with the
.COM extension, then you can use FILECOPY ♦.COM to do this. If you
want to copy all files whose filenames start with B, then you can use

BOOTGEN.COM
BOOTGEN.COM
%25e2%2599%25a6.COM

Digging Deeper 31

FILECOPY B* to copy these files. You can even copy all files by using
FILECOPY *.*, but this is rather pointless if the disc is fairly full, because it
would normally be easier just to use DISCCOPY for this job. Figure 3.5
shows the error messages that you can encounter when using FILECOPY.

‘No SOURCE file present on input line’
You did not type a filename.

‘Syntax error in options’
Incorrect user number.

‘Failed to open SOURCE file correctly’
File not found, or reading failure.

‘Failed to close DESTINATION disc correctly’
Usually means that disc directory is full, or disc fault.

‘DESTINATION disc directory full’
No room for file directory entry, start again with another disc.

‘DESTINATION disc full’
No storage space on disc, use another disc.

‘The DESTINATION disc has an unknown format’
Usually means an unformatted disc, or one formatted by a different make
of computer. Can also mean a disc corrupted by a magnetic field.

‘The SOURCE disc has an unknown format’
Disc corrupted, or not an Amstrad disc.

‘SOURCE disc missing’
You didn’t put it in! This can also mean that the disc is not quite fully
home in the drive.

‘DESTINATION disc missing’
As above.

‘DESTINATION disc is write protected’
You forgot to slide the protection shutter forward, or have used the wrong
disc side.

‘Incorrect DESTINATION disc’
You started copying the file with one destination disc and have changed to
another.

‘Failed to read SOURCE disc correctly’
Possible disc failure, or incomplete file being read.

‘Failed to write DESTINATION disc correctly’
Failure of destination disc - try reformatting and start again.

‘WARNING:DESTINATION file (name) is incomplete’
The copy will not work because the file is not correctly closed. This is
unusual.

‘AC... aborted’
You pressed CTRL-C when the program expected an input.

Figure 3.5. The error messages that you can encounter when using FILECOPY.

Chapter Four

The CP/M Operating
System

So far, we have looked at the use of the AMSDOS operating system in more
detail than the CP/M system. This is because anyone who programs the
CPC464 in BASIC is more likely to use the AMSDOS system almost
exclusively. CP/ M is a system which is designed much more for the user of
expensive business-biased software than the writer of programs in BASIC.
It is a well-established system (first designed in 1973!), which is used mainly
on computers which have no BASIC in ROM. When you use CP/M,
BASIC is switched out so you cannot expect to load and run a BASIC
program when you use CP/M. All of the programs which you use with
CP/M will be in machine code, and unless you write machine code, or make
use of a language (like Pascal) which can be compiled to machine code,
you are unlikely to write programs using CP/M. In any case, the aids to
machine code programming which are included with the CP/ M package are
designed for the old 8080 chip rather than for the Z80 which is used in your
CPC464. This does not make these packages entirely useless, because 8080
code is compatible with Z80 code, but there are many better ways of writing
true Z80 code. One of them is the DEVPAC set of two programs, available
from Amsoft; another is the ZEN package, available from Kuma
Computers. In this chapter, we shall look mainly at the commands of CP/ M
which do not require extensive knowledge of machine code. First of all,
though, we need to look at the filename extensions. Remember that,
although all the commands are shown here in upper-case (capital) letters for
the sake of clarity, they can be typed in lower-case.

From using cassettes, you should be familiar with the idea of filenames.
The main difference, if you use only AMSDOS, is that the filenames can
have no more than eight characters. In addition to the main name, however,
you are permitted an ‘extension’ of three characters following the main
name. There must be a dot (period) between the main name and the
extension. These extensions are necessary for CP/ M, and so they are used in
the AMSDOS system as well. Their purpose is to identify a file type
correctly, and if you do not specify an extension for yourself, the operating
system will supply one. The most common extensions are listed in Figure
4.1. This is a small selection, and if you use CP/M programs extensively.

The CP/M Operating System 33

.ASC File of ASCII text.

.ASM Assembly language program file.

.BAK Backup file.

.BAS BASIC program file.

.COM CP/M transient program file.

.DAT Data file.
DOC Document or text file.
HEX Machine code file.

.LIB Library file.

.OBJ Machine code (object code) file.

.PRN Assembly language listing file.
REL Relocatable machine code file.

.SUB SUBMIT file.

.TEX Text file.

.TXT Text file.

.$$$ Temporary file. Also used for an unreadable file.

Figure 4.7. Commonly used CP/M extension codes.

you could come across thirty or more of these extension names, all of which
will be automatically assigned.

You can also assign extensions for yourself. Suppose, for example, that
you are working on a program for yourself - we’ll assume for the moment
that it is a BASIC program, using AMSDOS. When you first try it out, you
might want to save it under the filename of MYPROG.OOl, using the
extension of 001 to mean that this is version 1. After some work on the
program, you might want to save another version before running it, and this
one could be saved as MYPROG.002. The use of the extension identifies
this as a separate program, so that MYPROG:001 is not wiped out. When
you save the final version of the program, you can type MYPROG as its
filename, with no extension, and the system will automatically supply the
extension of BAS, because this is a BASIC program. You can, of course, use
these extensions as you please, but this use for numbering program versions
is probably the most handy application. There are other extensions which
can be used preceding the main filename, separated by a colon. The most
important type of extension preceding a filename is the drive letter, A or B.
You might, for example, have two programs, both called TESTIT.BAS but
on different drives. One could then be called by typing A:TESTIT.BAS, the
other by typing B:TESTIT.BAS, using the drive letters preceding the
filename? These preceding letters are not likely to be of much interest to you
if you are using only one drive, however. The other ‘extension’ at the front of
a filename is the user number, which will be mentioned briefly later.

34 The Amstrad CPC464 Disc System

The CP/M commands

CP/M commands are of two types, built-in and transient. The difference is
important. The built-in commands are contained in the ROM, and when
you make use of them, you don’t replace anything that is in the memory of
the computer. The transient commands are carried out by loading a
program (a ‘command’ file) into the memory and running it. This will
replace anything else that happens to be in the memory at the time, so that
you have to be rather careful about how you use these commands. In
particular, you should not have a BASIC program in the memory and then
switch to using a CP/M transient command unless you have a copy of the
BASIC program on the disc. Since you will not normally use BASIC along
with CP/M transient commands, this is not quite such a problem as it might
seem.

We’ll look at the transient commands of CP/ M later in this chapter, but
for the moment we’ll concentrate on the built-in commands, which are listed
in Figure 4.2. Each of these will be obeyed at once when its name (and any

DIR
TYPE
ERA
REN
SAVE

Print directory.
Print out named file.
Erase named file.
Rename file.
Save machine code in a block of memory.

n:
USER

Select drive n.
Enter user number.

Figure 4.2. Built-in commands of CP/M.

other data that is needed) is typed, followed by ENTER. Of these
commands, you will by this time have used DIR to obtain the CP/M
directory. You can obtain the same directory from AMSDOS by using
|DIR, and rather more information from CAT. Staying with the CP/M
DIR, however, you can also use this command to select directory entries.
Suppose, for example, that you want a listing of all the BASIC programs on
a disc. You can then type DIR*.BAS(ENTER), using the wildcard
character to force the system to list any file which has the extension letters
BAS. It is more likely, if you are workingin CP/M, that you will requirea list of
the .COM files, or possibly . ASC or .DAT files. Once again, you can obtain
these selective directories by using the asterisk wildcard character.

Of all the built-in commands, DIR is the one that you are likely to use
most of all. If you have two drives, then you will find that you need to use A:
and B: along with DIR. As you would expect. A: switchestodrive A, and B:
to drive B. If you use B: when you have only one drive connected (or if there
is a connector fault in drive B), you will get the error message:

The CP/M Operating System 35

Retry, Ignore, or Cancel?

which requires you to press the R, I or C key. While the system is waiting for
you to make up your mind, the disc keeps running. The appropriate
response is to press the C key. You then find another error message:

Bdos Err On B: Select

A close study of CP/ M manuals suggests that you should be able to get out
of this one by pressing CTRL-C. I could not break out this way; the only
way I could find of escaping from the endless loop of error messages was by
using the CTRL-ESC-SHIFT set of keys. If you have only one drive, then,
you should take care that you never use the B: command.

Using ERA and REN

By contrast with the rather clumsy way that AMSDOS uses the commands
ERA (ERAse) and REN (REName), CP/M uses these built-in commands
in a simple way. You must, however, be quite sure of what file, or files, you
want to erase. The best method of proceeding is to use DIR first, and to copy
the filename of the file that you want to delete. If there is no file of the name
that you have typed, you will get the ‘No file’ message. Suppose, for
example, that you want to delete MYPROG.001. If you type ERA
MYPROG, you will find that this is not sufficient. You may get the curious
error message ‘Bdos Err On A:R/O’ which normally means that the file is
write-protected. In this particular case (unless the file really is write-
protected), you need to start again by pressing ENTER (or any other key),
then ERA MYPROG.001. When you specify the full filename with its
extension, the erasure will be carried out.

You can use the wildcard character, *, but not to replace the whole of the
extension. You can, for example use ERA *.BAS to erase all BASIC files,
but you cannot specify ERA MYPROG.* to erase all files called MYPROG
which might have different extensions. What you can use, however, is ERA
MYPROG.00* to erase all versionsof MYPROG fromOOl to009. Ifyouget
a ‘Bdos Err’ message in the course of using ERA, then press the spacebar or
the ENTER key to get back to normal. It’s very important to use DIR after
an ERA command just to make sure that the erasure has been carried out as
you wanted it.

The REN command works rather as the | REN command in AMSDOS
does, but with straightforward filenames. The syntax of REN is:

REN NEWNAME.XXX = OLDNAME.XXX.

For example, if you have a file called REMS.BAS, you can rename it
TEST.BAS by using REN TEST.BAS = REMS.BAS. If the file REMS.BAS
is locked, then you will get the Bdos Err message ‘File R/O’ to indicate that

36 The Amstrad CPC464 Disc System

the file is read-only, and its name cannot be changed until you have removed
the write-protection. Unlike ERA, no wildcard characters are permitted
anywhere in the REN filenames, because it would be ridiculous to rename a
set of files to the same name. The error message which you get in this case is
the filename reprinted on the screen with a question mark following it.
Another error is to try to rename a file with a name that is already in use on
the disc. This also will be refused, with the ‘FILE EXISTS’ message.

USER, SAVE and TYPE commands

The USER and SAVE commands are much less likely to be used by the
CPC464 owner than the other CP/M built-in commands. USER isa way of
identifying files which have been saved by one user of the system. The idea is
useful when several users share a disc system, with each user having an
identity number between 0 and 15. By typing USER 8, for example, you
identify yourself as being entitled to load files which have been stored when
this user code was in action. Since all the files on your disc have been stored
using USER 0, there won’t be any USER 8 files. If you type USER 8
(ENTER) and then DIR (ENTER), you will get the message ‘NO FILE’,
meaning that there are no files with this USER number attached. Unless you
are one of a set of disc users who write and save machine code files, this
command is of little interest. If you want to keep your files secure, however,
when strangers are around, typing USER 8 will prevent a DIR listing of the
files. It might be useful when you are showing off the system on Club night!
An alternative method is to use the number in the filename, as a pre
extension. For example, saving with the filename of 8A:MYPROG.BAS
will alter the directory so that only user 8 will see this directory.

SAVE is a peculiar and rather old-fashioned CP/M command which is
useful only if you are saving blocks of machine code or text directly from
CP/M. The CP/M SAVE action is quite unlike the normal BASIC SAVE
action, and requires a different syntax - it is closer to the SAVE“Name”,B
action of Amstrad BASIC. The command was originally intended for
machine code programmers, but nowadays, anyone who uses machine code
will make use of an assembler program which will incorporate its own
version of a SAVE command. So that you know something about it,
however, here's how it’s used.

SAVE is used to write on to the disc any bytes that are stored in the
‘transient program area’, which means the memory addresses from #0100
(256 denary) upwards. A SAVE will always start at this address of #100, and
you have to specify how much of the memory is to be saved. The amount is
specified in units of #0100 (256 denary) bytes. If, for example, you need to
save a short program of just a few bytes, the minimum you can SAVE is
#0100 (256) bytes, which is one block or ‘page’. You would therefore use
SAVE 1 FILENAME.COM to save this under the name of FILENAME.

FILENAME.COM

The CP/M Operating System 37

COM. No wildcards are permitted in this filename. Since you are most likely
to use SAVE along with the transient program DDT, we’ll take no further
interest in it at the moment.

The TYPE command is one which is useful only for ASCII files. These
might be BASIC programs which have been stored from AMSDOS by
using the SAVE“Name”,A command, or they might consist of data (names
and addresses, for example?) which has been saved by using PRINT#9 in a
database program. The reason for specifying ASCII files is that any other
files are likely to cause odd effects. TYPE allows the contents of files to be
displayed on the screen. Now if you send ASCII codes to the screen, you’ll
see normal characters appear, but codes in the range 0 to 31 can cause effects
like turning off the cursor, setting a new MODE, clearing the screen and so
on. Machine code programs are likely to contain such characters, and so are
BASIC programs which have been saved in the normal way, without using
the ‘A’ modifier. Try it for yourself - return to AMSDOS, and write a short
BASIC program. Now save the program, using the filename “TESTXT”,A.
Return to CP/M, and type: TYPE TESTXT (ENTER). You will see your
program appear on the screen. If you use TYPE on any other BASIC
program which has been saved in the ordinary way, you will probably see a
line of text, a few graphics symbols, and nothing else. You may find a mode
change or other disturbing effects which may require you to ‘reboot’ (load
CP/M all over again). The moral is to keep TYPE for ASCII files only. One
of the utilities in Chapter 8 shows how to save the text that appears on the
screen in such a way that it can be recovered by using TYPE.

The transient commands

As we saw earlier, a transient command is one which is kept stored as a file
on disc, and it will be loaded and run only when called. All transient
programs are stored in the memory of your CPC464 starting at address
#0100 (denary 256), and will wipe out anything else which has been stored
starting at this address. Figure 4.3 is a list of the commands which come
under this heading. Of this list, you will probably have used DISCCOPY,
FORMAT and FILECOPY already, and we’ll look at some of the other
transient programs in this section. Of these, STAT is probably the most
important.

STAT, short for STATISTICS, exists to give you more information
about files stored on a disc that you get from DIR. It can also be used to
change the STATus of files, however, such as write-protecting, or removing
write-protection. You cannot use STA T unless there is a copy of STA Ton
your disc as well as the files you want to examine with it. This means that
STAT is one of the utilities that you may wish to copy on to other discs from
the Master disc. If you have a set of files on a disc, but no STAT, you can
usually transfer a copy of STAT, using FILECOPY, from the Master disc,

38 The Amstrad CPC464 Disc System

MOVCPM.COM
ED.COM
STAT.COM
FILECOPY.COM
CHKDISC.COM
FORMAT.COM
PIP.COM
ASM.COM
DUMP.COM
SYSGEN.COM
DISCCOPY.COM
SUBMIT.COM
DDT.COM
BOOTGEN.COM
DISCCHK.COM
CLOAD.COM

CSAVE.COM
XSUB.COM
LOAD.COM
AMSDOS.COM
COPYDISC.COM
SETUP.COM

Configure a new CP/M system.
Edit assembly language files.
Print information on files.
Copy file, single drive.
Check disc copy, needs two drives.
Format new disc.
Transfer data.
Run 8080 assembler.
Show file content in hex.
Copy CP/M system to another disc.
Copy complete disc using single drive.
Make a list of files run in succession.
Monitor for 8080 machine code.
Put CP/ M tracks on program disc.
Checks that a copy is valid, single drive.
Reads (unprotected) cassette file, transfers to
disc.
Reads from disc, transfers to cassette.
Places direct commands into a file.
Converts a .HEX file into a .COM file.
Returns to AMSDOS.
Copies disc, needs two drives.
Changes CP/M configuration.

Figure 4.3. The transient commands of CP/M.

or any copy of the Master disc. This is not always possible, however. If your
disc has been used with AMSDOS only, and has no copy of the CP/M
tracks (the system tracks) on it, then STAT cannot be loaded on to it.
Similarly, if the disc is nearly full, there may be no room for ST AT, which
needs at least 6K of storage space. As so often happens, users of twin disc
units have an advantage here. They can place the disc which contains STAT
in drive A, and use the B: specifier for the filenames on a disc in drive B, so
that STAT loads from drive A but works on files in drive B.

STAT has several varieties of syntax, some of which are useful even if you
use mainly AMSDOS and BASIC. To start with, if you type
STAT (ENTER) with no filename, you will get the statistics on the disc in
drive A. These ‘statistics’ will be rather sparse; a reminder of the drive letter,
an indication of protection, and the number of K of free space on the disc.
The protection message will be R/O (read-only, meaning write-protected)
or R/W, meaning no protection. When you use STAT in this way, the
protection indication is meaningless, because a disc may be listed as R/ O or
R/W regardless of the position of its write-protection shutter. This is
because STAT does not write on the disc, and the presence of the write

MOVCPM.COM
ED.COM
STAT.COM
FILECOPY.COM
CHKDISC.COM
FORMAT.COM
PIP.COM
ASM.COM
DUMP.COM
SYSGEN.COM
DISCCOPY.COM
SUBMIT.COM
DDT.COM
BOOTGEN.COM
DISCCHK.COM
CLOAD.COM
CSAVE.COM
XSUB.COM
LOAD.COM
AMSDOS.COM
COPYDISC.COM
SETUP.COM

The CP/M Operating System 39

protect shutter is detected only when the disc is written to. Even the ‘bytes
free’ number has to be regarded with some suspicion - I found that storing
STAT on a disc did not alter the number that appeared here!

STAT really comes into its own when you apply it to individual files or
groups of files. To apply STAT to a file, you follow STAT by a space, then
type the filename with extension, and ENTER. For example, STAT
TESTFIL.BASENTER will provide the statistics on the BASIC file called
TESTF1L. These statistics will consist of the full filename, with the status
(R/O or R/W) and a note of the number of records, bytes, and extent of the
file. None of these figures will show you exactly how large a file is. The‘Rees’
number shows the whole number of 128-byte units that the file uses. If the
file consists of 129 bytes, for example, its Rees number will be 2. The Bytes
number shows the whole number of Kilobytes assigned to the file. Once
again, no fractions are shown, and a file of only 12 bytes will still produce a
Bytes number of 1K. The Ext is an even less useful figure, which remains at 1
until the file is really long, more than 16K. We’ll see later how we can find the
exact size of a file, using the transient command DDT.

The use of ST AT with filenames can take wildcards, such as ST AT * .BAS
which will give statistics on all BASIC files, and STAT G*.* which will give
STATS on all files of any type which start with the letter G. You can also use
STAT *.* which will give statistics on all files. Be careful to include the
extension to the filename, even if it consists only of a wildcard. Note that a
file will be shown as R/ W in the ‘Acc’ (access attribute) column unless it has
been protected. Using the write-protect shutter on the disc does not cause
individual files to be shown as write-protected for the reason given earlier.

The most important use of STAT for our purposes is in altering the
protection of files. This is done by following the filename with a space, and
then a set of‘attribute’ characters. These attribute chai acters must start with
the $ sign, and can then be R/O (read-only), R/W (read/write), DIR
(appear in directory) or SYS (not in directory). For example, if you have a
file called TRY.BAS, you can write-protect it by typing:

STAT TRY.BAS $R/O (ENTER)

and if you have a file called REMS.BAS which is write-protected, you can
release the protection by typing:

STAT REMS.BAS SR/W (ENTER)

You can use STAT *.BAS to confirm that these alterations have been
carried out. It can be very useful to have some files which do not appear in
the directory, like the CP/M system file, and this can be done by using SYS.
For example, a file called PRINTSET.BAS can be kept out of the directory
by typing:

STAT PRINTSET. BAS SSYS (ENTER)

and from then on it will be concealed from the user who types DIR. The file

40 The Amstrad CPC464 Disc System

will still appear if STAT is used, so that, for example, typing STAT*.* will
list this file with the others. It is marked out by having brackets around the
filename. To restore a file like this to the directory, having found its name
from STAT*.*, just type:

STAT PRINTSET.BAS $DIR (ENTER)

which will restore the directory entry for this file. All of these varieties of the
STAT command can make use of the wildcard characters in the filenames,
so that a whole set of files can be write-protected or removed from the
directory and so on. A less important use of STAT is to list‘device names’.
These are the names that CP/M allocates to external devices such as the
keyboard, screen, printer and so on. By typing STAT DEV: (ENTER), these
can be listed. The listing is not of particular interest or use to you unless you
are designing machine code programs for CP/ M.

Other transient commands

When you look through the list of transient commands found by using DIR
on the Master disc, it’s rather discouraging to find how many of them are of
little use to you. Another disappointment is to find how many useful-
looking names conceal programs that are, in fact, only of specialist interest.
In this section, we’ll look at some of the other files on the Master disc, and
comment on their usefulness or otherwise to the ordinary CPC464 user.
Remember always that CP/M transient commands are designed for use
with CP/ M programs in machine code, and are of little or no interest if you
program only in BASIC. Even if you make extensive use of CP/M
programs, many of the transient programs are of little use to you.

Of the files that remain, PIP is one of the more useful-looking ones, but it
is less useful than might appear. PIP is a general-purpose program which
deals with transferring data, but most of the data transfers that you want to
make are already covered by other commands. The most useful transfer, for
example, is to send to the printer characters that normally go to the screen
only. This is done simply, without using PIP, by pressing CTRL-P before
starting the screen listing. Pressing CTRL-P again stops the process. This
action, plus the FILECOPY and DISCCOPY programs, supersedes much
of what PIP can do. You have to remember that CP/ M is a very old system,
designed for use by professionals, and incorporating features which are not
quite so necessary on modern computers. In addition, because the system
has grown over the years, PIP is a command which can take dozens of
optional forms, some of which are useful, others not. The simplest syntax of
PIP is:

PIP Destination= source

which will transfer data from destination to source. You have to specify

The CP/M Operating System 41

what you want to use as destination and what you want to use as source.
Both might be filenames, in which case PIP is being used to make a copy of a
file under a new filename. This can sometimes be useful. A much more
common use of PIP is with ‘device’ labels. A list of these is shown in Figure
4.4, and each has to end with a colon (:). Of the seven or so device labels that
can be used in standard CP/M, the CPC464 system suggests four, of which
CON: and LST: are the really useful pair. CON: can mean the keyboard
when you are using this as source, or the screen if you are using it as
destination. CON is short for console, another term from the dim past. LST
means the listing device, in other words the printer. If you have no printer,
many of the applications of PIP are rather pointless for you. Looking at a
file on disc, for example, is more easily done by using TYPE, and the file
copying actions are better performed by using FILECOPY.

CON: Entry and display device.
RDR: Receive information device.
PUN: Send information device.
LST: Print information device.
NUL: A source of 40 nul characters.
EOF: A source of end of file mark, CTRL-Z.
PRN: A printer output which formats copy.

Figure 4.4. A list of device names that can be used with PIP.

One useful function, however, is to join two files into one large file. This
can be very useful if you keep program subroutines for attachment to a main
program. If you program in BASIC, of course, this applies only to
subroutines which have been saved using the ‘A’ option to create ASCII
coded files. If, for example, you have a program MAIN.BAS and a
subroutine set called SUBS I.BAS, then you can join them in a file called
LARGE. BAS by using:

PIP LARGE.BAS = MAIN.BAS,SUBSl.BAS (ENTER)

using the comma to separate the file names. You don’t have to confine
yourself to combining just two files in this way, because as long as you use
the comma to separate the sections you can combine as many as you can
type in one command; about a line and a half of typing. If you want to carry
out several PIP actions, one after the other, you can use a rather different
syntax of PIP. You can type PIP (ENTER), and this will load the PIP
program and print an asterisk on the screen. You can then type a PIP
command, such as NEW.BAS = OLDl.BAS,OLD2.BAS (ENTER), and
this will be obeyed. After this has been done the asterisk will appear again,
waiting for another command, but you don’t have to type PIP again. When

42 The Amstrad CPC464 Disc System

you have no more commands, typing (ENTER) by itself will return you to
the normal CP/M commands.

The other uses of PIP are rather specialised. You can use PIP to accept
text from the keyboard and store it in a file. This is done by using:

PIP WRITING:TXT = CON: (ENTER)

at which the disc finds the PIP program, then opens a file. The disc must not
be write-protected - if it is, you will get the usual error message with the
options of Retry, Ignore or Cancel, followed by the Bdos Err message (use
CTRL-C to escape, with a Master or system disc in place). This is nor a very
useful method for entering text, however, because you have to learn a new
set of keys. Instead of using the DEL key, for example, you have to use
CTRL-H. After each use of (ENTER) to start a new line, you also need to
use CTRL-J. The text is ended by using CTRL-Z. When you have such a
piece of text, you can send it to the printer by using LST: or PRN:. LST: is
noted in the DDI-I Manual, but PRN: also works and is very useful. When,
for example, you type:

PIP PRN: = WRITING.TXT (ENTER)

the text is sent to the printer, the lines are automatically numbered, and the
output is broken up into pages of 60 lines. Any TAB characters in the text
will cause the printer to leave an 8-column gap.

Any of the PIP commands can be modified by following them with
optional extension letters. These letters must be placed between square
brackets, and they can be selected from the set that is shown in Figure 4.5.
Once again, this is rather specialised, but it can be turned to some advantage
if you have a printer. For example, by using:

PIP LST: = CON:[FT8P60] (ENTER)

you can force the printer to type what you are typing on the screen. You have
to press ENTER to get a line typed, and then press CTRL-J to get the line
feed. You should not use CTRL-H to rub out a mistake, because the printer
will take this as a signal to print. To rub out, you use the DEL key as usual,
but what you see on the screen is a checker square for each DEL key use.
This prevents the error character from reaching the printer, however, unlike
CTRL-H. The F modifier prevents the printer from reeling out a whole
sheet of paper before starting, and the T8 sets the tabulation stops to 8
columns. The P60 makes the printer take a new page after 60 lines.

PIP has a very wide variety of uses, as you can see from the lists and the
few examples, but most of these applications are for the professional who is
working with a much larger machine and with ASCII and machine code
files. Most of the other transient programs are aimed at the machine code
programmer, and detailed description would be pointless. Of these, though,
DUMP.COM can be useful. The command DUMP must be followed by a
full file name, and its effect is to display on the screen the contents of the file

DUMP.COM

The CP/M Operating System 43

Note: n means number needed, $ means string needed, A means CRTL key.

[B]
[Dn]
[E]
[F]
[Gn]
[H]
[I]
[L]
[N]
[O]
[Pn]
[QSAZ]
[R]
[S$AZ]
[Tn]
[U]
[V]
[W]
[Z]

Block transfer. Was used in paper tape reading.
Delete any character after number n.
Echo characters to screen.
Filter out form feeds.
Copy from other user number n.
Hex format for paper tape.
Ignore nulls in paper tape inputs.
Convert upper-case to lower-case.
Add line numbers
Transfer machine code files, or non-ASCIl files.
Put out form feed after line n.
Copy file up to this string.
Copy system files.
Copy data starting with specified string.
Set tab stops every n characters.
Convert lower-case to upper-case.
Verify copy.
Copy to R/O file.
Zero parity bit during transfer.

Figure 4.5. The extra commands of PIP which can be used within square
brackets.

in hex codes. This is not something that would be useful to the BASIC
programmer, and even the machine code programmer would normally
prefer to have a disassembly. Nevertheless, for a quick check of a short
machine code program, DUMP can be quite useful.

Other commands

Two commands of the CP/M transient set look rather familiar to anyone
who has ever used Microsoft BASIC. These are CSAVE and CLOAD, and
as the ‘C’ suggests, they are concerned with cassette use. There is a
restriction, however, which prevents you from making use of these to
transfer your programs from tape to disc. The restriction is that only ASCII
coded tapes can be used. As it’s unlikely that you’ll have many ASCII coded
programs, you might think that this provision is not really useful. You may,
however, have a lot of data recorded on tape from data-gathering programs,
such as a name/address file, a record of Football scores, the Golf Club
membership list, and so on. This will be in ASCII codes, and so it can be
used by CLOAD. CLOAD requires in the disc drive a system disc (with the

44 The Amstrad CPC464 Disc System

CP/M tracks put on by FORMAT) which has the CLOAD program in
place, and which is not write-protected. You should know the filename for
the tape, but if you do not, the program will load the first file it can find. As
usual, the cassette messages will be suppressed if you place an exclamation
mark as the first character of the cassette filename. The syntax for the
command is:

CLOAD “tapefilename” discfilename (ENTER)

remembering that a tape filename can consist of up to 16 characters, but the
disc filename cannot use more than 8 characters. If you don’t put an
extension on to the disc filename, none will be supplied by the system. If you
don’t provide a disc filename, the system will use up to 8 letters of the tape
filename. The CLOAD command will not read protected programs, so you
will have to use only unprotected tapes. In any case, if you want to transfer
protected tapes to disc, it’s better to make use of a utility that is specifically
designed for the purpose. If you have one of the several tape utilities which
allows you to make unprotected copies in ASCII format of protected tapes,
however, this could be one way of getting your precious programs on to disc.
The opposite program, CSAVE, allows ASCII files on disc to be transferred
to tape. Since the price of 3-inch discs is three times as much as the price of
the ordinary floppy disc, it makes sense to keep backups on tape rather than
on another disc, but you have to remember that this applies to ASCII files
only. You cannot use CSAVE to back up the really precious programs,
which are the CP/ M system and its utilities. Nevertheless, if you have large
data files on disc and you want a cheap backup, then good-quality tape is
not to be ignored, especially since the CPC464 tape system is so reliable. The
only snag is that backup can take a long time. The syntax of the command is:

CSAVE discfile.ext,tapefilename

and, 1 can be added at the end if you want to use the higher speed save on
tape. If you are using tape as a backup of a disc, you should ignore this
provision and use only the lower speed, for which you don’t need to specify
anything. If you omit the cassette filename, then the system will use the same
filename as was used for the disc file.

DISCCHK and CHKDISC

These utilities are for checking that a copy of a disc is an exact and perfect
copy. CHKDISC is for use with twin drives only - you put a disc in drive A
and its copy in drive B, then use CHKDISC to compare the discs, byte by
byte. DISCCHK does the same more slowly, and will instruct you when to
insert the source disc and when to insert the copy disc. If you find,
incidentally, that for some reason these utilities refuse to load even when you
have spelled the name correctly for the fourth time, then try loading another

The CP/M Operating System 45

utility, such as DISCCOPY, and then aborting by pressing CTRL-C when
the program runs. You should find then that normal action is restored. The
cause is probably corruption of some of the CP/M operating system in the
low RAM memory of the CPC464.

DDT, ED and ASM

These three are specialised programs for machine code programmers.
Because some of the commands make use of the instruction set of the old
8080 chip, they are likely to have little appeal for programmers of today.
DDT is a ‘debugging’ utility for machine code, a monitor as it would now be
called. It is called into action by typing DDT (ENTER) or DDT filename
(ENTER), depending whether you want to use it to search through itself or
another file. The main sub-commands of DDT are shown in Figure 4.6 - the

Note: DDT uses hex numbers, s means start address, e means end address, b
means breakpoint address, d means destination address, c means constant
byte, name means filename.

As Assemble from address s.
Ds,e Display memory from address s to address e.
Fs,e,c Fill memory from s to e with constant c.
Gs,b Start program running at s, break at b. More than one

breakpoint can be used.
Iname Insert filename.
Ls,e List disassembled code from s to e.
Ms,e,d Move block of memory from s to e so as to start at d.
Ra Read file to address.
Ss Read and alter memory starting at s.
Tn Trace n steps of the program.
Un Execute n steps, no trace.
Xx Examine and alter Z80 state. The ‘x’ refers to register code

letters.

Figure 4.6. The main commands of the DDT utility. These are of interest mainly
to machine code programmers.

most interesting ones are D and L. L allows a disassembled listing, and can
be followed by a start number and end number, both in hex. The
disassembjy is, however, in 8080 code, and not everyone remembers it
nowadays! The D command gives a hex dump, but with the added
refinement of a set of columns of ASCII characters that correspond to any
codes in the correct range. This allows you to read copyright notices, error

46 The Amstrad CPC464 Disc System

messages and other items which might not otherwise come to your
attention. The DDT program extends from address #0100 to #13A0, and
any program that you load in with DDT (by having its filename following
DDT), will be loaded in from this address onwards. When you make use of
this additional load, the last address that is used will be displayed on the
screen as well as the 0100 starting address. As you might expect by now, all
addresses are in hex. Note that you can write in assembly language by using
the ‘A’ option of DDT. The snag, as usual, is that this uses 8080 assembly
language only, and there is no direct provision for saving. For writing 8080
assembly language, the ED utility is rather more useful. Once ED has been
used to write assembly language, ASM can be used to assemble it into
machine code, and record a file of this code. This file can then be converted
into a .COM file by the LOAD command. If it looks very tedious, you’re
right, it is. If you are serious about writing in machine code, it makes more
sense to use a good modern Z80 assembler, save the machine code with the
extension .HEX, and then use LOAD to convert into a COM file.

Chapter Five

BASIC Filing Techniques

What is a file

I have used the word ‘file’ many times in the course of this book to mean a
collection of information which we can record on a disc. Programs in
BASIC are one type of file, and the only type, incidentally, which permits
the use of LOAD and SAVE in a straightforward way, with no ‘modifying’
letters like A, B or P. As you will know by now, the best type of file for
BASIC programs is the ASCII file, since this is the one which can be used
both by AMSDOS and by CP/ M routines. In this chapter, however, I shall
use the word ‘file’ in a narrower sense. I’ll take it to mean a collection of data
that is separate from a program. For example, if you have a program that
deals with your household accounts, you would need a file of items and
money amounts. This file is the result of the data-gathering action of the
program, and it preserves these amounts for the next time that you use the
program. Taking another example, suppose you devised a program which
was intended to keep a note of your collection of vintage 78 rpm recordings.
The program would require you to enter lots of information about these
recordings, such as title, artists, catalogue number, recording company, date
of recording, date of issue and so on. This information is a file, and at some
stage in the program, you would have to record this file. Why? Because when
you load a BASIC program and RUN it, it starts from scratch. All the
information that you fed into it the last time you used it will have gone
unless you recorded that information separately. This is the topic that we’re
dealing with in this chapter; recording the information that a program uses.
The shorter word is ‘filing’ the information. In this chapter, we are dealing
with filing programs that are in BASIC, so we shall not make any use of
CP/M.

Knowing the names

You can’t discuss filing without coming across some words which are
always used in connection with filing. The most important of these are

48 The Amstrad CPC464 Disc System

‘record’ and ‘field’. A record is a set of facts about one item in the file. For
example, if you have a file about vintage steam locomotives, one of your
records might be used for each locomotive type. Within that record, you
might have wheel formation, designer’s name, firebox area, working steam
pressure, tractive force... and anything else that’s relevant. Each of these
items is a field, an item of the group that makes up a record. Your record
might, for example, be the SCOTT class 4 -4-0 locomotives. Every different
bit of information about the SCOTT class is a field, the whole set of fields is
a record, and the SCOTT class is just one record in a file that will include the
Gresley Pacifies, the 4-6-0 general purpose locos, and so on. Take another
example, the file ‘British motorbikes’. In this file, BSA is one record, AJS is
another, Norton is another. In each record, you will have fields. These might
be capacity, number of cylinders, bore and stroke, gear ratios, suspension
system, top speed, acceleration... and whatever else you want to take note
of. Filing is fun - if you like arranging things in the right order. The
importance of filing is that all of the information can be recovered very
quickly, and that it can be arranged in any order, or picked out as you
choose. If you have a file on British motorbikes, for example, it’s easy to get
a list of machines in order of cylinder capacity, or in order of power output,
or any other order you like. Y ou can also ask for a list of all machines under
250 cc, which ones used four-speed gearboxes, which were vertical twins.
Rearranging lists and picking out items is something which is much less easy
when the information exists only on paper.

Disc filing

In this book, because we are dealing with the CPC464 disc system, we’ll
ignore filing methods that are based on DATA lines in a BASIC program,
or on the use of cassettes. Though you may be experienced at filing with
cassette systems. I’ll explain filing from scratch in this chapter. If it’s all
familiar to you, please bear with me until I come to something that you
haven’t met before.

To start with, there are two types of files that we can use with a disc
system; serial files, and random access files. The differences are simple, but
very important ones. A serial (or sequential) file places all the information
on a disc in the order in which the information is received, just as it would be
placed on a cassette. If you want to get at one item, you have to read all of the
items from the beginning of the file into the computer, and then select. There
is no way in which you can command the system to readjust one record or
one field. More important, with cassette files you can’t change any part of a
record, or add more records in the middle of such a file. Files of this type on
disc are much more useful, because records can be read and checked much
more quickly, but adding or changing items still presents problems. A
random access file does what its name suggests - it allows you to get from the

BASIC Filing Techniques 49

disc one selected record or field without reading every other one from the
start of the file. You might imagine that, faced with this choice, no-one
would want to use anything but random access files. It’s not so simple as
that, though, because the convenience of random access filing has to be paid
for by more complication. For one thing, because random access filing
allows you to write data at any part of the disc, it would be very easy to wipe
out valuable data, or even the directory, with a program that was badly
designed.

We’ll start, then, by looking at serial files, which are also easy to record on
cassette. All of the AMSDOS commands for serial filing are identical to the
commands of the cassette filing system. This makes the change very easy if
you have been using filing on cassette and you then upgrade to disc. If you
have never used cassette files, of course, it’s all new.

Serial filing on disc

We’ll start by supposing that we have a file to record, called CAMERAS.
On this file we have records (such as Nikon, Pentax, Canon, Yashicaand so
on). For each record we have fields like Model, Film size, Shutter speed
range, Aperture range (standard lens), Manual or Automatic, and so on.
How do we write these records? First of all, we need to arrange the program
that has created the records so that it can output them in some order. The
usual procedure will be to take the records in some chosen order, and output
the fields of the record in some order as well. Figure 5.1 for example, shows

100 RC*=" X7.=0:DIM Field* (5)
110 CLS:PRINT TAB(15)"DATA ENTRY":PRINT:

PRINT"Type X to end entryPRINT
120 INPUT "Record name - ";RC*:IF RC*="X

" OR RCi^x" THEN 190
130 REM NEED TO RECORD THIS ON DISC

140 X7.= X7.+ 1:FOR N7.= l TO 5
150 PRINT"Field item ";N7.;" INPUT Fie

ld*(N7.)
160 REM NEED TO RECORD THIS ALSO

170 NEXT N7.
180 GOTO 120
190 REM END OF FILE
200 PRINT"There are ";X7.;“ records on th

e -File. "

Figure 5.7. How to organise data for disc writing. The example uses five fields
in a record.

50 The Amstrad CPC464 Disc System

how we might arrange this part of a BASIC program so as to input a number
of records, with five fields to each record. The number of fields is five, so the
fields are input from the keyboard using a FOR N%= 1 TO 5 loop. The
number of records isn’t fixed, so we use a GOTO loop, which keeps putting
out records until it finds one called “X” or “x”, which is the terminator. I
haven’t used a WHILE.. .WEND loop, because this forces you to enter a lot
of dummy field information in the last record. Note that we haven’t used an
array for holding these items, because an array has to be dimensioned, and
we don’t know in advance how many items we will have. Instead of storing
the items in an array for future use, they will be recorded on disc. The points
where the disc recording routine would be fitted are shown in the REM lines
130 and 160. Each item, field or record, is treated as a string. This is because
strings are easier to work with you will not, for example, get any error
messages at the INPUT stage because of a mismatch of variable type. The
other good reason for using strings is that a string is a set of ASCII
characters, and these files are always recorded as ASCII files.

That deals with the organisation of the data for putting on to disc, but
how do we actually put it on the disc? There are several stages, and the first
one is to open up the ‘data channel’, which is assigned with the number 9.
This means assigning a filename which will be recorded on the disc, and
sending data to the disc with the PRINT#9 command. The 9 is a number
code that the machine will use to distinguish the disc drive from the screen
windows or the printer. Each time you want to make use of a file, then, you
must have a filename, and this has to be used to prepare for recording on the
disc by using the OPENOUT command.

The purpose of using the filename and the channel number 9 is to organise
data. The disc stores all data in units of 512 bytes. 11 wouldn’t make sense to
spin the disc and find a place on the disc just to record one byte at a time, so
when you record or read a disc, it’s always one complete sector, or as much
of a sector as possible, at a time. In fact, the operating system oftheCPC464
uses 2K blocks of data, which would fill four sectors. Some of the memory of
the CPC464 has to be used to hold data which is being gathered up for
recording, or which is being replayed. The channel number 9 is an
identifying number for the piece of memory that is being used, so that the
machine finds the correct data in the correct part of the memory. Using this
channel number avoids the need for you to have to allocate parts of the
memory to use in this way as buffers. The memory which is used for this
purpose lies at the top of the usable range. To see this in action, switch on
from cold, and type ?H I MEM. On my machine, this gave the number 42619.
If you now type OPENOUT “test” (ENTER), and then 7HIMEM, you will
see that the number is now 38523. The difference is 4096, equal to4K, or two
buffers each of 2K. If you now type CLOSEOUT(ENTER), you will see that
?HIMEM gives the original figure of 42619 again. HIMEM means the top
of usable memory, and it is shifted down when files are to be read or written,
and restored at the end of filing commands.

BASIC Filing Techniques 51

Opening the file

After that short diversion, back to our filing program. Before we start to
gather the data together for filing, we need to ‘open a channel’ for the data.
This is done using the OPENOUT command. OPENOUT has to be
followed by a filename, and if you have used cassette files previously you will
have to remember that disc files must use no more than eight characters. In
addition, it helps if you can give the filename some useful extension label.
The ‘standard’ extension for data is .DAT, so it makes sense to use this
unless you have some pressing reason for using something else. You can, of
course, use numbers like .001, .002 and so on, to show different batches of
data by the different extensions, or you can include these numbers in the
main name, as, for example, CAMERA01.DAT. To take another example,
the line:

OPENOUT “AIRCRAFT.DAT”

prepares to write a file called AIRCRAFT. When this line is executed, the
disc will spin for a short time, preparing for the file, but the filename will not
appear on the directory I catalogue because no data has been put into the file.
The buffer space will also be prepared in the memory. As always, you can
place the drive letter ahead of a colon if you have more than one drive.

The use of the OPENOUT command opens a file - which means that we
can make use of the file for writing data on to the disc. It also means that the
disc is prepared for the file. Any file that exists on the disc already and has
the same name of AIRCRAFT will not prevent you from opening this file.
This means that you have to be rather careful about how you use files,
because one file will wipe out another of the same name. This, however,
makes it very easy to update and modify files, as we shall see. If you want to
lock a file you will have to make use of the CP/M STAT command after
your BASIC data filing program has ended.

Printing to the file

It’s at this stage that we need to make use of the loops in the writing
program. Within these loops, we need to have a line something like:

160 PRINT#9,Field$(N%)

PRINT#9 means put the information out on channel 9, the channel for the
disc system, so that PRINT#9 will eventually put out to the disc system the
data that follows. In this example, it’s FieldS(N%). N% is the number in the
FOR.. .NEXT loop, so that as the loop goes round, we will put on to the disc
Field(l), then Field(2), then Field(3)... and so on. We also need to write the
record name, and this is done within the loop, by using a line such as:

130 PRINT#9,RC$

52 The Amstrad CPC464 Disc System

without using an array (because of the unknown amount of dimensioning).
Figure 5.2 shows an example of a very short and simple program of this type
which has been adapted from the first example. You can enter anything you
like into this, but it makes more sense to enter something that you can easily
check. Since the file is called AIRCRAFT, you could make each record
name an aircraft type, and each field some feature of the aircraft, like
wingspan, engine details, number of crew, and so on. You can, of course,
easily change this program so that it has another title that suits the
information that you might want to use.

10 OPENOUT "AIRCRAFT.DAT"
100 RC$="":X%=0:DIM Fields(5)
110 CLS:PRINT TAB<15)"DATA ENTRY":PRINT:
PRINT"Type X to end entryPRINT
120 INPUT "Record name - ";RC$:IF RCS="X
" OR RC$="x" THEN 190
130 PRINT#9,RC$

140 X7.=X7.+ l:F0R N7.= l TO 5
150 PRINT"Field item ";N7.;“ INPUT Fie

ldS(N7.)

160 PRINT #9,Field$<N7.)
170 NEXT N7.

180 GOTO 120
190 REM END OF FILE
200 PRINT"There are "; XX; “ records on th

e file."
210 CLOSEOUT

Figure 5.2. A program which writes to a serial file.

Before we move on, consider what this program has done. It has created a
file called AIRCRAFT.DAT, and allocated a channel number of 9 to this
file. It has then stored the data as it came along, in the sequence of
RECORD, then FIELDS. Finally, the file has been recorded and closed by
using CLOSEOUT. This last step is very important. For one thing, you
don’t actually record on the disc any of the information in this short
program until the CLOSEOUT statement is executed. That’s because it
would be a very time-consuming business to record each item of a file at a
time. What the DFS does, remember, is to gather the data together in
memory. This is the ‘buffer’ piece of memory, placed just above H1MEM,
and it will be written to the disc only under one of two possible
circumstances. One is that the buffer is full, so that there are four sectors full
of data (2048 bytes) to write. The other is that there is a CLOSEOUT type of
statement in the program. For a large amount of data, the disc will spin and
write data each time the buffer is full. The CLOSEOUT command then

BASIC Filing Techniques 53

writes the last piece of data, the one which doesn’t fill the buffer. It also
writes a special code number, called the end-of-file code (EOF). This can be
used when the file is read, as we’ll see later. If you forget the CLOSEOUT
statement, you’ll leave the buffer unwritten, with no EOF - and cause a lot
of problems both in your programs and possibly with your disc system.
Forgetting the CLOSEOUT is called leaving your files open, and you
wouldn’t like to be seen like that, would you?

The biggest danger is when you are testing a program. If there is an error,
such as a syntax error, which stops the program from running, there will be
no CLOSEOUT carried out, and the files will be open. If you had typed a lot
of data, you would lose it if you then went on to correct the program and run
it again. The correct procedure is to close all of the open channels. In this
example, it’s easy - you only have to type CLOSEOUT and press ENTER.
For a large program you would probably find it better to write an ON
ERROR GOTO line which, when an error ocurrs, closes files and ends . This
automatically ensures that files are never left open. The CLOSEOUT
ensures that your data will be recorded.

When you use an INPUT statement to gather up the data, you can find
that with a lot of data you will hear the disc start and stop at intervals. That’s
an indication of the buffer transferring data to the disc. You can’t use the
keyboard while the transfer is taking place, but the time that’s needed to
write a sector is fairly short. You will find that the keyboard cannot be used
during this time. In this example, there is nothing like enough data to fill a
buffer. You will hear the disc spin when the OPENOUT command is
executed, and again when the CLOSEOUT command is executed, but not
at any time between these two unless you enter a huge amount of data.

Getting your own back

Having created a file on disc, we need to prove that it has actually happened
by reading back the file. A program which reads a file must contain, early
on, a command which opens the file for reading. This is OPENIN, and it
must use the same filename as was used to write the file. If we recorded a file
using the name ‘AIRCRAFT’, then we must not expect to be able to read it if
we use ‘CAMERAS’ - or any other name. Misspelling can haunt you here!
Once the channel has been opened, we can read data with INPUT#9, which
will be followed by the variable name that we want to assign to each item.
This command reads an item from the disc, and will allocate it to a variable
name for printing the item or other use, according to what we have
programmed. The number of reads can be controlled by a FOR...NEXT
loop if the number is known, or it can make use of the EOF marker if the
number is unknown. By testing for EOF, then, we can make the program
stop reading the file at the correct place.

The example of Figure 5.3 shows both methods in use. The number of

54 The Amstrad CPC464 Disc System

100 DIM FX(5)
110 OFENIN "AIRCRAFT.DAT"
120 WHILE EOF=0:CLS:PRINT TAB<12)“AIRCRA
FT DETAILS":INPUT#9,Name!
130 PRINT"Type is Name$:RESTORE
140 FOR N7.= l TO 5
150 INPUT#*?, Gen$ (N7.)

160 READ Field$sPRINT Fields;" ";Gen$(N7
)
170 NEXT

180 PRINT"Press spacebar -for next record
•(

190 KS=INKEYSsIF KS=""THEN 190
200 WEND

210 CLOSEIN:PRINT"END“:END
220 DATA Wingspan,Length,Crew No.,Engine

s,Range

Figure 5.3. A program which reads the serial file.

fields has been five, so that a FOR.. .NEXT loop can be used to control the
input of the fields. The number of records, however, has not been settled by
a FOR.. .NEXT loop, so we have to keep reading the file until the EOF byte
is found. This is done in line 120 by testing EOF in a WHILE...WEND
loop. If EOF is not zero, then the file is closed, and the program ends. As you
can see, this has been put into the WHILE...WEND loop, because EOF
needs to be tested before another item is read. If you read again from a file
like this, you will get the ‘EOF Found’ error message, and the program will
stop. Unless you have arranged for an ON ERROR GOTO line to close files
for you, the files will still be open. Leaving a reading file open is not quite
such a disaster as leaving a writing file open, but it’s still very undesirable.
Note that the disc does not spin each time you press a key to get another
record. This is because a complete sector or set of four sectors is read each
time, and if the information that you want is all in one buffer load, the disc
need not be used. Sorry if I seem to be labouring this point, but a newcomer
to discs sometimes finds it difficult to remember.

Now this simple example shows a lot about serial filing that you need to
know. When you use discs, then, the name that is used with OPEN (IN or
OUT) is the filename for the file on the disc. Any other file that is later
recorded with the same name will not overwrite this file, because the old file
changes to a .BAK file. The system therefore provides for easy file
replacement, and for reasonably good file security. This is an important
point to emphasise if you have been using cassettes, because you have more
control over where a file is recorded on a cassette. You can write a file called

BASIC Filing Techniques 55

INDEX at the start of a tape, for example, then wind the tape on slightly and
record another, different, file with the same name. You certainly can’t
record two files with identical names on one disc. Even if the files have the
same main name, the older one will have the extension .BAK to distinguish
it. In addition, a file is closed by writing the EOF character. How, then, can
you update a file, particularly if you want to add more items to the end of the
file?

Updating the file

There are two answers, if we stick to serial filing. One possibility, which is
the simplest one for short files, is to load the whole file into the memory of
the computer, make the alterations (your BASIC program will have to be
written so as to provide for this), and then write the file again, wiping out the
earlier version. The other possibility is to open two files, one for reading and
the other for writing. You don’t need to have dual disc drives for this, though
it makes life much simpler if you do. This means that the computer will
maintain two buffers. You read one record from the reading file and you
can, if you wish, display it. If it’s all right, it’s then written (to the buffer
initially). If the record has to be modified, you can do so. If extra records
have to be added, this is equally simple. Each time a buffer empties, the disc
will spin and a read or write will take place. This ‘simultaneous’ operation is
possible because of the use of different OPEN commands, which control
different buffers. In practice, it’s a matter of writing your program to suit.

Figure 5.4 shows a simple program which allows you to extend the file
that was created by the program of Figure 5.3. Note, however, that the files
use the same names, even though I have assumed that both files will be on
the same disc. This is because the OPENOUT file and the OPENIN file are
treated separately, using different buffers. This saves any problems of
deleting the old file and changing the name of the newly created file. The
operating system will see to it that the new file is recorded as
AIRCRAFT.DAT, and the old file is renamed AIRCRAFT.BAK. One
point we have to be very careful about, however, is closing files. The
CLOSEIN command is used whenever the program has finished reading the
old file, and the CLOSEOUT command is used whenever the last of the new
files has been added.

Looking at the program in detail, line 110 opens two files with the same
names. One, however, is an input file, and the other is an output file. The
input file will be used by INPUT#9, and the output file by PRINT#9, so
there should be no conflict between them, since they use separate buffers.
Line 120 clears the screen and issues a PLEASE WAIT notice. If your files
are long, it may take the disc some time to do all the reading and writing, and
this notice is a reminder that it’s all happening. Never leave a user with a
blank screen, even if the user is always yourself! In these lines 120 to 150,

56 The Amstrad CPC464 Disc System

100 X7.=0
110 OPENIN "AIRCRAFT.DAT":OPENOUT"AIRCRA
FT.DAT"

120 CLS:LOCATE 14.11:PRINT"PLEASE WAIT":
WHILE EOF=0:INPUT#9,Name*:PRINT#9,Name$

130 FOR N7.= l TO 5

140 INPUT#9,Gen*:PRINT#9,Gen*
150 NEXT N7.: WEND: CLOSE IN
160 CLS:PRINT TAB(15)“ADDITIONS":PRINT:P
RINT

170 INPUT"Ai rcra-f t name ";Name*:IF Name$

="X" OR Name$=“x“THEN 220
180 X7.=X7.+ 1: FRINT#9, Name*: FOR N7.= l TO 5
190 PRINT"Field item ',;N7.;“ is "J: INPUT

GEN*
200 PRINT #9,Gen*:NEXT N7.

210 GOTO 170
220 PRINT: PRINT" You have added ";X7.;" it

ems. "
230 CLOSEOUT

240 PRINT"ENDEND

Figure 5.4. Extending a serial file by reading, and rewriting.

data will be read in from the old file and written out to the new one until the
EOF marker is found. When this happens, the WEND in line 150 takes
effect, and the next command is CLOSEIN, which shuts down the reading
file. The writing file is still open, however, with its buffer containing data
that has been read so far. You can now add more data, using the same lines
as you used in the program of Figure 5.2. When an X or x is typed in
response to the request for a record name, then the program displays the
number of added items, closes the write file (so recording the file), and stops.
Quite easy, really, but in this program, no provision has been made for
altering any of the records that are read from the old file. This is a routine
which we can easily add and that’s the next thing to look at.

Changing a record

It’s not difficult to find how to alter a record on a file. You read the item,
print it, and then change the item before rerecording the file. The main
problem is finding a neat way of doing this. The program of Figure 5.5
shows one approach which 1 use in my own file programs. This is to read the
whole of one record, display it on the screen, and give the user the chance to
edit or leave as need be. The editing is visual, rather than by the old-

BASIC Filing Techniques 57

100 DIM Gent(5):XX=0
110 OPENIN "AIRCRAFT.DAT":OPENOUT"AIRCRA

FT.DAT"
120 CLS:LOCATE 14,11:PRINT“PLEASE WAIT":

WHILE EOF=0:INPUT#9,Gen*(0)
130 FOR N7.= l TO 5

140 INPUT#*?, Gent (NX)
150 NEXT NXzGOSUB 1000
160 FOR N7.=0 TO 5zPRINT#9,Gen*(NX):NEXT
170 WEND:CLS:LOCATE 14,11:PRINT"PLEASE W
AIT":CLOSEIN:CLOSEOUT

180 PRINT"END.“:END
1000 CLS
1005 LOCATE 1,23:PRINT"Press arrow key t

o move cursor, space to alter item, CO

PY to end edit."

1010 PXX=5:PYX=4
1030 FOR N7.=0 TO 5
1040 LOCATE PXX,PYX+N7.
1050 PRINT Gen*(NX):NEXT
1060 PXX=1:PYX=4
1070 LOCATE PXX.PYX
1080 PRINT">";:FOR J=1 TO 100:NEXT
1090 LOCATE PXX,PY7.

1100 PRINT" "jzFOR J=1 TO 50:NEXT
1110 IF INKEY(47)=0 THEN GOSUB 2000
1115 IF INKEY(9)=0 THEN RETURN

1120 IF INKEY (0)=0 THEN PYX=PY7.-1
1130 IF INKEY(2)=0 THEN PYX=PYX+1
1140 IF PY7.<4 THEN PYX=9
1150 IF PYX>9 THEN PY7.=4
1160 GOTO 1070
2000 CALL ScBB03:PX7.=5: LOCATE PXX,PYX:PRI
NT SPC(34);
2010 LOCATE PXX,PYX:INPUT;Gen*(PYX—4)

2020 PXX=1:RETURN

Figure 5.5. A file editing program which uses a visual menu choice.

fashioned method of numbering the entries and asking for a number to be
entered. When the record is displayed, a flashing arrowhead points at the
first field. If you want to leave the record as it is, then press the COPY key,
and this will bring up the next record. If you do want to change a record,
move the arrowhead to the record using the cursor-up and cursor-down

58 The Amstrad CPC464 Disc System

keys, the arrowed keys above and below the COPY key. When the
arrowhead points to the field that you want to change, press the spacebar.
This wipes out the field name on the screen, but not in the memory. You can
now type a new field name or number, and terminate it with the ENTER
key. Only when you have pressed the ENTER key is this new field entered,
and if you want to change your mind, you can delete your entry and type the
old entry again. When a change has been made in this way, the arrowhead
still points to the same field, and you can make another change to this or, by
shifting the arrowhead, to any other field. When you have finished editing
the record, you can press the COPY key to bring up the next record. The
process will continue for as long as there are records to read. The amended
file will be recorded as AIRCRAFT.DAT, and the old file will be renamed
A1RCRAFT.BAK. Note, however, that the visual editing system is useful
only if the fields are short - a field which spreads over more than one line will
cause problems.

How it works

Lines 100 to 140 follow the pattern which should be familiar to you by now.
The files are opened, one for reading and the other for writing, and the
WHILE EOF=0 loop will load in each record until the end of the file. The
record name is assigned to Gen$(0), however, to make it easier to work with
the fields in one array. The new items start with theGOSUB 1000 inline 150.
This carries out the editing, and when editing of a record is complete, this
subroutine will return. The amended or unamended record is then put into
the new file by line 160, and the WEND in line 170 brings up the next record.

In the subroutine, the screen is cleared, and a message about the editing
commands is printed at the bottom of the screen. Lines 1010 to 1050 then
print the record name and each field on to the screen. Note that this works
only if each field is of less than 35 characters, because the whole method
depends on using one line for each entry. In line 1060, X and Y positions for
the cursor are assigned to PX% and PY%, and a loop starts in line 1070. In
the loop, the *>’ character is printed at the cursor position, held for a short
time, then removed. Four keys are then tested by using the INKEY
command. INKEY(47) tests the SPACEBAR, and if this is pressed, the
GOSUB 2000 calls up the replacement routine. INKEY(9) tests for the
COPY key, and causes a return from the subroutine if this key is pressed.
The other two tests are for the cursor movement keys, and if one of these
keys is pressed, then the value of PY% is altered. Lines 1140 and 1150 then
test the value of PY%, to ensure that it does not stray outside the line limits,
and line 1160 completes the loop.

When the SPACEBAR is pressed, the first action in line 2000 is CALL
&BB03. This is a machine code call to the operating system, and its effect is
to remove any codes from the keyboard buffer. This is essential, because

BASIC Filing Techniques 59

when any key is pressed, its code is stored in memory until it is read. When
the cursor movement keys are used, their codes accumulate in this keyboard
buffer despite the fact that the program is using the keys differently. As a
result, when the program leaves the loop, these codes are read and acted on.
For example, if you have used the down-cursor key twice to shift to the
second field, there will be two ‘shift down’ codes in the buffer. There will also
be a ‘space’ code because you pressed the SPACEBAR. The effect would be
to make the *?’ prompt for the INPUT stage appear at the line you have
selected, but the cursor would appear two lines down and one space across.
This can be avoided if the buffer is emptied before the INPUT step, and this
is done by the CALL &BB03. If you are curious about this and other calls to
the operating system, they are documented in an Amsoft publication, the
Concise Firmware Specification.

With the buffer flushed out like this, the PX% number is changed so as to
locate the first character of the entry, and the SPC(34) clears most of the
line. The next LOCATE instruction places the cursor back at the start of the
field name, and the INPUT then allows you to make the change. By using
Gen$(PX%—4), you assign the new entry to its correct place in the array.
Line 2020 then restores the value of PX% to place the arrowhead correctly,
and the routine returns. The effect is quite impressive, though the key
actions in the loop are slightly ‘sticky’ because of the time delays. If longer
fields are used, it would be possible to modify the routine to make use of,
say, two lines per field. In any case, this and the previous routine
demonstrate how serial filing can be used with advantage on a disc system.
In many cases, you will find this type of filing more useful than random
access filing, which is never easy with any disc system.

Chapter Six

A Database Example -
Filing Cabinet

This chapter consists mainly of one long listing (Figure 6.1) for a database
type of program. The program is called Filing Cabinet, and it allows you to
specify four heading titles for the fields of your records. These field names
are recorded on the disc, and will be used from then on. They might, for
example, be Name, Address, Age, Telephone Number. You can then enter
information, add, delete or change information, read all of the data or select
items as you please. These are the normal actions of a simple database.
Looking at the length of the program, you might wonder how long a
complicated program would be, but this is a simple version. There is no
facility, for example, for printing records of any field in alphabetical order.
This is, you see, a skeleton database, which has been included to illustrate
the use of the DD1-1 disc drive for this type of program. Once you have this
program up and running, and have completed reading this hook, you should
be able to add whatever extra trimmings you need.

10 OPENOUT“DUMMY":MEMTOP=HIMEM
20 MEMORY HIMEM—1:CLOSEOUT
30 ON ERROR GOTO 1420:ON BREAK GOSUB 280
40 NL$=CHR$(10)+CHRi(13)

50 REM FILING CABINET by Ian Sinclair 19

85
60 DIM (4).E*(4)
70 M*="Please make sure that the disc is

in"+CHR$<10)+CHR* <13)+'*the drive, corre

ct way up."
80 J7.= l:Y$="Please answer Y or N.”:Z$="P

ress any key..."
90 RESTORE:FOR N7.= l TO 4:READ H$(N7.):NEX
T
100 REM Place in lines 60 to 8© any prin

ter setup instructions that you need.
110 REM
120 REM

Figure 6.1. The database program, "FILING CABINET”.

A Database Example - Filing Cabinet 61

139 DATA First,Second,Third,Fourth
140 CLS:T$="Filing Cabinet":GOSUB 290
150 T7.=2: GOSUB 1430:PRINT:PRINT"Do you n

eed instructions? ";Yi
160 GOSUB 300:IF K$="Y"OR KS="y" THEN GO

SUB 310
170 CLS:T*=“MENU":GOSUB 290
180 PRINT:PRINT "1.Start NEW type o-F -F i 1
e. “:PRINT"2. Start ENTRY in -File. “:PRINT"

3.DELETE,CHANGE or ADD iterns.":PRINT"4.L

1ST complete -F i le. " : PRINT“5. PICK one ite
m.":PRINT"6.END Program."
190 PRINT:PRINT"Please choose by numDer.
" : GOSUB 300: K7.=V AL (K«)
200 IF K7.<1 OR K7.>6 THEN PRINT" 1 TO 6 ON
LY- PLEASE TRY AGAIN.":GOTO 190
210 IF K7.= l THEN GOSUB 440: GOTO 260
220 K71=K7.-1:IF F$="“THEN GOSUB 1390
230 GOSUB 1300
240 ON K7. GOSUB 540,650,690,790,1050
250 GOSUB 1310
260 CLS:PRINT"Do you want to return to t
he menu?"
270 PRINTzGOSUB 300:IF k$="Y" OR K*=“y“
THEN 180
280 CLOSEIN:CLOSEOUT:MEMORY MEMTOP:PRINT
"END.":END
290 PRINT TABC20—(LEN<T$))/2);T*:RETURN

300 K$=INKEY$:IF K»="“THEN 300 ELSE RETU

RN
310 CLS:T*=“INSTRUCTIONS":GOSUB 290:PRIN

T
320 PRINT TAB(2)“This Drogram allows you

to set up and“:PRINT"use a serial tile

database. You wi11":PRINT"be asked to Dr

ovide -four titles, which"
330 PRINT“will be recorded along with a
■Fi lename. ": PRINT" You can then use the o

ther options to":PRINT"put entries into

the -File, with your": PRINT"headi ngs appe

aring as prompts. You can"
340 PRINT"add to the -File, change or del

ete i terns": PRINT" and list the -File as y
ou wi sh.“

Figure 6.1. contd.

62 The Amstrad CPC464 Disc System

350 PRINT:PRINT"The main restriction is
that you must":PRINT"NOT enter anything

which contains a":PRINT"comma. You need
Menu Item 1 only when“:PRINT"you start a

new -file -for the ■First"
360 PRINT"time. For the rest of the time

that":PRINT"this file is in use, the ot
her options,,:FRINT“apply. Keep one disc

side For each PR I NT "di ft er ent -File— you

can keep a copy of“:PRINT“this program

on each disc side as well."
370 PRINT

380 PRINT M*
390 PRINT:PRINT Zi
400 GOSUB 300
410 RETURN
420 INPUT Qi:IF LEN<Qi)>3B THEN PRINT"To
o long- please change now.":GOTO 420

430 RETURN
440 CLS:Ti=-"New File Speci-F ication “: GOSU

B 290: T7.=2: GOSUB 1430
450 PRINT:PRINT"Now select your Four tit
les -For thi s": PRINT“new -File, using ENTE

R after each titie.":PRINT"Only four tit
les can be used.":PRINT
460 FOR N7.= l TO 4:PRINT Hi<NZ);” is- "S:
GOSUB 420:PRINT Qi
470 Ei <N7.) =Q$: NEXT
480 PRINT"End of titles specification— n

ow we ":PRINT"need a filename of up to e
ight ":PRINT"characters— no more.":PRINT

490 INPUT"Fi1 ename is- ",Fi
500 IF LEN(Fi)>8 THEN PRINT"Too long- ei
ght characters only.“:FRINT"Please try a
gain.":GOTO 490
510 Fi=Fl+".DAT":Ei<0>=Fi
520 OPENOUT "HEADS. DAT": FOR N7.=0 TO 4: MR I

TE#9,Ei<N7.) :NEXT:CLOSEOUT

530 RETURN
540 CLS:Ti="Entry of Items.GOSUB 290:T
7.=2: GOSUB 1430
550 PRINT"Items can now be entered until

you ":PRINT“enter X as the first of a s
et. “

Figure 6. 7. contd.

A Database Example - Filing Cabinet 63

560 PRINT"Entry No. ";J7.
570 PRINT Ei<l):INPUT Qi: IF Qi="X" DR Qi

=“x"THEN 630
580 PRINT Ei<2):INPUT Rt
59© PRINT E«<3):INPUT Si
600 PRINT Ei<4):INPUT Ui
610 WRITE#9,Qi:WRITE#9,Ri,Si,Ui
620 JJ7.+1: GOTO 560
630 J7.=J 7.-1: PRINT “End o-f entryT7.=2: GO

SUB 1430

640 RETURN
650 CLS:PRINT:PRINT"Do you want to - “:P
RINT:PRINT"1. ADD to the fi1e.":PRINT"2.

CHANGE an itern.“:PRINT"3. DELETE an ite

m. ":PRINT"4. RETURN to the main menu."

660 PRINT:PRINT"P1ease select by number.
“:GOSUB 300:K7.=VAL(Ki> : IF K7.<1 OR K7.>4 T

HEN F‘RINT“1 to 4 only- please try again.
“:GOTO 660
670 ON K7. GOSUB 1070,1110,1210,1290

680 RETURN
690 CLS:Ti="FILE LISTING":GOSUB 290:T7.=2

:GOSUB 1430
700 PRINT:PRINT"Do you want to use the s

creen or the":PRINT"pr1nter for your lis

ting?"
710 PRINT:PRINT"P1ease press P or S key.
II

720 GOSUB 300:IF Ki<>"P“AND Ki<>"p"AND K
i<>‘‘S"AND KiO"s" THEN PRINT"P or S only

— please try again.“:GOTO 720
730 Z7.=0: IF Ki=‘*P" OR Ki="p" THEN Z7.=8
740 C7.=l:WHILE NOT EOF: GOSUB 1320
750 PRINT4Z7., "Item " ;C7.;"_"

760 GOSUB 1330: PRINT4Z7., Eid) 5 ; QS+NL
i+Ei(2)+": ";Ri+NLi+Ei(3);": ";Si+NLi+Ei

<4);“: ":Ui+NLi
770 C7.=C7.+ 1:IF Z7.=0 THEN PRINT Zi: GOSUB
300
780 WEND:RETURN
790 PRINT:Ti="PICK AN ITEM":GOSUB 290

800 PRINT:PRINT"You can pick by number (
N) or by ":PRINT"letter (L).“

Figure 6.1. contd.

64 The Amstrad CPC464 Disc System

810 PRINT:PRINT"P1ease press N or L key

now. "
820 GOSUB 300: IF KS<>"N" AND KSO "n" AN

D KSO"L" AND K$<> “I" THEN PRINT"N or L

only _ please try again.“:GOTO B20
830 IF KS="N" DR KS=,,n" THEN GOSUB 86©
840 IF KS="L"OR KS="1” THEN GOSUB 940
850 RETURN
860 PRINT"What number item do you want?"

:PRINT"Type number, then press ENTER key
II

870 INPUT X7.:N7.=1
880 WHILE NOT EOF:GOSUB 1320
890 GOSUB 1330: IF N7.=X7. THEN CLS:PRINT E

S<l);“s ";QS+NLS+ES<2)J“s ";RS+NLS+ES(3)
”?S$+NLS-t-ES(4) ; " : ";US:GOTO 920

900 N7.=N7.+ 1: WEND
910 PRINT” Item not -found"
920 T7.= l: GOSUB 1430: PRINT: PRINT"Press an

y key to return.GOSUB 300
930 RETURN
940 CLS
95© PRINT:PRINT"Type -first -few letters o

y key to return.GOSUB 300
930 RETURN
940 CLS

950 PRINT:PRINTnType -first -few letters o
•f the -first ": PRINT "entry. Don’t -forget

capital letters. PRINT"I-f you use one 1

etter only you wi11PRINT"get all entri
es which start with that“:PRINT"1etter.“

:PRINT

960 PRINT"Press ENTER key a-fter typing 1

etters."
970 INPUT TS: Y7.=LEN(TS) :FD'Z«=0

980 WHILE NOT EOF:INPUT#?,QS
990 INPUT#?.RS,SS.US:IF LEFTS<OS,Y%)=TS

THEN PRINT ES(1);”: Ds+NLs+ESC2);":

RS+NLS+ESC3):;SS+NLS+ES<4);“: ";U»+N

LS: FD7.=-1

1000 WEND
1010 IF FD7=© THEN PRINT"Item not -found"

1020 T7.=2: GOSUB 1430

Figure 6.1. contd.

A Database Example - Filing Cabinet 65

1030 PRINT Zs: " to return.":GDSUB 300
1040 RETURN

1050 REM Sub—menu routines
1060 REM start with add tD -file.

1670 J7.=O: WHILE NOT EDF
1080 BOSUB 1320: O7.=JZ+1: BOSUB 1330

1090 BOSUB 1340:WEND
1100 J7.=J’Z+1: BOSUB 550: RETURN
1110 CLS:TS="CHANGE ITEM*1: BOSUB 290
1120 BOSUB 1350:BOSUB 1360:BOSUB 1320:BO

SUB 1330
1130 PRINT QS+KLs>4-RS+NLS+SS-t-NLS-t-US
1140 PRINT ESil)j:INPUT QS:PRINT ESi2);:

INPUT RS
1150 PRINT ES(3);:INPUT SS:PRINT ES(4)i:

INPUT US

1160 WRITE#9.OS.RS. SS. US

1170 WHILE NOT EOF
1180 BOSUB 1320:BOSUB 1330

1190 BOSUB 1340:WEND

1200 RETURN
1210 CLS:Ts="DELETE ITEM":BOSUB 290

1220 BOSUB 1350:BOSUB 1360
1230 PRINT:PRINT:Ts=“PLEASE WAIT...":BOS

UB 290
1240 GOSUB 1320:BOSUB 1330

1250 DS-=OS
1260 WHILE NOT EDF:BOSUB 1320:GDSUB 1330

1270 BOSUB 1340:WEND
1280 PRINT:PRINT:TS=DS+" DELETED!“:GOSUB

290: T7.=2: BOSUB 1430: RETURN

1290 RETURN
1300 OPENIN FS:OPENOUT FS:RETURN
1310 CLOSEIN:CLOSEOUT:RETURN

1320 INPUT#9,OS:RETURN

1330 1NPUT#9,RS.SS.US:RETURN
1340 WRITE#9.OS:WRITE#9,RS.SS.US:RETURN
1350 PRINT’Please type number erf item.":

: INPUT Z'4:trz=Z7.-l: RETURN
1360 FDR J7.= l TO N'Z:SDSUB 1320: BOSUB 133

0
1370 GOSUB 1340:NEXT:RETURN
1380 REM Set headings and -filename

Figure 6.1. contd.

66 The Amstrad CPC464 Disc System

1390 OPENIN "HEADS.DAT"

14O0 FOR N7.=0 TO 4: INPUT #9, E$ (N7.): NEXT
1410 F»=E»<0):CLOSEIN:RETURN
1420 PRINT-ERROR “;ERR;“ IN LINE ": ERL:
GOTO 280
1430 START=TIHE:WHILE TIME < START+300*T
Z:WEND:RETURN

Figure 6.1. contd.

First principles

We shall start by looking at how the program works in outline. Two files are
used, both of which are serial files. One short file, called HEADS.DAT, is
used to keep a record of your four headings and of the filename for the main
file. The purpose of this file is to make the action of the program automatic,
so that you don’t have to remember a filename or heading names. When you
first use the program for a new variety of file, you will format a new disc side,
record the program on it, run it so as to type these titles, which stay with the
file from then on unless you start another type of file on the same disc side. If
you want to use more than one Filing Cabinet, you must keep them on
separate discs, or different sides, with a copy of the program on each disc
side. The main serial file will carry a filename that you will specify when you
first start a file, and it can be of as large a size as will fill a disc. Each record
uses either its position number or its first field as a ‘key’ to finding that
record. In other words, you can locate a record by knowing that it is number
58, or by knowing that the first field is surname, and you want to find
Carruthers. This scheme is fairly flexible without being too difficult to
implement. As I said, this is a skeleton program, and it’s yours to trim to
shape and pad out as you please. Because of the way that the disc system
operates, there is always a backup copy of each file on the disc, with the
.BAK extension, which makes the system quite safe to use.

When the program runs, some set-up work is done and you are presented
with the main menu. The first time that you use the program on a disc, you
should go for the ‘Start NEW type of file’ option. This allows you to choose
four titles for the fields of your records. These names will be recorded and
used forever after, so you should plan them carefully. Figure 6.2 shows a
typical display. After entering the fields and lengths, you are prompted for a
filename. You can choose anything you like, as long as it has eight characters
or less, and is not HEADS.DAT. Perhaps you might like to add a line 495
which rejects this name as a filename, and asks again?

Once the filename has been typed and ENTER pressed, the HEADS file is
opened and the headings, along with your filename for the main file, will be
recorded. At this point, and at several other places in the program, the disc
will be busy, and you may have to wait for it. When the file has been created.

A Database Example - Filing Cabinet 67

New File Sped-float ion

Now select your -four titles -for this
new -file, using ENTER a-fter each title.
Only four titles can be used.

First is- ? Name

Name

Second is- ? Address

Address

Third is— ? Age

Age

Fourth is— ? Phone No.

Phone No.

End of titles specification- now we
need a filename of up to eight
characters- no more.

Filename is- friends

Figure 6.2. A typical screen display during the entry of titles.

the program returns to the menu. You do not have to use this option again
unless you decide to keep another different file of data on the same disc.
There’s nothing wrong with this if your data files are fairly short, but it
avoids confusion if you can keep one disc side for each file.

You can now type the first group of data into your file by choosing the
‘Start ENTRY in file’ option. You don’t have to do so at once, of course,
because the headings and filename are by now safely on the disc, and you
can end the program and switch off if you like. When you go for the entry
option, you will be prompted by the field names (such as Address, Name
etc.) to type in data. The data will be restricted by line 420 to 38 characters
per entry. This has been done to make the screen appearance slightly neater,
though data can still spill from one line to the next if both titles and data
items are long. Once again, this is something that you can change as you
wish. You will find if you enter a lot of data that the disc spins at intervals

68 The Amstrad CPC464 Disc System

while you enter data, and you have to wait until the screen cursor is visible
again before you can continue typing. To end the entry, you type X, in
lower-case or upper-case. If this is inconvenient, change it (line 570)1 The
whole file will be recorded on the disc, using the filename that you supplied
originally. Once again, you can leave the program by selecting option 6 of
the menu after you have recorded as many items as you want.

If you select the DELETE, CHANGE or ADD option from the main
menu, you will be presented with another menu. This time, the choice is to
add to the file, change an item, delete an item, or just return to the main
menu. You must not use any of the first three options unless a file has
already been created, which is why you have the ‘cop-out’ option. If you
choose to add to the file, the disc drive will read the whole of the file,
rerecord it, and then stay open for additions to the file. The items will be
correctly numbered, so that you know how many items were on the file, and
the number of each item that you add. IfyoutaketheCHANGEoption,you
will be asked to identify which item you want to change, and the
identification is by number only in this case (once again, this could be
changed). When you enter a correct item number, the item is found by
reading all of the file up to this point and rewriting it. The item whose
number you have requested is then printed on the screen. This allows you to
check whether you really want to change the record. There is, however, no
drop-out option at this point, and you have to enter items for each field.
Perhaps it might be useful to allow pressing ENTER to leave the original
item unchanged? If that’s what you want, then use an INPUT with a
temporary assignment here, test it, and then assign to Q$, R$, S$ or US only
if ENTER has not been pressed. When the change has been made, the
changed item, and all the rest of the file, is rerecorded. If you choose to delete
an item, then once again the item is selected by number, and the file is read
and rerecorded as far as the preceding item. The item to be deleted is then
read, its title assigned to a variable name, and the rest of the file read and
rewritten. The title of the deleted file is then displayed with the information
that it has been deleted. Perhaps in this choice you might like to add a piece
of routine that lets you read the record and decide whether or not to delete it?
If you don’t want to delete, then it can be rewritten along with the rest of the
file.

Getting back to the main menu, option 4 allows you to list the complete
file. When you choose this option, you get another choice, of listing on
screen or on the printer. This is done by pressing the S or P keys. For
business purposes, this might a/vrar.v be a printer option, but if you are using
this program for hobby or household interests, you might use only the
screen option. Obviously, if you have no printer, you might want to delete
the P option. If you take the screen display option, each record is displayed
and held for you to inspect. You can press the spacebar to get the next record
until the end of the file. You might want to dispense with this, simply using
the CPC464’s ESC key to prevent the listing running away from you. If the

A Database Example - Filing Cabinet 69

listing is to the printer there are no pauses, the whole listing is printed. Lines
100 to 120 of the program, incidentally, have been kept clear for you to insert
any special printer set-up instructions. As we shall see in Chapter 7, the very
popular Epson range of printers require some set-up codes if they are to
work properly with the CPC464.

Item 5 on the main menu allows you to pick one record for examination.
You are then asked if you want to choose by item number or by letters. If
you choose by item number, then the program reads the file to the correct
place and prints the record whose number you have requested. If you choose
to select a name, you are asked to type the name, or the first letter or letters
of the name. If you type the whole name, the file will be located only if your
typed name agrees exactly with the name in the file. You can, however, type
just the first letter, and this will result in a list of all the records whose first
field starts with this letter. If you type more than one letter, you will get all
names which start with these letters - it’s rather like using a wildcard in a disc
filename. There are no options here for using the printer, nor for looking at
one record at a time, but you can add these facilities as you choose.

The program in detail

Now for the hard work. There are many points in this program which are
important. If you try to design your own database programs, you will need
to know what the disc drive does, and this listing reveals much that isn’t
exactly made clear by the manual, and which is not so easy to illustrate by
short examples. No matter how much you may hate looking at other
people’s programs it will be useful to study this one, so that you can
appreciate reasons for some of the lines. Unless you do so, you can waste a
lot of time in your own programming looking at inscrutable error messages
and wondering why they arise.

The program is built round a core and a set of subroutines. Much of the
programming is straightforward BASIC, and I have made no use of fancy
colour or screen presentation effects - there’s quite enough to type as it is.
Programs for business purposes use the printer for anything important, and
the screen is used only for messages to the operator like‘Try putting a disc in
the drive’. I’ll concentrate on the explanations that relate to the use of the
disc drive, rather than explaining everything in detail. In other words, I’m
assuming that you knew a reasonable amount of BASIC before you bought
a disc drive.

Lines 10 to 130 are concerned with initial values of constants and setting
up the system. The first two lines need more explanation than you will find
in any of the manuals. Normally, when you open and close buffers, the
CPC464 Creates space by shifting the top limit of memory. This can create
some odd effects in your program, and one of the most puzzling is the
corruption of filenames. In this program, the filename for the data is held as

70 The Amstrad CPC464 Disc System

a string variable F$. Commands such as OPENIN F$ are then used, but if
you follow the normal course that we have outlined so far, you run into
trouble with this command. This crops up when you open a file some time
after making a menu choice. You may, for example, have defined F$ as
‘MYFILE.DAT’, but if a choice number 1 on the menu has been made,
followed by OPENIN F$, you find that the disc system has been asked to
find a file called ‘1 MYFILE.DA’, and it can’t find it. A second attempt,
using CONT, will always succeed, but this can’t be done automatically,
because disc system errors are not trapped by the usual ON ERROR GOTO
statement. Clearing the keyboard buffer does not solve the problem in this
case, and the only remedy that I have found is to allocate the buffers
permanently, using a set of steps which is mentioned in the Concise BASIC
Specification Manual. Lines 10 and 20 allow a dummy OPENOUT to shift
the memory, and then allocate this limit permanently by using the
MEMORY command. The dummy file is then closed again. This method of
reserving space permanently for buffers solves all of the curious problems
that arise when files are opened and closed.

Line 30 uses an ON ERROR GOTO statement to trap any errors in the
BASIC, and ensure that an error will close all files and end the program.
This includes syntax errors, so if the program ends when you start to run it,
you know you have made a typing error! Line 1420 will analyse the error for
you before the shutdown. Always check your data files if you have found an
error message, because if this happens in the middle of a change-item action,
you will have a data file which is only half full. You will then have to recover
the old data file, which will have the .BAK extension. Once the program is
up and running, with all mistypings removed, however, you should not find
that the error trap ever operates. Lines 70 and 80 contain messages which are
used in places, and which you might want to use considerably more. You
might also want to use these messages in windows of different colour, to
draw more attention to them. Line 90 reads the words which number the
headings, and the program starts in earnest in line 140. This prints a title ,
centred by the GOSUB 290, and asks if you need instructions. The GOSUB
1430 is a time delay routine which will give you a delay of as many seconds as
you assign to the integer T%. You are then asked if you need instructions. 1
have not written very detailed instructions, because these just involve
another lot of typing. There is enough to remind you of what to do if you
have not used the program for some time. You can type your own
instructions if you have modified the program for your own use. By allowing
the choice of skipping the instructions you can get into the program faster if
you use it frequently.

Line 170 clears the screen and then prints the menu. You are asked to
select by number, using the GOSUB 300 subroutine and converting to
number form with VAL. This number is assigned to K%(an integer) and
tested. If the range is acceptable, then lines 210 to 240 carry out the choice.
This is not completely straightforward, because choice 1 is very different

A Database Example - Filing Cabinet 71

from the others. It is used only when a new type of file is to be created, and it
opens the file HEADS.DAT. Because of this, it has to be treated separately.
This is done by line 210, and because one choice has been removed from the
list in this way, the value of K% has to be reduced by one. If the choice is to
be any other item, the program must then check that the data which is
contained in file HEADS.DAT is present. This is done in line 220 by testing
for the filename F$. If this is a blank, then the file HEADS.DAT must be
read, using GOSUB 1390. If you have been using other parts of the program
and have returned to the menu, this file will already have been read, and it
won’t have to be read again. When you reach line 230 you are definitely
choosing one of the actions that will need the data file to be opened, so the
subroutine which opens the files is used. Line 240 then makes the choice of
subroutines, and when the subroutine is finished, line 250 closes the files
again. This ensures correct file use unless the program is stopped within a
subroutine. Lines 260, 270 give you a chance to return to the menu unless
you have picked the ‘END program’ option. The subroutines carry out all of
the main actions. This is important, because it makes the program very easy
to change. Practically all the subroutines that you might need for your own
‘custom’ version are listed, so if you know in detail what each subroutine
does, making your own version is relatively easy.

The creation subroutine

The subroutine that starts in line 440 creates a completely new file. This will
wipe out any other file that has been created with this program on the same
disc side, which is why it is useful to have several copies of the program on
different disc sides. The loop that starts in line 460 gets title names for each
field. The INPUT stage for this is handled by a separate subroutine in line
420, which allows the length of title to be tested. You might want to use this
subroutine also to test changes to the file. Each title and length is assigned to
an array variable E$, with four items. As always, you can change this to suit
yourself. If all is well, then you are asked for a filename in lines 480, 490.
Once again, it might be useful to test this to make sure that the name
HEADS was not used, and that no extension is placed on this name. Line
510 adds the extension of DAT, and assigns this also to E$(0). This allows
the headings and the filename to be recorded by one loop in line 520. When
this has been done, the program returns in line 530 - in this case, the return
will be to the GOTO 260 command in line 210. You can then either return to
the menu, or end the program. Your titles and filename are now recorded,
and the program is now ready to make use of this new file. Y ou will not make
use of this menu option again until you come to choose another subject for
filing.

12. The Amstrad CPC464 Disc System

Writing to the file

Selecting the ‘START entry in file’ option in the main menu leads to the
subroutine which starts in line 540. If this option is selected, this will replace
any existing file. It is used, therefore, just after a new file has been created by
the use of option 1. If you want to add items to a file, then option 3 should be
used. Line 550 gives brief instructions, and the titles of each field are printed
from the array E$ as reminders. No attempt has been made to restrict the
size of each entry, and you might want to do this for yourself. Fora new file,
the record number J% has been assigned with starting number 1 in line 80.
The test at the end of line 570 checks for the entry of the letter X as the first
field, because this terminates the entry. Line 630 will then correct the count
number, and the subroutine returns. When it returns, the action of closing
files will ensure that all data has been recorded. The write line is in 610, and
this uses WRITE#9 rather than PR1NT#9. The reason is that WRITE#9
allows strings to be separated more easily when the output is in a form such
as WRITE#9,R$,S$,U$. If PRINT#9 is used in such a case, then the read
(using INPUT#9,R$,S$,U$) will not separate the items correctly. Our
examples so far have used PR1NT#9 in a loop, which has side-stepped this
problem. Note that when X is used to terminate an entry, this letter is not
recorded.

Once a file has been opened with menu choice 1, and written to with menu
choice 2, it can be further used by choices 3, 4 and 5. You would not
normally use choices 1 and 2 again, but the remaining choices will come in
for heavy use from now on. We’ll start with the‘heavyweight’ item, choice 3.
This allows addition to a file, alteration of a record, or deletion of a record.
So that all of these actions can be catered for, this menu choice leads to
another merru in line 650. This in turn leads to three more subroutines.

Choosing addition to a file leads to the subroutine in line 1070. Since the
files are serial, adding to a file really means reading and rewriting the whole
of the existing file, and then leaving the file open so that more items can be
added. The reading and rewriting of the existing file is done by the
WHILE...WEND loop in lines 1070 to 1090. In this loop, the counter
variable J% is used to count the records as they are read and rewritten. Line
1100 then increments J%, and calls the original entry subroutine so that
more items can be added. As before, entering the letter X as the first field of a
record will terminate the addition of records. The rest of the file is written,
and the files are closed when the routine returns.

When you take the ‘change’ option of this extra menu, you have to specify
which item is to be changed. The subroutine starts in line 1110 with its title,
and then calls the subroutine at line 1350 to find the number of the item. This
is a convenient method from the point of view of easy programming, but if
you want to find the item by letter, then a method will be studied later. When
the number is specified, Z% is set to a value of one less than this chosen
number. The subroutine at line 1360 is then used to read and rewrite all

/I Database Example - Filing Cabinet 73

records up to this item. The chosen record is then read, using the GOSUBs at
the end of line 1120. Line 1130 then displays the record, and lines 1140 and
1150 are used to change each field of the record. You could use a more
elaborate routine here, allowing the ENTER key with no entry to mean that
the field should be unchanged. You might also want to add the option of
leaving the whole record unchanged if you decide that you don’t want to
change it after all. Line 1160 writes the changed record to the buffer, and
lines 1170 to 1190 write the rest of the file.

Listing the file

The file listing option in the main menu leads to line 690, prints the title of
the choice, and asks for the options of screen or printer. This choice is made
by pressing the S or P keys, and the choice is tested in line 720. The result
causes Z% to be assigned with 0 for screen listing, or 8 for printer listing.
This allows the expression PRINT#Z% to be used to give either type of
output. The items are printed one on each line, with the item number. This
item number can be used also in picking individual items for changing or
deleting, using option 3. In line 770, if Z% = 0, meaning screen output, the
listing stops after each item to give you time to read it. You could, if you like,
modify this so that you have the choice of paused or continuous listing.
Listing to the printer is always continuous.

When the fifth option, to pick an item, is chosen, the subroutine which
starts at line 790 is used. This prompts for a choice of number or letter
selection, which is made in lines 830, 840. These are dealt with by separate
subroutines, with the number choice routine starting in line 860. Taking this
option first, the number is entered, and the two subroutines at 1320 and 1330
are used to input the fields, using a WHILE. ..WEND loop rather than a
FOR. ..NEXT because of the ease of detecting an impossible record
number. If the item is found, then line 890 will print it and break the loop. If
it is not found, then the EOF marker operates the WEND and the message
in line 910 is printed.

If the letter selection method is chosen, the subroutine starts at line 950
with brief instructions. The letter or group of letters is entered in line 970,
and the number of characters is assigned to Y%. The‘marker’variable FD%
is also set to zero. A loop starts in line 980 which will input each field name
and compare a number of letters equal to Y% with the letters that you have
entered. If these two are identical, then all of the fields of the record are
printed and FD% is changed to — 1. The loop continues over the whole file,
because there may be more than one entry which uses the same letter or
group of letters. Line 1010 will print the message only if no item has been
found, using the value of FD% to indicate this.

The last menu option is simply to end the program. This is necessary,
because it provides a way of ending without having to carry out any of the

74 The Amstrad CPC464 Disc System

other menu actions which would open files. You should never have to end a
program by pressing the ESC key twice, because this can result in the
program leaving files open, and so leaving you with an incomplete data file
on the disc. This has been avoided in this case by having ON BREAK
GOSUB 280 in line 30. This ensures that pressing ESC twice will cause the
program to end by carrying out line 280, rather than by breaking, and it
therefore safeguards the files to some extent. The safeguard is not perfect,
however, because it depends where you break. If you are deleting an item,
for example, part of the file will have been read and passed to the output
buffer. If you break at this point, the first part of the file will be saved, but the
second part will not. You will then have to use the .BAK copy to restore your
file. To do so, delete the new copy, and rename the .BAK file with the name
of the file which should be the new file. You still have the .BAK copy as your
backup.

That’s all there is to it. Taken as a whole, it looks rather intimidating, but
when you split it into core and subroutines, as it was when it was written, it
looks a lot simpler. It’s by no means a polished piece of programming. You’ll
find, for example, that more use could be made of subroutines in some
sections. You’ll certainly find that you will want to modify parts of the
program to suit your own needs. It’s yours now, so modify it as you wish, but
please don’t sell it or publish it as your own work!

Chapter Seven

Printers

Whenever your use of a computer extends beyond playing games that other
people have written, there are two additions to your computer equipment
that you will urgently want. One of these is a disc system, and that’s a topic
that has filled the first six chapters of this book. The next must be a printer.
In many cases, particularly when you are developing your own programs,
the printer has an even higher priority than the use of the disc system.

The reasons for using a printer are obvious if you use the machine for
business purposes. You can hardly expect your accountants or your income
tax inspector to look at accounts that can be shown only on the screen. It
would be a total waste of time if you kept your stock records with a
computer, and then had to write down each change on a piece of paper,
copying from the display on the screen. For all of these purposes, and
particularly for word processing, the printer is an essential part of the
computer system. Output on paper is referred to as ‘hard copy’, and this
hard copy is essential if the computer is be of any use in business
applications. For word processing uses, it’s not enough just to have a
printer; you need a printer with a high-quality output with characters as
clear as those of a first-class electric typewriter.

Even if your computer is never used for any kind of business purpose,
however, you can run up against the need for a printer. If you use, modify or
write programs, the printer can pay for itself in terms of your time. T rying to
trace what a program does from a listing which you can view only a few lines
at a time on the screen is totally frustrating. Quite apart from anything else,
if your use of BASIC on the CPC464 relies a lot on the use of GOTO for
loops, you might have to list a dozen different pieces of a program just to
find where one GOTO might lead you. The answer is to avoid the use of
GOTO, but there are times when FOR...NEXT and WHILE...WEND
loops are not completely satisfactory substitutes. The problem is even worse
if you write your own programs. Even a very modest program may need a
hundred lines of BASIC, some of which may be long lines. Trying to check a
program of a hundred lines when you may be able to see only a dozen or so
at a time on the screen is like bailing out a leaky boat with a teaspoon. With a
printer attached to your CPC464 you can print out the whole listing, and

76 The Amstrad CPC464 Disc System

then examine it at your leisure. If you design your programs the way you
ought to, using a ‘core’ and subroutines, then you can print each subroutine
on a separate piece of paper. In this way, you can keep a note of each
different subroutine, with variable names noted. On each sheet you can
write what the subroutine does, what quantities are represented by the
variable names, and how it is used. If you have a utility program that allows
you to merge subroutines, you can then construct programs painlessly using
your library of tested subroutines.

Printer types

Granted, then, that the use of a printer is a high priority for the really serious
computer user, what sort of printers are available? The CPC464 uses the
almost universal Centronics connection for printers, including the Amstrad
printers which appear to be made by Seikosha. It’s difficult to imagine any
‘serious’ computer without a Centronics interface, for this is the connection
method that is used by all the famous-name printers which are available.
This means that you can attach almost any good-quality printer that you
like to the CPC464. This opens up the way for the use of any of the printers
which are offered at such attractive prices in the magazines. In particular, it
allows you to use printers such as the Epson and Juki range.

Printers that are used with small computers will use one of the
mechanisms listed in Figure 7.1. Of these, the impact dot matrix type is the
most common. A dot matrix printer creates each character out of a set of
dots, and when you look at the print closely, you can see the dot structure.

Dot matrix
impact
thermal

electrostatic

Type impact
type stalk
daisywheel

Plotters
graphics printers
X-Y plotters

Ink-jet
single colour
multicolour

Figure 7.1. A list of printer mechanism types.

Printers 77

The printhead of the dot matrix printer consists of a set of tiny
electromagnets, each of which acts on a set of needles that are arranged in a
vertical line (Figure 7.2). By firing these needles at an inked ribbon which is
placed between the head and the paper, dots can be marked on the paper.

Figure 7.2. Illustrating a dot matrix printhead.

Each character is printed by firing some needles, moving the head slightly,
then firing another set of needles, and so on until the character shape is
drawn completely (Figure 7.3). The most common pattern of dots for low-
cost printers is the 7 X 5, meaning that the characters can be made out of up
to seven dots in height and up to five in width. This implies that the head

**! letter b

. . tour steps of formation
• • • •
/in
6 2 2 3

- needles fired -

Figure 7.3. How a 7X5 dot matrix head creates a character.

moves across the paper in five steps to print each character, and that up to
seven needles can be fired. Using a 7X5 structure gives characters which are
readable, but not good-looking. The dots are very evident, and some of the
letters are misshapen. You will find, for example, that lower-case letters lack
'descenders’. This means the tails on letters y,g,p,q will either be missing, or
will be on the same level as the foot of other letters. When this print is used
for listings which are in upper-case only, there is no problem. You would

78 The Amstrad CPC464 Disc System

not, however, use a printer of this class to print letters or other documents
that anyone else would have to read.

Rather better results can be obtained if the number of needles in the
printhead is increased. Using 9X9 (nine needles, nine steps across) or 15X9
heads can create much better-looking characters, lower-case or upper-case.
Another advantage of these printheads is that the characters are not limited
to the ordinary letters of the alphabet and the numbers. Foreign characters
can usually be printed, and it is possible to print Arabic script, or to make up
your own character set, for example. Most of the dot matrix printers are
impact types. This means what is says, that the paper is marked by the
impact of a needle on an inked ribbon which hits the paper. There are also
thermal and electrostatic dot matrix printers. These use needles, but the
needles do not move. Instead the needles are used to affect a special type of
paper. In the electrostatic printer (such as the old ZX printer), the needles
are used to pass sparks to the paper, removing a thin coating of metal from
the black backing paper. The thermal type of printer uses hot needles to
make marks on heat-sensitive paper. Both of these printers require
expensive special paper, and are unsuitable for serious business purposes, so
we won’t spend any time on them here. If you want a cheap printer for
listings, there are better methods.

The ultimate in print quality at the moment is provided by thedaisywheel
printer. This uses a typewriter approach, with the letters and other
characters placed on stalks round a wheel. The principle is that the wheel
spins to bring the letter that you want to the top, and then a small hammer
hits the back of the letter, pressing it against the ribbon and on to the paper.
Because this is exactly the same way that a typewriter produces text, the
quality of print is very high. It’s also possible now to buy a combination of
typewriter and daisywheel printer. This looks like a typewriter, with a
normal typewriter keyboard, but has an interface connection for a
computer. You can use it as a typewriter, and then connect it to the
computer and use it as a printer. Machines of this sort are made by leading
typewriter manufacturers such as Silver Reed, Brother, Triumph Adler,
Smith Corona, and others. If you need a typewriter as well as a printer, then
this type of machine is an obvious choice.

The third kind of mechanism that we shall look at here is the graphics
printer. This is a remarkable mechanism which uses four miniature ball pens
to mark the paper direct, with no ribbon. It can be used for graphics work,
and when it is used as a printer, the letters are drawn rather than printed.
Because four pens are used, the markings can be in four different colours.
Printers of this type are not expensive (as printers go) and can be very useful,
particularly if you want graphics output in colour. Another type of printer
that is now becoming available is the ink-jet printer, which operates by
shooting fine jets of ink at the paper. This one shares the disadvantage of the
thermal and the electrostatic types in that you obtain only one copy. Impact
printers have the great advantage that you can obtain an extra copy by using

Printers 79

a sheet of carbon paper and another sheet of plain paper. You can also buy
listing paper which has a built-in carbon, or which uses the NCR (no carbon
required) principle to produce two copies.

Interfaces

The printer has to be connected by a cable to the computer, so that signals
can be passed in each direction. The computer will pass to the printer the
signals that make the printer produce characters on the paper, but the
printer must also be able to pass signals to the computer. This is because the
printer operates much more slowly than the computer. Unless the printer
contains a large memory‘buffer’, so that it can store all the signals from the
computer and then get to work on them at its own pace, some sort of
‘handshaking’ is needed. This means that the printer will accept as many
signals as its memory will take, and then will send out a signal to the
computer which makes the computer hang up. When the printer has
completed a number of characters, (one line, one thousand, or possibly just
one character), it changes the ‘handshake’ signal, and the computer sends
another batch. This continues until all of the text has been printed. This can
mean that you don’t have the use of the computer until the printer has
finished. Printers can be very slow, particularly daisywheel and plotter
types. Even the fastest dot matrix printers can make you wait for a minute or
more for a listing.

Two types of interface are used by practically all printers. These are
classed as serial or parallel. A parallel printer is connected to the computer
by a cable which uses a large number of separate strands. Since each
character in ASCII code uses seven signals, the parallel printer sends these
along seven separate strands - many printers can use an eighth signal and
this is usually sent as well. In addition, there are cable strands for the
‘handshake’ signals. The best-known, and most used variety of parallel
connection is called Centronics, after the printer manufacturer which first
used it. Practically all of the popular printers use this type of parallel
interface.

The serial interface sends the signals out one at a time. This means that at
least seven signals have to be sent for each character, and in practice the total
must be ten or eleven, to allow for start and stop signals which are used to
mark where the signals for each character start and stop. This system uses
less cabling, because only two strands need to be used for signals, and the
cables can be longer because there’s no risk of one signal interfering with
another. The standard system is called RS-232. Printers can be obtained
with RS-232, but seldom as standard, and often only as an extra, costing up
to an additional £50.

The Amstrad CPC464 uses a parallel system, so that practically all of the
popular printers can be connected in addition to the Amstrad printer. The

80 The Amstrad CPC464 Disc System

Amstrad DM P-1 printer is a simple design which produces acceptable results
for listings. Its work can be seen in the examples that appear in the Disc
Manual. For business use, however, it’s unlikely that this standard of print
would be acceptable. The Amstrad printer, however, can reproduce the
CPC464 graphics shapes, and this might be important to you. If, however, 1
make the assumption that you wouldn’t buy the disc drive unless you were
interested in business applications of some sort, then it makes sense if I
confine the descriptions here to printers with high-quality output.

In this book, for example, the listings have been reproduced on an Epson
RX80 printer. This uses a 9 X 9 matrix for characters, so that the appearance
of the characters is better. In addition, the Epson can operate in
‘emphasised’ mode. In this printing mode, each dot is struck twice, but the
head is shifted slightly between dots. This causes the dots to look almost
joined up, and makes the appearance of the print much more acceptable.

A problem that you are bound to run up against when you use any non-
Amstrad printer is that of line feed and carriage return. Many computers
send out only one code number, the carriage return code (13) at the end of a
line. Other machines send both the line feed (code 10) and carriage return
codes. Printers are arranged, therefore, so that either possibility can be
catered for by a switch. If you connect your printer and find that everything
is printed on one line, then don’t return the printer. Just look in the Manual,
and find the switch that alters the line feed setting. If on the other hand you
find that each line is double-spaced, then this switch will have to be set to the
opposite position. My CPC464, when connected to an Epson MX80,
performed two line feeds no matter how the selector switch was set, and this
had to be corrected by a rather roundabout method, noted later in this
chapter.

The Epson MX80, FX80 and RX80

The Epson range of printers has for a long time been the most popular range
of moderately-priced printers, offering excellent print quality at reasonable
prices. The RX80 and FX80 are the latest in this line, but if you are offered a
second-hand MX80, then this also is a good buy. A particular feature of the
Epson range is that the printheads plug into place, and can easily be replaced
when they wear out. My old Epson MX80 was just beginning to show signs
of head wear after printing half-a-million words, so it might not be a
problem for you!

The standard version of the RX80 uses pin-feed, but the RX80F/T can
take any form or paper, including rolls. You have to pay extra for a paper
roll holder, but if you are handy with wood and piano wire, this is something
that you could easily make for yourself. The advantage of using the F/T
version is that plain unperforated paper rolls are verr much cheaper to buy,
and it also means that you can use plain paper sheets if you want to. When

Printers 81

you use a lot of paper for listings, this can be a great saving. Paper width of
4" to 10" in pin feed or plain form can be used, so you can buy whatever
paper size is on offer. If you use the F/T option, you can then buy the
teletype rolls, which are 8'/2 inches wide.

The RX80 offers a full set of upper or lower-case letters, and you don’t
have to go through any elaborate antics to select which one you want. Figure
7.4 shows the normal upper-case letters of the RX80, as you would use them

10 REM USING RX80 IN NORMAL MODE
20 REM WHICH PRINTS AT MAXIMUM SPEED

Figure 7.4. The normal characters of the Epson RX80.

for a listing. The print speed is very fast, and most listings will be completed
in under a minute. Figure 7.5 shows the lower-case letters, which are much
better formed than those of cheaper printers. Figure 7.6 shows the
‘emphasised’ print of the RX80. This is achieved by typing
PRINT#8,CHR$(27)CHR$(69) (press ENTER) before listing. The emph
asised print can be cancelled by using PR1NT#8,CHR$(27)CHR$(7O).

10 rem lower case on the screen
20 rem can also be produced on the printer.

Figure 7.5. The lower-case characters of the Epson RX80.

10 REM THIS SHOWS THE EMPHASISED _
20 REM STYLE OF PRINT OF THE RX80

Figure 7.6. The emphasised print of the RX80.

These commands can be used in programs, so that you can print normal,
condensed, emphasised, double width, and all of the other varieties, under
program control. This makes it very easy to produce good headings,
produce words in bold type or italics, and to underline. For a lot of word
processing actions, the RX80 can be a very satisfactory low-cost alternative
to a daisywheel. International character sets (for the USA, France,
Germany, England, Denmark, Sweden, Italy, Spain, Japan, Norway) can
be printed, and are under software control. This means that selection is
made by printing CHR$ numbers rather than by altering switches on the
printer itself. The only switches that you have to alter are for such items as
are listed in Figure 7.7. For many purposes, you would probably never need
to alter the factory settings of these switches. Figure 7.8 shows the options
that can be selected by sending CHR$(27)CHR$(N) codes to the printer.

82 The Amstrad CPC464 Disc System

Figure 7.7. List of RX80 switch settings.

Switch 1
Position

1
2
3
4

;)

ON OFF
Condensed Pica (print size)
Graphics Control code
No buzzer Buzzer on (end of paper)
12 inch 11 inch (form length)
Not detected Detected (paper end)
Selects from international
character set of
eight languages

Switch 2
Position

1
ON OFF
Slashed Non-slashed (zero)

2
3
4

Control pin Not fixed
Linefeed No line feed (with C/R)
Skip Don’t skip (perforation)

Each of the letter codes will be preceded by CHR$(27), the ESC code. Some
of the CHRS(number) codes can be used alone - consult the manual for
details.

Code Effect
J
M
P
CHR$(14)
CHR$(20)
W
CHR$(15)
CHR$(18)

Adjust line spacing in 1/216 inch units.
Elite size characters.
Pica size characters.
Enlarged print.
Cancel enlarged print.
Second enlarged print mode.
Condensed print.
Cancel condensed print.
Underline on/off switch.

E
F
G
H
S
T
CHR$(8)
CHR$(4)

Set emphasised mode.
Cancel emphasised mode.
Double strike mode.
Cancel double strike mode.
Superscript/subscript switch.
Cancel superscript/subscript.
Backspace.
Alternate character set.

Printers 83

CHR$(5)
m
0
1
2
3
A
CHR$(9)
CHRS(ll)
e
f
C
N
O
Q
i
8
9
<
@
U
s

Cancel alternate character set.
Choose graphics or control characters.
1/8 inch line spacing.
7/72 inch line spacing.
1 / 6 inch line spacing.
Set spacing in 1/216 inch units.
Set line spacing in 1/72 inch units.
Horizontal tab.
Vertical tab.
Tab unit setting.
Skip position setting.
Form length setting.
Skip over perforation setting.
Skip over perforation cancel.
Right margin set.
Left margin set.
Ignore paper end detector.
Enable paper end detector.
One line unidirectional printing.
Restore normal settings.
Unidirectional printing.
Half speed (quiet!) printing.

Other codes can be used to control each pin in the head so that graphics can
be printed. This allows ‘screen dump’ programs which place a copy of the
screen graphics on to the paper to be written for this printer.

Figure 7.8. The software selections of the RX80.

The line-feed fix

When the CPC464 is used along with any of the Epson printers which 1 have
tried, it causes double line feeds no matter what the setting of the line feed
switch in the printer happens to be. This is not a problem with the Amstrad
printer, nor is it a worry with the Juki or Tandy printers (described later in
this chapter). Fortunately, it can be fixed with a bit of software magic. The
Epson printers allow the distance between lines to be changed in units of
1/72 inch. This is done by sending the codes ESC “A”, followed by the
number of 1/72 inch steps. For the CPC464, a line feed of 7/72 inch is
sufficient to make the double line feed into an acceptable size, so the
command:

PRINT#8,CH R$(27);“A”;CH R$(7)

will carry this out. It can, however, lead to odd effects when a line of a listing
spills over onto another line. To avoid this, you have to ensure that the

84 The Amstrad CPC464 Disc System

computer sends out line feeds at the correct number of characters. Suppose,
for example, that your printer will line feed each 80th character. You must
ensure that the CPC464 does the same by the command: WIDTH 80. If this
is not done, the printer will perform its own single small line feed, making
the lines too close to each other. The listings in this book were produced with
WIDTH 40, and with the printer forced to work with 40-column lines by
using:

?#8,CH R$(27)“Q”;CH R$(40)

These codes are used by both the MX80 and the RX80 printers. This is
important, because not all of the printer control codes are identical for the
different Epson models. It’s a good idea to keep some printer setting
programs on a disc, so that you can RUN one as youchoose to suit whatever
printer you happen to be using.

The Juki 6100 daisywheel

The Juki was one of the first low-cost daisy wheel printers to become
available. Like most printers, it comes with a Centronics parallel interface,
though an RS-232 serial interface is available at extra cost. The Juki is a
large and very heavy machine which can accept paper up to 13" wide. The
daisywheel is of the same type as is used on Triumph Adler printers, and the
ribbon cartridge is an IBM Selectric 82/C type. The ribbon that was
supplied with my Juki was of the ‘single-strike’ variety, and this had a very
short life (about three chapters of this book!). A ‘multistrike’ type of ribbon
is much better. With the latter, the whole width of the ribbon is used by
moving the cartridge up and down as well as by moving the ribbon itself.
These ribbons are very easy to obtain from many suppliers, but the best
prices I have seen have been in the Inmac catalogue. The ribbons are carbon
film rather than inked nylon, and are thrown away after use. This always
seem a pity, because the cartridge contains mechanisms that look as if it
could easily be used again. Some day, I’ll try reloading one of these
cartridges.

The printhead of the Juki will print in either direction, and there is a 2K
buffer. This means that short pieces of text can be transferred to the printer
buffer almost instantly, and the computer can be used for other purposes
while the printer gets on with the printing actions. Printing is much slower
than the normal rate of the Epson, but not so much slower than the
emphasised mode of the Epson as to make the daisywheel seem irritatingly
slow. Its enormous advantage is the quality of the type. This is exceptionally
clear on the top copy, and even three carbons later it is still very legible. For
any letter work, or for the manuscript of a book, the Juki is ideal.

As you would expect of any modern design of printer, the Juki permits
many character sets, but you need to have the appropriate daisywheels fitted

Printers 85

for each language. You cannot, for example, have words in alternate
character sets without changing wheels in between. Changing wheels is
particularly simple, but this is something that you don’t have to worry about
with dot matrix printers, because the same dot matrix head can produce any
character under software control. The Juki allows underlining, bold type,
and shadow type in addition to the normal printing style, and you can select
your print style from a range of at least fourteen daisywheels. The daisy
wheels are expensive in comparison with others on the market, but ribbons
are cheap. Figure 7.9 shows a printout from the Juki with the standard
Courier daisywheel fitted. By removing the top cover, you can gain access to
a set of miniature switches. Switch No. 1 controls auto line feed, and for use
with the CPC464 this must be set to the OFF position. This will give correct
line-spacing - the ON position causes each line to be double-spaced. The
switch-change must be done with the machine switched off. This is not so
much because of risk but because these switch settings have no effect until
the machine is switched off and then on again.

10 REM DEMONSTRATION OF JUKI
20 PRINT#8, "This is JUKI normal print"
30 FRINT#8,CHR$(27);"E";"This is underli
ned";CHR$(27);"R"
40 PRINT#8,"We can change";CHR$(27);"O";
" to bold print."
50 PRINT#8,"We can change ";CHR$(27);"W"
;"to shadow print."
60 REM The C/R clears these effects
70 PRINT#8,CHR$(27);"Y";CHR$(27); "Z" ;CHR
$(27)"H";CHR$(27);"I";CHR$(27);"J";CHR$(
27);"K"

This is JUKI normal print
This is underlined
We can change to bold print.
We can change to shadow print.

Figure 7.9. The printing of the Juki daisywheel, using the Courier 10
daisywheel.

Like the Epson, the Juki permits a number of changes to be made simply
by sending control codes to the printer. These use the ESC character,
CHR$(27) followed by one more character, so that whatever immediately
follows CHR$(27) is never printed. The options include graphics mode, left
and right margins, lines per page, half-line feeds in either direction (for
printing subscripts and superscripts), top and bottom page margins, and
some special characters, including the English pound sign. Even more

86 The Amstrad CPC464 Disc System

Each of these codes will be preceded by CHR$(27).

Code
1
2
3
4
5
6
7
8
9
0
CHR$(9)
CHR$(10)
CHR$(11)
CHR$(12)

CHR$(13)P
CHR$(30)
CHR$(31)
C
D
U
L
T
Y
Z
H
1
J
K
/
\
S
CHR$(26)A
CHR$(26)I
CHRS(26)1
P
Q
CHR$(17)
E
R
O
W

Set horizontal tab (HT) at present position.
Clear all tabs.
Graphics mode on (C/ R clears).
Graphics mode off.
Forward print on (C/ R clears).
Backward print on (C/ R clears).
Print suppress on (C/R clears).
Clear present HT stop.
Set left margin at present position.
Set right margin at present position.
Set HT (tab number follows).
Set lines per page (number follows).
Vertical tab (VT) set (number follows).
Set lines per page (number follows).
Sets VT at present position.
Remote reset.
Sets line spacing (number follows).
Sets character spacing.
Clears top/bottom margins.
Reverse half-line feed.
Normal half-line feed.
Sets bottom margin at present position.
Sets top margin at present position.
Special character.
Special character.
Special character (new paragraph symbol).
English pound sign.
Diaeresis mark.
Spanish c with cedilla.
Automatic backward print.
Disable backward print.
Set character spacing.
Remote error reset.
Initialise printer.
Status (serial interface only).
Proportional spacing on.
Proportional spacing off.
Offset selection.
Underline on.
Underline off.
Bold print on (C/R clears).
Shadow print on (C/R clears).

Printers 87

&
%
N
CHR$(8)
X

Bold or shadow print off.
Carriage settling time.
Clear carriage settling time.
1/120 inch back space.
Cancels all word processing modes except proportional
spacing.

Figure 7.10. The software selections of the Juki.

usefully, the print can be changed to bold or shadow by sending such codes,
and text can be underlined. Figure 7.10 lists these actions.

The same quality of print can now be obtained from a large number of
daisywheel typewriters, and many of these now have a Centronics parallel
interface. This type of machine offers a lot of advantages, because it can be
used as a typewriter for small items that do not justify the use of the
computer, yet it is available for word processing use along with the CPC464
and such programs as AMS WORD. These machines can now be bought in
the high street stores as well as from office supply shops. The only thing to
watch is that replacement ribbons and daisywheels are obtainable from
several different sources. There’s nothing worse than being stuck with a
machine for which you can obtain spares from only one supplier.

The CGP-115 4-colour graphics printer

One of the most popular small graphics printer mechanisms is made under
the trademark of ALPS. It’s Japanese, and in place of the mechanisms that
are used by most printers, it actually draws its characters with a set of four
miniature ball pens. The reason for the set of four is that this allows printing
in four different colours - black, blue, red and green. The mechanism is
made into boxed units by many manufacturers, and sold under a wide
variety of names, but it is most easily obtained from Tandy stores under the
Tandy code number of CGP-l 15. This version includes both a Centronics
and a serial interface, which makes the printer usable on practically any
microcomputer which uses reasonably standard interfaces. Since the Tandy
stores offer a good service on spares (pens, paper, etc.) and trouble-shooting,
it makes sense to buy the Tandy version as there is a Tandy store in most
large towns. In addition to being used as a printer, however, this machine
acts as a graphics plotter, and you can draw diagrams and other pictures by
means of instructions sent from any computer. This applies even if the
computer has no graphics capabilities of its own.

88 The Amstrad CPC464 Disc System

The CGP-115 in detail

The printer uses a plain paper roll which is 4.5 inches wide. Tandy stores sell
3 rolls, each about 145 to 150 feet long, for just under £5. These paper rolls
are also used by a wide variety of adding machines, so if you haunt your
local office supply stores, you may find alternative sources at lower prices.
The paper is tightly gripped by the printer, because it is moved around a lot
in the course of printing. The printing carriage consists of a holder which is
loaded with four miniature ball pens. This holder can be rotated so that one
pen is touching the paper. Printing is achieved by moving the pen holder
from side to side, and the paper up and down, and is such a fascinating sight
that you’ll probably print listings over and over again just for the pleasure of
watching the mechanism! I know that 1 did. When the printer is switched on,
it goes into a ‘pen-test’ routine, slowly drawing a square in each colour so
that you can check that none of the pens has run dry. They have a
surprisingly long life, and each pack of 3 pens costs around £1.99 from
Tandy stores. You won’t find alternative supplies quite so easily in this case!

Normally, the CGP-115 acts as a printer, and you can use it to print
listings. It is not by any stretch of the imagination a fast printer, even
compared with a daisywheel but the results are much easier to read than
some dot matrix output. The enormous advantage of using the Tandy
printer, however, is that it can be used as a graphics plotter. This means that
if you send suitable instructions to the printer, it will draw diagrams. The
instructions are not the same as the graphics instructions of the CPC464(or
any other computer), but this is not a disadvantage. If at some stage you
change to another computer, the Tandy printer will still be useful, and the
graphics programs that you have used with the CPC464 can easily be
adapted to another computer. This is very useful to know if your household
is on the verge of becoming a two-computer family. The CGP-115 has a
small set of four switches at the back which can be used for setting up the
printer. For the CPC464, the settings of the switches are: l.OFF 2.ON
3.OFF 4.ON. This gives the correct line feed and the normal size of print
with the parallel interface in use.

The Tandy CGP-115 commands

Because this book is mainly concerned with the use of the Amstrad disc
drive and several different printers, I have had to resist the temptation to add
several chapters on the Tandy graphics printer. Many CPC464 owners,
however, will probably want to make use of this type of printer mechanism,
which is sold under a variety of other brand names. For business
applications, for example, the ability of the CGP-l 15 to produce graphs in
four colours is extremely useful for such a modestly-priced unit. The
following is a list of the commands which are available when the Tandy

Printers 89

version is used. The commands are shown in their CPC464 form. Figure
7.11 demonstrates the use of these commands in printing a name in four
different directions.

p

Ian R. Sinclair

<5 □

o 70

c

CD CD

□
Qi o

c
d

i
j.|T?] au>s 'a uvi

10 REH DIRECTIONS
20 PRINT88,CHR$C183
30 PRINT88,"H50,0"
40 INPUT"Yout name> please " ;NH$
50 PRINT48,"P";NH$
60 PRINT#8,"QI"
70 PRINT48,"P“ ;NH$
80 PRINT88,"Q2"
90 PRINT48,"P“ ;NH$
100 PRINT48,"Q3"
110 PRINT48,"P"5NHS
120 PRINT48,"Q0"
130 PRINT48,"A"
140 END

Figure 7.11. fX printout from the Tandy CGP-11 5 graphics printer.

PR1NT#8,CHR$(8) Move one space left (backspace). Used in text
mode.

PR1NT#8,CHR$(11) Reverse line feed - move paper down by one
line in text mode.

PRINT#8,CHRS(17)
PR1NT#8,CHR$(18)
PRINT#8,CHR$ (29)

Select text mode from graphics mode.
Select graphics mode from text mode.
Change colour in text mode.

90 The Amstrad CPC464 Disc System

Graphics commands

The following letters can be sent when the printer is in graphics mode. The
letters are not printed; instead, they are used as commands. Several of these
commands must be followed by numbers, such as X, Y coordinate numbers,
to specify positions. All of these letters would be sent to the printer by using
PR1NT#8, after executing PRINT#8,CH R$(18).

A
Cn
Dx,y

H

I

Jx,y

Ln

Mx,y
Pchars

Qdir

Rx,y

Sn

Xa,b,c

Reset pen to left margin, no line drawn, return to text mode.
Change colour of pen. n is colour number, 0 to 8.
Draw from present position to point x,y. Can be extended to
more than one point.
Move pen to origin without drawing a line. The origin is a
specified starting point.
Set new origin at current pen position. If you want a new
origin at point 5,10, then place the pen there, and PRINT#8,

Jump, or draw-relative. Draws a line from present position to
one x steps to the right and y steps up. Do not confuse this
with D, which draws to the absolute point x,y.
Change line type. If n= 0, the line is solid, but using numbers
1 to 15 will draw various dotted lines.
Move to point x,y without drawing a line.
Print the following characters while the printer is in graphics
mode. The size of the characters can be controlled, and
characters can be printed vertically or backwards.
Change print direction. The number dir, can be in the range 0
to #8. 0 gives normal printing, 1 gives top to bottom, 2 gives
upside down, 8 gives bottom to top
Relative move. Move pen, without drawing, to a point x steps
to the right and y steps up. Using —x moves left, using — y
moves down.
Selects size of characters to be printed, n must be between 0
and #8.
Draw graph axis, n is 0 for a Y axis, 1 for X axis. The distance
between marks on the axis is specified by b, which must be
between —999 and +999. The number of steps is c, between 1
and 255.

Chapter Eight

Disc Utility Programs

A disc utility program is one that is intended to make your use of discs easier,
especially if you want to do rather more than just load and save. In
particular, disc utilities allow you to see what is stored on the discs, including
information which is not normally available to you and which cannot be
obtained by normal load operations. The most important disc utility is one
which allows you to look at any sector of any track. This allows you to see
what is sto.ed on the CP/ M reserved tracks, for example, and to find where
programs are stored. It can also be used to read a disc which, because of
partial demagnetisation, for example, will no longer load correctly. If a disc
editor program is also available, the correct bytes can sometimes be replaced
so as to make the disc usable again. 1 must stress, though, that this is a
desperate measure. You would normally have a backup of any disc, and if a
disc became unusable, you would normally reformat it, back up the other
copy on to it, and then continue. Human nature being what it is, however, a
disc editor is still useful at times, and an editing program has been included
in this chapter. Another function is that of deliberately making a disc
difficult to copy, and for such protection you need to be able to carry out
disc editing. This chapter, then, is concerned with various disc utilities. Most
of these make use of machine code to achieve disc reading or writing, but the
programs themselves are in BASIC, with the machine code poked into
memory. You need no knowledge of machine code either to enter the
programs or to use them. Obviously, if you are going to go further into the
workings of the disc operating system, you will have to use machine code.
For readers who have already seen my book Introducing Amstrad CPC464
Machine Code, I have added a listing and a short explanation of the
machine code part of each program.

Read track and sector

This utility program, listed in Figure 8.1, will allow you to read any sector of
a CPC464 CP/M disc. Y ou should type in the program as usual - the listing
has been produced with a printer setting of forty characters per line so that

92 The Amstrad CPC464 Disc System

10 CLS:GOSUB 500:GOSUB 600
2© PRINT#1,TAB(13)"Track & Sector.":PRIN

T#1,TAB(13) ;STRING*(14, "_")
30 PRINT#0:PRINT#0, "TRACK No.- (0 to 39)

":INPUT T7.
40 IF T7.<0 OR T7.>39 THEN K7.=39: GOSUB 800

:GOTO 30
50 PRINT#0:PRINT#0,"SECTOR No. (0 to 8)

INPUT S7.
60 IF S7.<0 OR S7.>8 THEN K7.=8: GOSUB 800:G

OTO 50
70 S7.=S7.+1 +&4O: D7.=T7.*256+S7.

80 CALL &A000.D7.

90 CLS#0:CLS#1
100 PRINT#1:PRINT#1,TAB(8)“Byte No."5 TAB

(20)"Hex";TAB(27)"Char"
110 PRINT#2:PRINT#2,TAB(6)"Press SPACEBA

R for next byte"
120 FOR N7.=0 TO 511: K7.=PEEK (B7.+N7.)
125 PRINT40, TAB (7) ;N7.;TAB(16) 5HEX*(K7.,2)

5
126 IF K7.<32 THEN K7.= 127
130 PRINT#0,TAB(24);CHR*(K7.)
140 WHILE INKEY(47)=—l:WEND

150 NEXT
160 PRINT40:PRINT40,"Another one— Y or N

? "
170 INPUT A*:IF A*="Y" OR A*="y“ THEN 20

180 END
500 MEMORY &9FFF: B7.=ScA000
510 INK 0,0:INK 2,26: INK 3,1
520 CLS:WINDOW#1,1,40,1,3

530 WIND0W#2,1,40,23,25
540 WINDOW#0,5,35,4,22

550 BORDER 4
560 PAPER#1,3:PAPER#2,3

565 CLS#1:CLS#2
570 PEN#©,1:PEN#1,2: F EN#2,2

590 RETURN
600 FOR N7.=0 TO 27: READ D*
610 POKE B7.+N7.,VAL("&"+D*) :NEXT

620 B7.=8cA01C: RETURN
800 PRINT#©:PRINT#0,"Range 0 to";K7.5" on

Disc Utility Programs 93

ly, try again":RETURN
1000 DATA DD,7E,00,DD,56,01,IE
1010 DATA 00,21,1C,A0,F5,0E,07
1020 DATA CD,0F,B9,Fl,C5,4F,CD

1030 DATA 66.C6,Cl,CD,18,B9,C9

Figure 8.1. The track & sector program in BASIC.

the listing will look on the screen as it does here. Be very careful about the
DAT A lines, because these contain the machine code. An error in any one of
these items will cause certain doom, so save the whole program before you
attempt to run it. When the program runs, the screen divides into three
windows, and you are asked for a track number. The track numbers range
from 0 to 39 and on CP/ M discs the first two tracks are reserved for CP/M
use, with programs. Track 2 is used for directory entries, using 32 bytes for
each entry. When you have entered an acceptable track number, you are
then asked for a sector number. The DDI-1 Manual shows the usual range
of sector numbers as hex #41 to #49, but in this program the sectors are
numbered from 0 to 8 only, so as to avoid complications. When you enter a
valid sector number you will hear the disc spin, and the display changes to
show the byte number, its value in hexadecimal, and the character which
corresponds to the byte. Showing the character is very useful when you are
looking at text files or directory entries, because it allows you to read the
text, even though it is in the form of a vertical column. The display shows
one byte, and waits for you to press the spacebar so that another byte can be
displayed. You can hold the spacebar down if you want to see the bytes
scrolling up the screen - useful if you are looking for something specific. If
you don’t want to see all of the bytes in a sector, you can use ESC ESC to
leave the program in the usual way.

How it works

The BASIC part of the program is relatively simple. After clearing the
screen, the subroutine at line 500 is called. This sets up the memory size, the
address for the machine code, and the windows. The paper, border and pen
colours are also selected. The next subroutine at line 600 then pokes in
twenty-eight bytes of machine code which perform the disc access. The bytes
are stored in hex codes, because these are easier to enter and check than
ordinary (denary) numbers. With this done, the program is ready to start,
and the title is printed. Lines 30 and 50 request the track and sector numbers
respectively. If an incorrect number is entered, the error is trapped, and a
subroutine at line 800 prints a message, so that you can re-enter the data.

When the numbers have been entered, line 70 adjusts them. For a CP/ M
disc, the sector numbers must be in the range of #41 to #49. Line 70 adds 1

94 The Amstrad CPC464 Disc System

and also #40 to accomplish this. The reason for this rather curious looking
action is that it is possible to format a ‘data disc’ which is not of CP/M
format. Such a disc uses sector numbers (hex) #C1 to #C9. If you have such
discs, then all you have to do is to alter the first part of line 70 to read:

S%=S%+l+&C0

An alternative would be to ask at the start ofthe program‘Is this a CP/M or
data disc’, and assign a variable DT% equal to &40 or &C0 depending on the
result. The second part of line 70 combines the track and sector numbers
into a two-byte number, with the track number as the higher byte. In
BASIC, this is done by multiplying the track number by 256 and then
adding the sector number. By putting the number into this form, it is easy to
pass its value to the machine code section.

The call to the machine code is made in line 80, and the value of track and
sector number is passed. The machine code selects the disc operating ROM,
reads the track and sector that has been specified, and then restores the
BASIC ROM so that the program can resume. Line 90 then clears two of the
windows, and line 100 prints the headings on the top window. Line 110
prints the message on the bottom window, then a loop starts in line 120. This
will print the byte number (its position in the sector, ranging from 0 to 511),
its value in hex, and its character shape. If the byte value is less than ASCII
32 (the space), then a chequer pattern is substituted. This is because printing
some characters whose ASCII codes are less than 32 can cause odd effects,
like screen clear, cursor movement and so on. Line 140 tests for the spacebar
being pressed, and loops continually until it is pressed. At the end of the
loop, you are asked if you want another set of track and sector numbers to
investigate, and if you answer with Y or y, the program repeats from line 20.

The machine code

This is for machine code programmers only! The assembly listing is shown
in Figure 8.2. The listing has been produced by the ZEN assembler which I
use, rather than the Amsoft GEN A3, but there is no difference as far as the
assembly language itself is concerned. If you use the GEN A3 assembler, you
will need to use ENT $ in place of LOAD S in the second line. Lines 3 and 4
get the sector number byte into the A register, and the track number into the
D register. The E register is loaded with 0, which is the number for drive A.
The HL register pair is loaded with the address of a buffer in which 512 bytes
can be stored after being read from the disc. The AF registers are then
pushed on to the stack so as to store the sector number which was loaded
into A. With the number 07 in register C, the call to B90F will select the disc
drive ROM, which is coded as number 7. The same call will leave the BC
registers loaded with identification numbers for the BASIC ROM which
usually occupies the addresses #C000 to #FFFF. When this has been done,

Disc Utility Programs 95

u
Oi

r-1
01
in

L
0

4J
U
Ql p

in u
0i

TO H
« 01
qi in
L QI

13
»». ar.

•s> »-4 >-4 at fx
X-* X-» r. S lb d O Cb CM

d r. ». V, Ll r. at Ll o ». o o a
<1 Q UJ X d L) ■S’ d A o ■S' a s in

Q X _i X -J _i
CD d in Cl tn a. _i 1— Q
Ct a Q Q Q Q □ Q <£ a □ Q <r o id tn z
D _i -J -J -I _J Cl _J O CL Cl o CL o Ct Q LU

■ ■

F
ig

ur
e

8.
2.

 T
he

 a
ss

em
bl

y
la

ng
ua

ge
 fo

r t
he

 m
ac

hi
ne

 c
od

e
po

rt
io

n
w

hi
ch

 re
ad

s
th

e
di

sc
.

»-4 S i> o Cb
s s d A o A
LU o s U fx IL •0 A
fx ID S *•4 ■S' s <1 ▼H
Q Q LU W ID LU Q t-4 ID Ll Cl vH Q Cb
Q Q t-4 Of Ll CJ Ll (J L) u O u

S> n <1 co A O A t-4 CM r-o rx A A
•$■ Q s s S> s €• ▼“4 r-4 »-4 T“< rH rH ■r-l
s s ■S' ■S' s> s S' s> s 'S' S
<1 d a d <1 d d d d d d d d d

ID M3 r- a Cb S' CM ID <r in o

96 The Amstrad CPC464 Disc System

the AF pair are popped from the stack, and the BC number is pushed on.
The sector number in A is then passed to C so that it can be used by the next
routine. This call is to a routine in the disc ROM, and it will read the sector
which has been specified by the track and sector numbers that have been
passed in registers C and D. The buffer will then be filled by bytes from the
selected sector, and the BC number is then popped from the stack. This is
then used by the call to #B918 to restore the BASIC ROM so that the
program can return to BASIC.

Copying tapes

The practice of issuing ‘copy-protected’ tapes is one of the most infuriating
side effects of software piracy. Tape is not the most reliable of media, and a
backup copy of any valuable tape is a must. Protection systems frustrate
attempts to make backups, but have little or no effect on the real pirates of
the industry, who can always find paths around protection systems.
Fortunately, the Amsoft manuals show in sufficient detail for any machine
code programmer how backups can be made. In your case, you will want to
make copies of your tape programs on to disc. You can, of course, have this
done for you, but this means paying twice for the same program,
particularly when you realise that all of your programs will probably fit on
to one disc! A very few programs cannot be saved on to a disc because of
their length. Amsoft suggest that you can still use these from tape by
disconnecting the interface (with the computer switched off) then loading
and running from tape. This is rather a desperate measure, and 1 would not
like to keep pulling the interface on and off these rather fragile connectors.
The solution is probably to rewrite the offending software so that it does fit
into the slightly more restricted memory of a disc equipped machine. Very
often this only means separating instructions from the rest of a program and
storing them separately on the disc.

The program which is described here will allow you to make copies of
your ‘protected’ software in BASIC on to disc. This assumes that the
protection system is the one that Amsoft use (SAVE“name”,P) and which is
described in the Concise Firmware Specification. There is nothing illegal
about transferring a program which you have paid for on to a disc (which
you have also paid for!), providing that the copy is for your own purposes. 1
hope that when the Software Protection Bill (which is at the time of writing
going through Parliament) becomes law, this will put an end to tape and disc
protection systems. We can then adopt the sensible system of licensing
which is used by Digital Research for the CP/ M system disc, rather than
making it difficult to back up tapes and discs.

Following that sermon, on to the program of Figure 8.3. Once again, this
is in BASIC, but it consists almost entirely of pokes of machine code. The
machine code is poked to addresses which lie below the start of BASIC, so

Disc Utility Programs 97

10 CLS:1TAPE
20 M7.=325
30 FOR N7.=0 TO 40: READ D*

40 POKE M7.+N7., VAL("&”+D$) :NEXT
50 PfJINT: PRINT“Now go through this segue

60 PRINT”1. Type
70 PRINT"2. Type
80 PRINT"3. Type
90 PRINT"4. Type
£#0 PRINT”5. NOW

NEW CENTER]"
CALL 325 CENTER]”
LIST CENTER]”
iDISC CENTER]"
SAVE THE PROGRAM ON DIS

110 PRINT:PRINT"That’s it!"
200 DATA 06,00,21,00,00,11,2B,A0,CD, 77
210 DATA BC, 30, 18, C5,21,70,01, CD, 83, BC
220 DATA Cl, 21,70, 01,09, EB, 21,83, AE, 06

230 DATA 04,73,23,72,23,10,FA,CD,7A,BC

240 DATA C9

Figure 8.3. The BASIC tape copy program.

it’s not necessary to reserve memory for the program. When the machine
code bytes are poked in place, you are asked to carry out a five step plan.
First, you use NEW to remove the BASIC program from the memory. This
does not, however, remove the machine code. You should then use CALL
325 to run the machine code. This will give you the usual tape messages
about pressing PLAY, then any key. The machine code has been set up to
load the first program that it comes to, so you need to have the cassette
rewound to the start of the program that you want. When you press PLAY
and any key, the tape will start, and loading looks normal. Note that you do
not use the CTRL-ENTER type of load in this case. When the ‘Ready’
prompt shows that the tape is loaded, you can use LIST to proveit. Now use
| DISC to switch to the disc system, and you can save your program to disc
under whatever filename you like to use - not exceeding eight characters.

How it works

The BASIC part of the program simply pokes machine code into the
memory starting at address 325 (Hex # 145), so there isn’t much to say about
it, and we’ll concentrate on the machine code (Figure 8.4). The protection
system, as the manual informs us, works by reading byte 12H in the tape
header. This ‘header’ is the first chunk of data that is read from the tape, and
it is not part of the program. If the header is not read in the usual way, the
byte can’t be detected, and the protection is ineffective. This allows us to use

98 The Amstrad CPC464 Disc System

in

in Q) QI
CT in p e
C £ 01 •H C QI
0 +1 L 4- £ P ■H H

Hi L 01 L ct n P L O P
r—< TJ 01 r-l 3 C "D r—< CT fl T> a
•H 01 4- -H 01 a r—< C P C 4-
*+■ tn H- 4- 4- rH fl ai W Qi c a

□ □ •H p r—M •H
•P XI C QI L TJ P T3 L
X P QI P > <0 fl p QI C P 3
di 0 X Q □ <0 P al 01 □> □ O
c c CM Q 0 in in L CT 4- Q 4-

•*

01
rH
•H U
■+- *-<

tn
m <r
in ®
o
-H 0
U P

L
O

A
D

 $
B

A
S

C
:

E
Q

U
 017

0H

tn
iz
t-
z
CL

•• *« ■■
CL H CL
o Ll
o X □
-J 111 Hl

®
®
■0
®

®
®
•S'
'S'

CM

®
UJ
o

v-H

o
CQ
b>
b-
Q
(J

co

© ID
L)

•H
©
©
b-
vH
CM

(J

to
co
Q
o

rH
u

©
®
b-
r-0
CM

tb
s

co
UJ

UJ
a
to
co
r-4
CM

fl-
®

'S'
MJ
N

ID
CM

CM
b-

to
CM

<T.
a.
'S'
r-4

o
Hl
<r
b.
Q
u

Cb
O

ID <1 Q ® CM to ■ci o- <1 Q UJ Ll CM t ID •0 b- CD <r Q
fl- •t St ■t UT ID UT ID ID 111 111 UT UT O d -0 O <1 ■0 OrH wH ▼H r-< rM *■4 T*4 •r«4 v1 ▼H v"4 rM
® ® ® © s © © © ® 'S' © ® © ® ® ® © ® s •S’ 'S'

~ CM tD >t UT o co th © CM K> UT o b- co ® ▼H CM to UT
vH *-< ▼H T—< t-M ▼H ▼-M CM CM CM CM CM CM

F
ig

ur
e

8.
4.

 T
he

 a
ss

em
bl

y
la

ng
ua

ge
 w

hi
ch

 s
ho

w
s

ho
w

 th
e

co
py

 s
ys

te
m

 w
or

ks
.

Disc Utility Programs 99

some of the other reading methods which don’t activate the protection. If
you load the header, for example, as if it were for a text file, you will print the
messages and show the filename, but without the protection. This header
read action is performed by the subroutine at #BC77, which is normally
used by the data reading routines (OPENIN). This requires some registers to
be loaded. Normally, B has to be loaded with the length of the filename, but
if B = 0, then the first file on the tape will be read. HL has to be loaded with
the address of the filename, which is normally in a buffer in high memory.
This can be loaded with any dummy value if the B register is loaded with
zero. The DE register is the important one. It has to be loaded with the start
address of a 2K block of memory which will be used as a buffer. This is the
buffer which would be set by an OPENIN command in BASIC. When the
routine at #BC77 is run, it will give data back in these registers, but the
important one for our purposes is that the length of the file is given in BC.
This quantity then has to be pushed on to the stack, because the next routine
may corrupt the contents of BC. If anything goes wrong with the process, or
if the ESC key is pressed, the carry flag is set, and our routine allows this to
make an escape back to BASIC. With the header read, and the number of
bytes on the stack, we can now read the rest of the program into the memory.
Since BASIC programs start at #0170, this address is put into HL, where the
routine requires it. A call to #BC83 now loads in the rest of the file, starting
at the address in HL. Unlike a BASIC program being entered from the
keyboard, however, this does not alter the program pointer addresses in
#AE83 onwards. This, in fact, is another part of the normal protection
system. To make the program copyable, we must set these pointers to one
byte following the end of the BASIC program. This is done by adding the
start address in HL to the length bytes in BC, and poking the result into the
pointer addresses. This can be done in a loop, in lines 19 to 23. When you
return to BASIC, you will find your program can be listed, and, better still,
saved on to disc. It’s a remarkably simple solution, in contrast to some of the
elaborate tape copying programs that are commercially available for about
the same price as this whole book!

Screen recording

It is very often useful to be able to make a recording of text which appears on
the screen, particularly items like disc directories, or the printed output of
some programs which you might need to recall. For example, it is very
useful to be able to record the instructions for a program on disc, so that
valuable memory space does not have to be used. A recording of text on a
disc which has been made by the program here can be ‘replayed’ by using the
TYPE command from CP/M. This program is specifically for text; it will
not record screen graphics which have been made on the high-resolution
screen. Because only text is recorded, there is much less memory involved
than when a complete high-resoluton screen is recorded or replayed.

100 The Amstrad CPC464 Disc System

10 CLS: M7.=&A000: MEMORY M7.-1:CS'Z=0
20 FOR N7.=0 TO 81: READ D«

30 D7.=VAL <" «<" +D*) : CS7.=CS7.+D7.

40 POKE M7.+NX,DX:NEXT

50 IF CS7.O9937 THEN 1000

60 CALL M7.
70 PRINT"Press TAB to record screen, rea
d with ":PRINT"CP/M TYPE command. You wi

11 have"
80 PRINT"to reload if the machine has be

en reset."
90 NEW
100 DATA F3, 21,09, A0, 22, D4, BD, FB, C9

110 DATA FE, 09,20,3A,F5,E5,21,4A,A0
120 DATA 06,08,11,52,A0,CD,8C,BC,21

130 DATA 01,01,E5,CD,75,BB,CD,60,BB
140 DATA CD,95,BC,30,19,El,24,7C,FE
150 DATA 29,20, ED, 3E, 0A, CD, 95, BC, 3E

160 DATA 0D,CD,95,BC,26,01,2C,7D,FE

170 DATA 1A,20,DB,CD,8F,BC,El,Fl,C3

180 DATA 4A,13,53,43,52,4E,44,55,4D,50

1000 PRINT“Mistake in data- please check
your":PRINT"listing again.“:END

Figure 8.5. The screen to disc program in BASIC.

The program, Figure 8.5, consi. t. >f a short BASIC routine which pokes
machine code into memory. There is rather more machine code than in the
previous examples, and so a check has been included. This takes the form of
the variable CS%, which is the total of all the bytes of machine code. If this
total is incorrect, the cause is usually a faulty DATA entry, and you should
check your own listing if this error occurs. The listings in this book have
been taken directly from the computer printouts, and if you type them
exactly as you find them here, you will have exactly the same program as I
have. In other words, don’t ask if there are any misprints that stop the
program from working - there aren’t!

When the machine code has been poked into memory, part of it is run to
establish connections. This part of the machine code will ensure that when
you press the TAB key, whatever is on the screen will be recorded on disc.
You have to be careful about accidental pressing of the TAB key,
particularly when you have no disc in the drive. You should also remember
that this program will be wiped out if you reset (using CTRL, SHIFT, ESC),
or if you change the memory allocation to a higher number. When the

Disc Utility Programs 101

program is in memory and linked in, a short reminder is printed on the
screen. By this time, however, the program has vanished because of the
NEW in line 90, leaving behind the machine code, and the message on the
screen. When you have a screen full of text that you want to record, make
sure that there is a disc in the drive, and press the TAB key. You will hear the
disc start and stop, but you will have to wait until the disc has started and
stopped for a second time before you have a recording. Don't, whatever
happens, take the disc out until this second recording is finished. The screen
is recorded under the file name of SCRNDUMP, and you should find this
name in the disc catalogue. You can replay this file by using the built-in
CP/M utility TYPE. You can also change the name of the file if you want to
save another screen.

How it works

The program is entirely in machine code, and you should skip this section if
you don’t understand machine code programming. The listing in assembly
language is shown in Figure 8.6. Lines 3 to 7 poke the address of the start of
the main routine into a CPC464 jumpblock address at #BDD4. This
address is used when a character is placed on the screen, and it is a
convenient point to intercept the TAB character. In the main routine, which
starts at line 8, the character code number is checked. If the character is not
the TAB, then the jump in line 10 causes the normal jumpblock routine to be
used at once. When the TAB character is recognised, however, the AF and
HL register pairs are saved on the stack, because they will be needed by the
ROM screen routine, and our routine starts in line 12. This loads the HL
pair with the address of a filename, SCRNDUMP, loads B with the number
of letters in this name, and loads DE with a buffer address. The call to
#BC8C then opens a file to the disc drive, causing the first piece of disc
activity. The HL register pair is then loaded so that the CALL to #BB75 can
place the cursor at the top left-hand corner of the screen. The CALL to
#BB60 then reads the character under the cursor, and the CALL to #BC95
records the character in the file. This is repeated for 40 characters, following
which a line feed and carriage return are recorded. This ensures that the file
will be read correctly by TYPE when needed. It also makes for a very simple
reading routine, if you design a machine code reading system for use with
AMSDOS. The next row is then selected and tested, and the action proceeds
until all of the screen rows have been recorded. The file is then closed by the
CALL to #BC8F, and this is also the next line that will be used if there is an
error condition, including a break. The registers are then restored from the
stack, and the program ends with a jump to the correct jumpblock
destination of #134A. The bytes of the filename are held at the end of the
program, and also the buffer which is used to store bytes until they can be
recorded on to the disc.

102 The Amstrad CPC464 Disc System

c-
tn cj > u
p -y P-4 111 <0 L
a u tn c p 0 c •p
3 ai □ d P 6 tn ui 6 0
k C oq ID 0 in 3 k • 3 c- c TO
k •h jo ai d c a. k r“4 c 3 k r—4 £ 01
a> P CL k □ 1- > ID 0 0 U al 0 0 p U 4- ai

-p 3 6 0 •P 4- k p u £ ■o u u •r4 3 •r4 4-
c a 3 -p p ■r4 01 tn at at U L 6

k -> tn -X •«-» tn •M ■t > u 0 r. p p O
tv u P 01 cn 3 <0 al p u 3 X tn O ll c

□ H- 0 k 0i in 3 k 01 0 VI •—■4 ai at O ai at O <0 •K
c 0 -P -D •H 0 a k k a o> k k c p P £ r—4

H z-s H x I X

X
X X b-4 _i X o X
d X i- Ll X s> X X X X o X

S’ H Q UJ 3 CJ *“4 in ® in X o X in
® tn Q H CO CD N -0 Cb UJ _i <1 o
S' m V. CD ». cj m ID u X ». S CJ
d _J ■$• n ll -1 _l v> UJ CD _J _J ID ID ID CJ _l r. *-4 N ». ID
•s> * X O' Z d X X 00 Q S X X ® ® ® z I X <1 z d •S'

to
Q I X -I X _i -I _l
<1 t- tn tn -I U) _j _l _l X o _j

x O Q Q M X 1 x □ 3 Q Q Q <1 Q 3 d d d X CD z Q X a Q d
o JQ J -I LU x CJ O a. x _1 _l _J o _J CL o □ CJ o 1 □ CJ o -I CJ

■ ■

x
d
t~
tn

■ ■
ll
o
o

tn
X

•S'
d
X
®

Cl

a
a
■t
Q
CM
CM

ID
X

a
CJ

Cb
S'
X
X

d
tn
®
CM

tn
X

in
X

S'
d
d
<r
w
CJ

00
S'
<1
S'

S'
d
CM
in

▼“4

CJ
ID
CJ
CD
Cl
CJ

v-4
S'
vH
'S’
v-4
CM

UD
X

iD
ID
on
N
Q
CJ

m
CD
®
-o
Q
CJ

o
ID
in
Cb
Q
u

Cb
v—4
®
tn

VH

X CM
CJ
N

Cb
Cl
X
X

Q
X
S'
Cl

d
®
X
to

u
CD
bn
Cb
Q
o

•S' ▼-4 N co Cb X Q X X CM fs d Q X v-4 •t n 0- d CD CJ X 'S' CM
® S' S' ® ® S' ® ® v-4 v-4 v4 v-4 v4 CM Cl Cl CM CM CM CJ CM tn tn
® 'S' ® •S' S' ® ® 'S' ® ® ® s> ® ® ® ® ® ® 'S' ® ® ® ® S' S'
d a d

tn ■r in <t co Cb ® CM I'D in >0 X tb ® v4 Cl tn "M- bn o ts 00
t-4 •H T-< •-4 t-4 v-4 v-4 v-4 v-4 CM CM CM CM Cl CM CM Cl CM

Disc Utility Programs 103

ai
c

•H
■P -P

O
(U

3 C'- L L
0 p £ M- 111 01

Q L •H U ■r4 L -P c
<1 □ o in h

O U P ■p •M 0
IX -J X in u tn CH n
X 111 ai ai □ <u a> ai ai £2
u IX c p +J XI L L L O

o
<n

TD

O

c
a)

r. Q)

a. □ <D
I i □ I Q -C

Q tn o u. i Z
® O' *■4 _j co IX 00 i_

o
L) ® -I ■>. o (J M—

v. co r. r. sO bi 0) -I 11 tn tn ® 0)

<1 ® I □ a CM z ® I a 1“4 * CM CD
CU
□
CD

_j o CL a. Q C

Q a Q z Q CL at <r □ o CL aa tn Z _CD

-I o -J t-H _i O o o Cl CL Q O Id >
_Q

E
CD
CD
CD
CU

•• 0)

IX
o

■■
F-

Id
_l iX

jc
f—

tx t-M 1- 11 <6
IX X i-i □

co
LU LU I- ill

Q)

111 ®
bn

o O tn CM Q
III r-4 bn

Q bl v4 <r co U. <1 M bn
® O' ® tH o 00 n T bn
til Q -0 u Q 111 ® Q t-4 v4 K> tn •t
K> o CM CM b IL CM O 111 11 (J bn "t

in b a L) <3 111 ® CM bl <1 b <r id
tn tn to tn to tn n- "t
® ® ® ® ® ® ® ® ® ® ® ® ®
<r <i <1 a <1 <r <1 <L <r <i a

O' ® CM to bn o b co O' ® ® ▼“4 CM
CM tn in to to to to Ki Ki tn tn "T "t

104 The Amstrad CPC464 Disc System

Note that the program cannot be relocated simply by poking it to
different memory addresses. This is because of the use of the filename and
buffer addresses. If you want to use different addresses, you will have to
make sure that these address bytes are changed. The address of&A000 has
proved convenient, however, and it will be only if you are using a very long
BASIC program to produce screen text that you will be unable to fit this
program in.

Memory display

The CP/M utilities allow you to display memory, but the display is in hex
only, and there is no facility for displaying the ROM of the CPC464. This
program allows you to see what is stored in either ROM or RAM, and
displays the bytes in hex and in character form. The character form display
makes it a lot easier to see titles and other text displays. As usual, the
program uses a mixture of BASIC and machine code, with the machine code
poked into place by the BASIC program. Since the machine code is fairly
short, there is no check sum used, and you should look at your own listing
carefully to ensure that the DATA lines are correct. It should go without
saying that you should always record any program before you attempt to
run it.

The program, in Figure 8.7, follows the lines of the track and sector
reader. If you have already recorded the listing of Figure 8.1, you can load it

10 CLS:GOSUB 500:GOSUB 600
20 PRINT#1,TAB(13)"Memory Display.":PRIN

T#1,TAB(13);STRING*(14,"_")
30 PRINT#0:PRINT#©,"Starting address ": G
OSUB 2000

40 IF ST7.<-32768 OR ST7.>32767 THEN PRINT

"Mistake in address- please try again":G
OTO 30
50 IF ST7.>=0 AND ST7.<=&3FFF THEN GOSUB 1

000
60 IF ST7.<=-1 AND ST7.>=-16384 THEN GOSUB

1000
90 CLS#0:CLS#1
100 PRINT#1,"Addr.";TAB(15)"Hex bytes";T

AB(25)"Characters."
110 PRINT#2:PRINT#2,TAB(6)"Press SPACEBA

R -for next set, ESC to stop"
115 PRINT#©, HEX* (ST7., 4) ;
120 FOR N7.=0 TO 7: AD7.=ST7.+N7.

Disc Utility Programs 105

130 IF CH*="RAM"THEN K7. (N7.) =PEEK (AD7.)

140 IF CH$=“ ROM "THEN K7.=AD7. : CALL &A000,@

K7.:K7.(N7.)=K7.
160 PRINT#0,TAB(6+3*N7.) ; HEX* (K7. (N7.) ,2) ; :
NEXT
165 FOR N7.=0 TO 7: IF K7.(N7.)<32 THEN K7.CN

7.) =127
170 PRINT#0, TAB (30+N7.) ; CHR* (K7. (N7.)) j :NEX

T
180 WHILE INKEY(47)=—l:WEND

190 ST7.=ST7.+N7.: GOTO 115

200 PRINT#0:PRINT#0,"Another one- Y or N
*711

210 INPUT At:IF A*="Y" OR A*="y"THEN 20

220 END
500 MEMORY &9FFF:B7.=&A000
510 INK 0,0:INK 2,26: INK 3,1
520 CLS:WINDOWttl,1,40,1,3
530 WIND0W#2,1,40,23,25
540 WINDOW#0,1,40,4,22

550 BORDER 4
560 PAPER#1,3:PAPER#2,3

565 CLS#1:CLS#2
570 PEN#0,1:PEN#1,2:PEN#2,2

590 RETURN
600 FOR N7.=0 TO 26: READ D*
610 POKE B7.+N7., VAL("&"+D*> :NEXT

620 RETURN
700 DATA DD,6E,00,DD,66,01,5E,23,56
710 DATA 36,00,2B,CD,06,B9,CD,00,B9
720 DATA 1A,77,CD,03,B9,CD,09,B9,C9

1000 PRINT#©,"ROM or RAM?. Please type a

nd":PRINT"press ENTER key."
1010 INPUT CH*: IF CH*O"R0M" AND CH*O“RA

M" THEN PRINT"Error— please try again”:G

OTO 1000
‘1020 RETURN
2000 INPUT ST*:IF LEFT*(ST*,1)="&” THEN

ST7.=VAL(ST*) :GOTO 2030
2010 V=VAL(ST*>:IF V>32676 THEN V=V-6553

6
2020 ST7.= INT(V)
2030 RETURN

Figure 8.7. The memory reading program in BASIC.

106 The Amstrad CPC464 Disc System

in and use it as the basis for this listing by editing some of its lines. The
subroutine which sets the windows is identical, and only the number in line
600, and the DATA need to be changed for the machine code poke lines. In
line 30, you are asked for an address, which you can provide in hex (using
'&’) or in denary. The subroutine in line 2000 tests to find which has been
used, and allocates the correct number to variable ST%. This is not
completely straightforward, because the range of an integer number is
—32768 to +32767, compared with the usual address range of 0 to 65535.
Lines 50 and 60 then test the address to find if it could be in the ROM range.
If the address is in the range that can only be RAM, between 16384 and
49151, then nothing more is needed. If the address is one that is shared by
ROM and RAM, however, you will be asked by the subroutine at line 1000
which you want. You should type ROM or RAM, and then press ENTER.
The reason is that the bytes stored in RAM can be looked at by using PEEK,
but the bytes in ROM can be found only by using a machine code subroutine
stored at address &A000.

The display can then start. The display consists of an address number in
hex at the left-hand side of the screen. This is the first address in a set of
eight, and the bytes which are stored at this and the next seven addresses are
then displayed. On the same line, you will see the character shapes which
correspond to these bytes. Another loop is used for this, storing the codes in
an array. There is a difference, however, because all bytes of less than 32
denary have been changed to the checker pattern, ASCII 127. This avoids
trying to print codes that will shift the cursor or clear the screen. You can
obtain another set of eight characters by pressing the spacebar. If you keep
the spacebar pressed, the display will scroll steadily, which can sometimes be
convenient for looking at text stored in the memory.

The assembly language

Once again, unless you are a Z80 machine code programmer, look away.
The assembly language is shown in Figure 8.8, and is very simple. The
address of a byte has been passed from BASIC by the command
CALL| &A000,@K%. This results in the bytes of K% being stored at an
address which is found atIX + 0andIX+l, and this address is gathered into
HL. By using LD E,(HL), the low-byte of the value of K% is put into E, and
by using INC HL and LD D,(HL), the high-byte is placed in DE, so that the
whole of the address that we want to PEEK is in DE. The high address byte
in HL is then zeroed, and the HL number decremented to point to the low-
byte. This is done so that we can return a value of K% to the BASIC
program as one byte only. Two calls are then used to switch on both lower
and upper ROMs, and the load in line 12 will put a byte in the accumulator.
This byte will come from the ROM address that has been specified, and by
using LD (HL),A this byte is put back into the address which BASIC uses

Disc Utility Programs 107

in
tn
U
X

tn T)
tn L a e t-
at ai ai nt 0 ai J
L at •P CL L. ■P >

TJ Q U >• ai
n > n 5 L X XJ C r-t
nJ XI 0 U •h X)

x: 0 4J P ■p nJ tn
+> t- 3 O’ L tn •H ai p tn n
m _i 0 •M tn QJ X c CT □ •- o
ct> r— r N L in □ a n IX

■»> •r- •r. • e • r- >r. ■ r> • ».

Q
Z
LU

®
UJ
■0
Q
Q

•0
-0
Q
Q

uj bi
IT) Cl

co
Cl

O'
co
o
®
Q
o

O'
CQ
®
®
Q
(J

d b-
s

O'
CQ
to
®
Q
U

O'
CQ
O'
®
Q
CJ

O'
o

®
®

■0 <1
in to

® K) O b> CO O CQ u lx CM to b- d
® ® ® ® ® a ® ® rH ▼H
® ® ® ® ® ® ® ® ® ® ® ® ® ®
d d d d d d d d d d d d d d

p CM tO ■t iit -0 N CO o ® vi
vH

CM to
♦H rH

in ■0
■rH

F
ig

ur
e

8.
8.

 T
he

 a
ss

em
bl

y
la

ng
ua

ge
 w

hi
ch

 sw
itc

he
s

on
 R

O
M

s a
nd

 re
ad

s
th

ei
r

co
nt

en
ts

.

108 The Amstrad CPC464 Disc System

for K%. The ROMs are then switched off again by two calls, and the
program returns. Because of the use of (HL), the single byte which was read
will now exist in the BASIC program as variable K%, and it can then be
transferred to an array, like its PEEK equivalent.

Disc editor

This is a program which allows you to change what is stored on a disc.
Because of that, it has to be used with very great care. You must never alter a
disc unless you have a backup copy. The only exception to this is if you are in
the desperate state of having a valuable disc which has been magnetically
damaged and cannot be loaded or copied. Do not attempt to use this
program unless you know what you are doing. Neither I nor the publishers
can be responsible for any loss of data due to the use of this program,
because what you do with it is entirely up to you. If you know what you are
doing, it can sometimes be a way of rescuing a valuable disc from a fate
worse than reformatting. If you don’t know what you are doing, experiment
with a backup disc that you don’t care too much about until you do know
what you are doing.

With that very necessary warning over, let’s see what the program of
Figure 8.9 does. It is very similar in style to the track & sector reader and
once again, you can create one from the other by renumbering and editing.
There is much more machine code data, however, so in this case a checksum
has been used to ensure that you can call the machine code only when the
data is correct. If you get an error message about this, check your data lines
carefully. Look in particular for a B used in place of 8, or the other way
round, since this is the most common source of trouble. If the DATA lines
are correct, the program will display its track & sector title, and you will be
asked as before to supply track and sector numbers. If you are trying out the
program on a spare disc which has some files recorded, use track 2, sector 0.
This will produce the directory entries.

You will now see the same display as for the track & sector program. This
time, however, you need to use the ENTER key if you want to proceed from
one byte to the next. If you want to change the byte at an address, you type
the new byte, in hex code, and then press ENTER. This will repeat the line
on the screen, to e*nsure that you see the change, and you will need to press
ENTER to get the next line. When you have made alterations, pressing
CTRL \ will enter a 'face' shape in the entry strip at the bottom of the screen,
and when you press ENTER on this, the sector will be rerecorded on the
disc. The whole procedure has been made deliberately clumsy, so that you
don’t find it too easy to zap valuable bytes off a disc! If you want to test it,
look through the directory sector until you find a filename. If necessary,
press ESC twice and rerun the program when you have noted the start of a
filename. When you know the byte number at which the filename starts, you

Disc Utility Programs 109

10 CLS.-GOSUB 280:GOSUB 390
20 PRINT#1, TAB (13) "Track «< Sector.“:PRIN

T#1,TAB(13);STRING*(14,"_")
30 PRINT#©:PRINT#©,"TRACK No.- (0 to 39)

": INPUT T7.
4© IF T7.<© OR T7.>39 THEN K7.=39: GOSUB 430

:GOTO 3©
50 PRINT#©:PRINT#©,"SECTOR No. (0 to 8)

": INPUT S7.
6© IF S7.<© OR S7.>8 THEN K7.=8: GOSUB 43©: G

OTO 5©
7© S7.=S7.+1 +&4©: D7.=T7.*256+S7.

8© CALL 8<A0©0,D7.

9© CLS#©:CLS#1
100 PRINT#1:PRINT#1,TAB(8)“Byte No.";TAB

(20)"Hex";TAB(27)"Char"
ll© PRINT#2,“Type hex. number to change,
ENTER to":PRINT#2,"ignore, CTRL \ to pu

t back to disc."
12© FOR N7.=© TO 511: K7.=PEEK (B7.+N7.)
13© PRINT#©, TAB (7) ;N7.; TAB (16) ; HEX* (K7., 2)

5
14© IF K7.<32 THEN K7.= 127

15© PRINT#©, TAB (24) ;CHR*(K7.)
16© INPUT#3, K*:IF K*=""THEN 22©
17© IF K*=CHR»(28) THEN 26©
18© IF LEN(K*)>2 THEN PRINT"Faulty numbe

r":G0T0 16©
19© K7.=VAL("&"+K*)
20© POKE B7.+N7.,K7.

210 GOTO 130
22© NEXT
23© PRINT#©:PRINT#©,"Another one- Y or N

? "
24© INPUT A*:IF A*="Y" OR A*="y" THEN 2©

25© END
26© CALL 8cA023:REM RECORD

27© END
28© MEMORY &9FFF: B7.=«cA0©0
29© INK ©,©:INK 2,26: INK 3,1
30© CLS:WINDOW#1,1,4©,1,3

Figure 8.9. The disc editing program in BASIC - experiment with backup copies
only!

110 The Amstrad CPC464 Disc System

310 WIND0W#2,1,40,22,24
320 WIND0W#3,10,30,25,25
330 WINDOW#©,5,35,4,21

34© BORDER 4
35© PAPER#1,3:PAPER#2,3
36© CLS#1:CLS#2:CLS#3
370 PEN#©,1:PEN#1,2:PEN#2,2
38© RETURN
390 CS7.=0:FOR N7.=© TO 61: READ D$:D7.=VAL(

"&"+D»>
400 POKE B7.+N7., D7.: CS7.=CS7.+D7.: NE X T
41© IF C»<>7825 THEN PRINT"FAULTY DATA,

PLEASE RE-TYPE":END

420 RETURN
430 PRINT#©:PRINT#©, "Range 0 to";K7.;” on
ly, try again":RETURN
44© DATA DD,7E,©0,DD,56,01,32,3E,A©
45© DATA IE,©0,ED,53,3F,A©,21,41,A©

46© DATA F5,0E,©7,CD,0F,B9,F1,C5,4F

47© DATA CD,66,C6,Cl,CD,18,B9,C9,3A

48© DATA 3E,A©,ED,5B,3F,A0,21,41,A0

49© DATA F5, ©E, ©7, CD, ©F, B9, Fl, C5, 4F

50© DATA CD,4E,C6,Cl,CD,18,B9,C9

Figure 8 9. contd.

can edit this name into something different, like ALTERIT - but not more
than eight characters. You have to enter the characters as hex codes, so you
will need a hex-ASCll table. A suitable table is included in Appendix A.

How it works

The BASIC program follows the lines of the track & sector reader closely,
and the main changes are in the entry of replies. A new window, #3, has been
defined for this purpose, so that the prompt for the INPUT step in line 160
does not disturb the data display. Lines 160 to 180 test the entry. It is not
easy to make a complete set of tests for a valid hex number, and no attempt
has been made to trap anything other than the length of the number and the
value. Line 190 obtains the value of the hex entry, and line 200 pokes this in
place in the buffer memory. The GOTO 130 in line 210 then repeats the
display step so that you can check that the change has been made. If you
come to the end of the stored bytes without pressing the CTRL keys, then
you will be asked for another T & S, and this will allow you to look at more
data without altering the disc. You can also use ESC at any point to get out

Disc Utility Programs 111

of any disc alteration. If, on the other hand, you have altered bytes and you
are determined to see the disc altered, then press CTRL. The disc will spin
briefly, and the deed is done. Use CAT now to see if your disc still works! If
you have only altered a filename, then you will see the new filename on the
disc. If, however, you have altered the numbers that lie between the
filenames, then you can expect anything to happen!

The machine code

The assembly language for the machine code is illustrated in Figure 8.10. It
is a straightforward development of the track & sector machine code, and it
starts by passing values from BASIC into the Z80 registers. In this case,
however, the values are also stored at addresses in the program, labelled as
STOR. This allows the program to pick up these values easily when the
sector is rewritten to disc. The rest of the read section to line #A022 then
follows familiar paths. The new part starts in line #A023. This loads the
accumulator from memory, and the next line loads the DE register pair.
This puts the correct track and sector numbers back into the registers for the
write routine, and the disc ROM is then selected by loading the select
number 7 into register C and calling #B90F. The sector number is then
transferred to the C register, and the sector write routine at #C64E is called.
This writes bytes from the buffer to the disc, and then the ROM select bytes
are popped into BC so that the ROM deselect call to #B918 can be made.
Once this has been done, the program returns to BASIC.

Last word

These utilities should be of considerable use to you if you plan to be more
than a passive user of the CPC464 dies system. Similar utilities will probably
be available on disc (at a price!) if you want to avoid the keyboard exercise,
but if you are interested in the way that your disc system works, then the
description of these utilities should be of interest. We have come to the end
of this road now, and the end of this book. The aim throughout has been to
introduce you gently to the CPC464 disc system, and to take you through to
a stage where you can make very effective use of it. You should by now have
reached that stage, and be reaping some return from your investment in the
disc system. Most important of all, you have another powerful component
of a computer system working for you, and you now know how to get the
best from it. If this book has tempted you to learn more about machine code,
then you will quite certainly find my book Introducing Amstrad CPC464
Machine Code a useful introduction.

112 The Amstrad CPC464 Disc System

■p

a
ai
in
• V.

L
0
-P
u
QI P
in u

ai
•o
« Q|
oi in
L QJ

TJ

A
00

0 D
D

7E
00

L

D

A
,(

IX
+0

)
A

00
3 D

D
56

01

L
D

D

,(
IX

+l
)

2
® U. ® O' o o
<1 io <r co U CQ
w ® M w t" u. O CD
to ® m < ® ® O T-t
N HI Q - It1 UJ Q ~ in iL Q Q
to 111 N iu ® O U. O *r □ o o

io in * ® ® *
0'<iQ-<iniu6-inu.Q«D
OttUINlLSOLU'tOUO

®
<1

® u. ® O' -0 O'
<1 tO <X m u CQ
urn- fx U. LU at

o
o

'OOfflu.Nrtinajo-<imuju.NM"0«qw®M*inoO'«Q ®®«®ww^^w^^w«NNNNNNnMtOIOIOtObOtO
®®®®®®®®®®®®®®®®®®®®®®®®®®®

” N M) <t 11 -0 MB O'® -<NM<tin'OMBO'®-<Nntin'OMB

(X ..

tn m

O' ® -i CM tO *
n m n n n n F

ig
ur

e 8
.1

0.
 Th

e a
ss

em
bl

y la
ng

ua
ge

 fo
r th

e d
is

c e
di

tin
g m

ac
hi

ne
 co

de
 se

ct
io

ns
.

Appendix A

The ASCII Codes in Hex

No. Hex. Char. No. Hex. Char

32 20 80 50 P

33 21 i 81 51 Q

34 22 n 82 52 R

35 23 # 83 53 S

36 24 * 84 54 T

37 25 7. 85 55 U

38 26 & 86 56 V

39 27 87 57 w

40 28 < 88 58 X

41 29) 89 59 Y

42 2A ♦ 90 5A z

43 2B + 91 5B c

44 2C 92 5C \

45 2D - 93 5D

46 2E . 94 5E

47 2F / 95 5F

48 30 0 96 60 n

49 31 1 97 61 a
50 32 2 98 62 b

51 33 3 99 63 c
52 34 4 100 64 d

53 35 5 101 65 e
54 36 6 102 66 ■F

55 37 7 103 67 g
56 38 8 104 68 h

57 39 9 105 69 i
58 3A : 106 6A J
59 3B ? 107 6B k

60 3C < 108 6C 1

61 3D ■ 109 6D m
62 3E > 110 6E n

114 The Amstrad CPC464 Disc System

63 3F ? 111 6F o
64 40 @ 112 70 p
65 41 A 113 71 q
66 42 B 114 72 r
67 43 C 115 73 s
68 44 D 116 74 t
69 45 E 117 75 u
70 46 F 118 76 V
71 47 G 119 77 w
72 48 H 120 78 X
73 49 I 121 79 y
74 4A J 122 7A z
75 4B K 123 7B <
76 4C L 124 7C 1•
77 4D M 125 7D >
78 4E N 126 7E •V

79 4F □ 127 7F

Appendix B

Use of the CTRL Key in
CP/M

The CTRL key is used in CP/M along with letter keys to allow a number of
useful commands to be entered from the keyboard while a program is
running. The actions are listed here. To avoid having to repeat the CTRL
key symbol, only the letters are shown, so that C means CTRL C. Since the
CTRL key prints an up-arrow on the screen, this symbol is sometimes
shown in place of CTRL. Another CTRL symbol is the circumflex (A)
which many printers use in place of the up-arrow.

C Stops a program running.
E Carriage return to screen but not to program.
H Delete character and backspace.
I Tab across eight spaces.
J Generate line feed, end input.
M Generate carriage return, end input.
P Switch printer on or off.
R Erase and retype command.
S Screen display on or off.
U Ignore command, move cursor down.
X Erase command, home cursor.
Z End input.

Note: The P and S commands are ‘toggles’. This means that you use the
command once to switch on the effect, and again to switch it off. You cannot
normally tell, except by trying it, what state the command is in, but when
you enter CP/M, the toggle commands are set to printer off, screen on.

Index

sign, 22
SSYS use, 39
& sign, 22
* use, 19
3-inch disc, 7
80-column mode, 9
8080 microprocessor, 32
@ command, 19

address numbers, 21
allocating buffers, 70
ALPS mechanism, 87
ampersand (&), 22
AMSDOS, 9
Amstrad DMP-I printer, 79
AMSWORD, 2
ASCII codes in hex, 113
ASCII file, 26
ASM, 46
assigning extensions, 33
automatic operation, 2

backing up, 23
backup copy, 12
BAK extension, 18
BAS extension, 18
BASIC loader, 26
Bdos error message, 35
block or page, 36
blocks (sectors), 7
buffer, printer, 79
buffers in memory, 50, 52
built-in commands, 34
business use of printer, 75
busy warning, 14
bytes free number, 39

CALL &BB03, 58
care of discs, 12
CAT, 17, 24

catalogue, 2
Centronics, 79
Centronics connection, 76
CGP-115 commands, 89
CGP-115 graphics printer, 87
changing a record, 56
changing file, 68
CHKDISC, 44
clearing keyboard buffer, 58
CLOAD, 43
CLOSEOUT, 52
closing files, 53
code byte in header, 28
coded BASIC, 26
cold-start address, 26
common extensions, 33
connecting cable, 12
controlling circuits, 4
copy whole disc. 28
COPYDISC, 29
copying tapes to disc, 96
core and subroutine structure, 69
corruption of filename, 70
corruption of system, 45
CP/M, 9
CP/M commands, 34
CP/ M system, 32
| CPM command, 9
CPC464 graphics shapes, 80
creating file, 71
CSAVE, 43
CTRL-C, 10
CTRL-P, 40

daisywheel, 78
daisywheel for Juki. 84
DAT extension. 51
data. 47
data channel. 50
data organisation. 49

118 Index

database example, 60
DDT, 45
debugging utility, 45
denary numbers, 21
descenders, 77
device labels, 41
device names, 40
DEVPAC, 1, 32
DFS, 4, 13
digital signals, 5
DIR, 17, 34
directory, 10, 17
disassembly, 45
disc action, 5
disc as extra memory, 11
disc commands, 18
disc editor, 91, 108
disc filing, 48
disc filing system (DFS), 13
disc head, 5
disc system, 3
disc utility, 91
D1SCCHK, 44
DISCCOPY errors, 30
DISCCOPY utility, 28
discing, 7
DOS disc, 4
dot matrix, 77
drive letter, 33
drive selection, 17
DUMP, 42

end-of-file (EOF), 53
entry into file, 67
EOF code, 53
Epson printers, 80

| ERA command, 19
ERA from CP/M, 35
erase file, 19
ext number, 39
extending file example, 56
extension, 32
extension of filename, 10
extra commands, 2

field, 48
file, 47
file exists message, 36
file reading program, 54
file R/O message, 35
file security, 54
file type, 32
FILECOPY, 29
FILECOPY errors, 31

filename, 10, 15, 32
filing cabinet program, 60
firmware, 3
floppy disc connector, 3
formatting, 7, 10
four-colour printing, 87

GENA3, 1
graphics commands, 90
graphics plotting, 88
graphics printer, 78
graphs in colour, 88

handshaking, 79
hard copy, 75
hash sign (#), 22
HEADTST utility, 24
hex scale, 22
HEXS command, 23
hexadecimal codes, 21
HIMEM, 26
household accounts, 47
how disc is read, 93
hub, 5

information on tape, 24
ink-jet printer, 78
Inmac, 84
interface, 3, 79
international character sets, 81

joining files, 41
Juki control codes, 86
Juki printout, 85
Juki 6100, 84

Kuma Computers, 32

length of filename, 10
lights on drive unit, 14
line feed problems, 83
listings, 75
LOAD, 46
lock file, 51
LOGO load, 16
loss of data. 108

machine code, 13
machine code programmer, 1
magnetic fields, 12
mains plug, 3
marker, 7
Master disc (system disc), 3, 9
memory, 14

Index 119

memory display, 104
memory reset, 27
memory use, 4
memory used by disc system, 14
MONA3, l
monitor, 45
movement of head, 6

need for printer, 75
needles of printhead, 77
not found message, 16

ON ERROR GOTO trap, 70
OPENOUT, 50

page or block, 36
paper rolls, 80
parallel printer, 79
pen-test routine, 87
PIP, 40
pointer to variable, 19
position of drive, 12
power source, 3
preceding extensions, 33
print to file, 51
printer mechanisms, 76
printer types, 76
printers, 75
printing directory, 17
program versions, I
protected software, 96
protected tape, 26
protection of file, 18
protective shutter, 5

random access file, 48
random access filing, 59
read track and sector, 91
read-only file, 18
reading files, 53
reading tape header, 24
reasons for use, 1
record. 48
recs number, 39
reliability, 3
REN, 19

REN from CP/M, 35
rename file, 19
reserved tracks, 7
retry. Ignore or Cancel message, 35
ribbon for Juki, 84
ROINTIME load, 16
RS-232 system, 79

SAVE, 15, 36
saving machine code, 24
scale of sixteen, 21
screen image file, 26
screen recording, 99
second disc drive, 3
sector numbers, 93
sectors (blocks), 7
sequential file, 48
serial file, 48
serial printer, 79
serial recording, 2
set up file, 66
shifting H1MEM, 69
shutter, 8
sides of disc, 9
slot in casing, 6
socket strip, 3
soft-sectoring, 7
software commands to Epson, 82-3
speed of operation, I
STAT, 17, 37
statistics on disc, 38
storage space, 11
strings as files, 50
switch settings, Epson, 82
switching order, 13
system disc (Master disc), 3

Tandy, 87
| TAPE.IN command, 15
testing disc, 7
testing for EOF, 53
text transfer, 42
text writer, 2
third track, 10
time delay, 70
tracks, 6
transient commands, 34
transient commands list, 38
transient program area, 36
twin drives, 23
TYPE, 37

updating file, 55
USER, 36
user number, 33
using CTRL key in CP/M, 11
using TAB key, 100
using twin files, 55
utility, 23

version numbers, 33
vintage recordings, 47

120 Index

visual editing program, 57

wasting space, 11
wildcard, 19, 35
wildcard in FILECOPY, 30
word processing. 75
write-protect, 8

write-protect shutter, IS
write-protecting file, 39
writing serial file. 52

Z80 microprocessor, 13
ZEN. 32

This book sets out the advantages, principles and
operating details of the Amstrad disc system. The actions
of filing are explained in detail since filing on disc is an
important feature of business and other database
applications. The principles and technical details of CP/M
are explained, providing readers with all they need to use
this operating system for running business software and
for utility purposes.

Interfaces and the different types of printers and their
practical applications are described with their particular
advantages and disadvantages. The three most popular
printers are dealt with in detail. Finally, a number of very
useful disc utilities are provided to make computing more
efficient and creative.

The Author
Ian Sinclair has regularly contributed to journals such as
Personal Computer World, Computing Today, Electronics
and Computing Monthly, Hobby Electronics and Electronics
Today International. He has written over fifty books on
aspects of electronics and computing, mainly aimed at the
beginner.

Other books for Amstrad users

AMSTRAD COMPUTING
Ian Sinclair
0003831205

SENSATIONAL GAMES FOR THE
AAASTRAD CPC464 AND CPC664

Jim Gregory
0 00 383121 3

ADVENTURE GAMES
FOR THE AAASTRAD CPC464
A. J. Bradbury
0003830780

FILING SYSTEAAS AND DATABASES
FOR THE AAASTRAD CPC464
A. P. Stephenson and
D. J. Stephenson
0003831027

COLLINS
Printed in Great Britain

£7.95 net

40 EDUCATIONAL GAMES

FOR THE AAASTRAD CPC464

Vince Apps
000 3831191

PRACTICAL PROGRAAAS
FOR THE AAASTRAD CPC464
Audrey Bishop and
Owen Bishop
000 3830829

INTRODUCING AAASTRAD
AAACHINE CODE

Ian Sinclair
0003830799

ISBN

z
o
>
ZU

m
>
U)

50
>
Q
n "0 n
o

n
O
r1
t-1
z
C/5

	The AMSTRAD CPC 464 Disc System
	Contents

	Preface

	1 - About Discs and Disc Systems
	2 - The Disc Filing System
	3 - Digging Deeper
	4 - The CP/M Operating System
	5 - BASIC Filing Techniques
	6 - A Database Example - Filing Cabinet
	7 - Printers
	8 - Disc Utility Programs
	Appendix A - The ASCII Codes in Hex
	Appendix B - Use of the CTRL Key in CP/M
	Index

	● Raw scan : Maxime CROIZER for ACME | Layout/OCR : ACME – https://acpc.me ● 2020-06-30

