
C= commodore
COMPUTERS

USER'S MANUAL STATEMENT
"THIS EQUIPMENT GENERATES AND USES RADIO FREQUENCY ENER-
GY AND IF NOT INSTALLED PROPERLY, THAT IS, IN STRICT ACCORD-
ANCE WITH THE MANUFACTURERS' INSTRUCTIONS, MAY CAUSE IN-
TERFERENCE TO RADIO AND TELEVISION RECEPTION. IT HAS BEEN
TYPE TESTED AND FOUND TO COMPLY WITH THE LIMITS FOR A CLASS
B COMPUTING DEVICE IN ACCORDANCE WITH THE SPECIFICATIONS IN
SUBPART J OF PART 15 OF FCC RULES, WHICH ARE DESIGNED TO
PROVIDE REASONABLE PROTECTION AGAINST SUCH INTERFERENCE
IN A RESIDENTIAL INSTALLATION. HOWEVER, THERE IS NO GUARAN-
TEE THAT INTERFERENCE WILL NOT OCCUR IN A PARTICULAR IN-
STALLATION. IF THIS EQUIPMENT DOES CAUSE INTERFERENCE TO
RADIO OR TELEVISION RECEPTION, WHICH CAN BE DETERMINED BY
TURNING THE EQUIPMENT OFF AND ON, THE USER IS ENCOURAGED
TO TRY TO CORRECT THE INTERFERENCE BY ONE OR MORE OF THE
FOLLOWING MEASURES:

• REORIENT THE RECEIVING ANTENNA

• RELOCATE THE COMPUTER WITH RESPECT TO THE RECEIVER

• MOVE THE COMPUTER AWAY FROM THE RECEIVER

• PLUG THE COMPUTER INTO A DIFFERENT OUTLET SO THAT
COMPUTER AND RECEIVER ARE ON DIFFERENT BRANCH CIR-
CUITS

"IF NECESSARY, THE USER SHOULD CONSULT THE DEALER OR AN
EXPERIENCED RADIO/TELEVISION TECHNICIAN FOR ADDITIONAL SUG-
GESTIONS. THE USER MAY FIND THE FOLLOWING BOOKLET PRE-
PARED BY THE FEDERAL COMMUNICATIONS COMMISSION HELPFUL:
'HOW TO IDENTIFY AND RESOLVE RADIO-TV INTERFERENCE PROB-
LEMS.' THIS BOOKLET IS AVAILABLE FROM THE U.S. GOVERNMENT
PRINTING OFFICE, WASHINGTON, D.C. 20402, STOCK NO. 004-000-
00345-4."

INFORMATION TO USER
"WARNING: THIS EQUIPMENT HAS BEEN CERTIFIED TO COMPLY WITH
THE LIMITS FOR A CLASS B COMPUTING DEVICE, PURSUANT TO SUB-
PART J OF PART 15 OF FCC RULES. ONLY PERIPHERALS (COMPUTER
INPUT/OUTPUT DEVICES, TERMINALS, PRINTERS, ETC.) CERTIFIED TO
COMPLY WITH THE CLASS B LIMITS MAY BE ATTACHED TO THIS COM-
PUTER. OPERATION WITH NON-CERTIFIED PERIPHERALS IS LIKELY TO
RESULT IN INTERFERENCE TO RADIO AND TV RECEPTION.

0

• COMMO DORE 64 C
USE R 'S GU I DE

•
•
•
•
•
•

0 Published by.

11

0

0

Commodore Business Machines, Inc.

First Edition
Ninth Printing - 1984

Copyright © 1982 by Commodore Business Machines, Inc.

All rights reserved.

This manual is copyrighted and contains proprietary information. No part of this publica-

tion may be reproduced , stored in a retrieval system , or transmitted in any form or by any

means , electronic, mechanical , photocopying , recording or otherwise, without the prior

written permission of COMMODORE BUSINESS MACHINES, Inc.

TABLE OF CONTENTS

INTRODUCTION ... vii

1. SETUP .. 1

• Unpacking and Connecting the Commodore 64 2

• Installation ... 3

• Optional Connections 6

• Operation ... 8

• Color Adjustment 11

2. GETTING STARTED 13

• Keyboard .. 14

• Back to Normal 17

• Loading and Saving Programs 18

• PRINT and Calculations 22

..• Precedence 27

• Combining Things 28

3. BEGINNING BASIC PROGRAMMING 31

• The Next Ste p 32
GOTO ... 33

..• Editing Tips 34

• Variables 34

• IF ... THEN 37

• FOR . . . NEXT Loops 39

4. ADVANCED BASIC 41

• Introduction .. 42

• Simple Animation 43

Nested Loops 44

• INPUT ... 45

• GET .. 47

• Random Numbers and Other Functions 48

• Guessing Game 50

• Your Roll .. 52

iii

6

• Random Graphics 53

CHR$ and ASC Functions 53

5. ADVANCED COLOR AND GRAPHIC COMMANDS .. 55

• Color and Graphics 56

• PRINTing Colors 56

• Color CHR$ Codes 58

• PEEKs and POKEs 60

• Screen Graphics 62

• Screen Memory Map 62

• Color Memory Map 64

• More Bouncing Balls 65

6. SPRITE GRAPHICS 67

• Introduction to Sprites 68

• Sprite Creation 69

• Additional Notes on Sprites 75

• Binary Arithmetic 76

7. CREATING SOUND 79
• Using Sound if You're Not a

Computer Programmer 80

• Structure of a Sound Program 80

• Sample Sound Program 80
• Making Music on Your Commodore 64 81

• Important Sound Settings 83

• Playing a Song on the Commodore 64 88

• Creating Sound Effects 89

• Sample Sound Effects To Try 90

8. ADVANCED DATA HANDLING 91
• READ and DATA 92

• Averages .. 94

• Subscripted Variables 95

One-Dimensional Arrays 96

Averages Revisited 97

• DIMENSION .. 98

• Simulated Dice Roll With Arrays 99

• Two-Dimensional Arrays 100

iv

0

APPENDICES ... 105

Introduction .. 106

A: COMMODORE 64 ACCESSORIES AND SOFTWARE 107

B: ADVANCED CASSETTE OPERATION 110

C: COMMODORE 64 BASIC 112

D: ABBREVIATIONS FOR BASIC KEYWORDS 130

E: SCREEN DISPLAY CODES 132

F: ASCII and CHR$ CODES 135

G: SCREEN AND COLOR MEMORY MAPS 138

H: DERIVING MATHEMATICAL FUNCTIONS 140

I: PINOUTS FOR INPUT/OUTPUT DEVICES 141

J: PROGRAMS TO TRY 144

K: CONVERTING STANDARD BASIC PROGRAMS TO

COMMODORE 64 BASIC 148

L: ERROR MESSAGES 150

M: MUSIC NOTE VALUES 152

N: BIBLIOGRAPHY 156

0: SPRITE REGISTER MAP 159

P: COMMODORE 64 SOUND CONTROL SETTINGS 162

INDEX ... 165

0

0

0

A
•I
0

S!

0

0

INTRODUCTION

Congratulations, on your purchase of one of the best computers in the

world. You are now the proud owner of the COMMODORE 64. Com-

modore is known as The Friendly Computer company, and part of

being friendly is giving you easy to read, easy to use and easy to

understand instruction manuals. The COMMODORE 64 USER'S GUIDE is

designed to give you all the information you need to properly set up your

equipment, get acquainted with operating the COMMODORE 64, and

give you a simple, fun start at learning to make your own programs.

For those of you who don't want to bother learning how to program,

we've put all the information you need to use Commodore programs or

other prepackaged programs and/or game cartridges (third party

software) right up front. This means you don't have to hunt through the

entire book to get started.

Now let's look at some of the exciting features that are just waiting for

you inside your COMMODORE 64. First, when it comes to graphics

you've got the most advanced picture maker in the microcomputer in-

dustry. We call it SPRITE GRAPHICS , and it allows you to design your

own pictures in 4 different colors, just like the ones you see on arcade

type video games. Not only that, the SPRITE EDITOR let's you animate as

many as 8 different picture levels at one time. The SPRITE EDITOR will

soon be available as a software program that you can load directly into

your COMMODORE 64. You can move your creations anywhere on the

screen , even pass one image in front of or behind another. Your COM-

MODORE 64 even provides automatic collision detection which instructs

the computer to take the action you want when the sprites hit each

other.

Next , the COMMODORE 64 has built-in music and sound effects that

rival many well known music synthesizers. This part of your computer

gives you 3 independent voices, each with a full 9 octave "piano-type"

range. In addition you get 4 different waveforms (sawtooth, triangle,

variable pulse, and noise), a programmable ADSR (attack, decay, sus-
tain, release) envelope generator and a programmable high, low, and

bandpass filter for the voices, and variable resonance and volume con-

trols. If you want your music to play back with professional sound re-

vii

production, the COMMODORE 64 allows you to connect your audio out-

put to almost any high-quality amplification system.
While we're on the subject of connecting the COMMODORE 64 to

other pieces of equipment . . . your system can be expanded by adding

accessories, known as peripherals, as your computing needs grow.

Some of your options include items like a DATASSETTE* recorder or as

many as 5, VIC 1541 disk drive storage units for the programs you make

and/or play. If you already have a VIC 1540 disk drive your dealer can

update it for use with the COMMODORE 64. You can add a VIC dot

matrix printer to give you printed copies of your programs, letters, in-

voices, etc. . . If you want to connect up with larger computers and their

massive data bases then just plug in a VICMODEM cartridge, and get

the services of hundreds of specialists and a variety of information net-

works through your home or business telephone. Finally if you're one of

those people interested in the wide variety of applications software

available in CP/M**, the COMMODORE 64 can be fitted with a plug-in

Z-80 microprocessor.

Just as important as all the available hardware is the fact that this

USER'S GUIDE will help you develop your understanding of computers.

It won't tell you everything there is to know about computers, but it will

refer you to a wide variety of publications for more detailed information

about the topics presented. Commodore wants you to really enjoy your

new COMMODORE 64. And to have fun, remember: programming is

not the kind of thing you can learn in a day. Be patient with yourself as

you go through the USER 'S GUIDE . But before you start, take a few

minutes to fill out and mail in the owner/registration card that came with

your computer. It will ensure that your COMMODORE 64 is properly

registered with Commodore Headquarters and that you receive the most

up-to-date information regarding future enhancements for your ma-

chine. Welcome to a whole new world of fun!!

NOTE:
Many programs are under development while this manual is being

produced. Please check with your local Commodore dealer and with

Commodore User's Magazines and Clubs, which will keep you up to

date on the wealth of applications programs being written for the

Commodore 64, worldwide.

*DATASSETTE is a registered trademark of Commodore Business Machines, Inc.

** CP/M is a registered trademark of Digital Research Inc. Specifications subject to

change.

S

0

C HAPTE R

• Unpacking' and
Commodore 64

• Installation

Connecting the

• Optional. Connections
• Operation
• Color Adjustment

0

UNPACKING AND CONNECTING THE
COMMODORE 64

The following step-by-step instructions show you how to connect the

Commodore 64 to your television set, sound system, or monitor and

make sure everything is working properly.

Before attaching anything to the computer, check the contents of the
Commodore 64 container. Besides this manual, you should find the fol-
lowing items:

1. Commodore 64

2. Power supply (black box with an AC plug and supply cord)

3. Video cable

4. TV Switchbox (small silver box with short antenna leads).

If any items are missing check back with your dealer immediately for
a replacement.

First , let's take a look at the arrangement of the various connections

on the computer and how each functions.

SIDE PANEL CONNECTIONS

1. Power Socket . The free end of the cable from the power supply is

attached here to supply power to the Commodore 64.

2. Power Switch . Turns on power to the Commodore 64.

3. Game Ports. Each game connector can accept a joystick or game

controller paddle, while the lightpen can only be plugged into the

game port closest to the front of your computer.

REAR CONNECTIONS

4. Cartridge Slot. The rectangular slot to the left accepts program or

game cartridges.
5. Channel Selector. Use this switch to select which TV channel the

computer's picture will be displayed on.

6. TV Connector. This connector supplies both the picture and sound to

your television set.

7. Audio & Video Output . This connector supplies direct audio, which

can be connected to a high quality sound system, and a "compos-

ite" video signal, which can be fed into a television "monitor."

8. Serial Port. You can attach a printer or single disk drive directly to

the Commodore 64 through this connector.

2

7

w

•

ah

•

GAME POWER POWER
PORTS SWITCH SOCKET

<-Ch. 3 Ch. 4->

CARTRIDGE CHANNEL TV AUDIONIDEO SERIAL CASSETTE USER
SLOT SELECTOR CONNECTOR CONNECTOR PORT INTERFACE PORT

9. Cassette Interface . A DATASSETTE recorder can be attached to the

computer so you can save information entered for use at a later

time.

10. User Port. Various interface cartridges can be attached to the user

port, such as the VICMODEM, or RS 232 communication cartridge.

INSTALLATION

CONNECTIONS TO YOUR TV

Connect the computer to your TV as shown on page 4.

1. Attach one end of the TV cable to the phono type TV signal jack at

the rear of the Commodore 64. Just push it in. Either end of the

cable can be used.
2. Connect the other end of the cable to the antenna switchbox. Just

push it in.

3

TV
SWITCH BOX

TO
TV SIGNAL

JACK

Ft^a
TO 300 OHM
ANTENNA
INPUT

POWER
SUPPLY

3. If you have a VHF antenna, disconnect it from your TV set.

4. Connect your VHF antenna cable to the screw terminals labeled "an-

tenna input" on the switchbox. If your antenna cable is the round

75-ohm coax type, use a 75-ohm to 300-ohm adapter (not supplied)

to attach your antenna cable to the switchbox.

5. Connect the twin lead output cable of the antenna switchbox to the

VHF antenna terminals of your TV set. If your set is one of the newer

types with a round 75-ohm VHF connector, you will need a 300-ohm

to 75-ohm converter (not supplied) to connect the switchbox to the

75-ohm VHF antenna input on the set.

6. Set the TV's VHF tuner to the channel number indicated on the com-

puter's channel selector switch (channel 3 move the switch to the left,

channel 4 move the switch to the right). If a strong local TV signal is

present on one of these channels, select the other channel to avoid

possible interference.

8. Plug the power supply cable into the power socket on the side of the

Commodore 64. Just push it in. It is "keyed" to allow insertion in only

one direction, so you can't connect the power cord the wrong way.

The power supply converts household current into the form the com-

puter uses.

4

The Commodore 64 is now correctly connected. No additional con-
nections are required to use the computer with your TV. The antenna

switchbox will connect the computer to the TV when the slide switch is in
the "computer" position. When the switch is in the "TV" position your set
will operate normally.

5

OPTIONAL CONNECTIONS

Since the Commodore 64 furnishes a channel of high fidelity sound,

you may wish to play it through a quality amplifier to realize the best

sound possible. In addition, the Commodore 64 also provides a stan-
dard "composite" video signal, which can be fed into a television

monitor.

These options are made possible by the audio/video output jack on

the rear panel of the Commodore 64. The easiest way to gain access to

these signals is by using a standard 5-Pin DIN audio cable (not

supplied). This cable connects directly to the audio/video connector on

the computer. Two of the four pins on the opposite end of the cable

contain the audio and video signals . Optionally, you can construct your

own cable, using the pinouts shown in Appendix I as a guide.

O
S

0

6

Normally, the BLACK connector of the DIN cable supplies the AUDIO

signal. This plug may be connected to the AUXILIARY input of an am-
plifier, or the AUDIO IN connector of a monitor or other video system,

such as a video cassette recorder (VCR).

The WHITE or RED connector usually supplies the direct VIDEO signal.

This plug is connected to the VIDEO IN connector of the monitor or video

input section of some other video system, such as a VCR.

Depending on the manufacturer of your DIN cable, the color coding

of the plugs may be different. Use the pinouts shown in Appendix I to

match up the proper plugs if you don't get an audio or video signal

using the suggested connections.

AUDIOIVIEO
OUTPU T

4

TO AUXILIARY
INPUT OR

TUNER INPUT TO VIDEO IN

I
6
a

J

AUDIO SYSTEM

TV MONITOR

If you purchased peripheral equipment, such as a VIC 1541 disk drive

or a VIC 1515 printer, you may wish to connect it at this time. Refer to

the user's manuals supplied with any additional equipment for the

proper procedure for connecting it to the computer.

7

A completed system might look like this.

OPERATION

USING THE COMMODORE 64

1. Turn on the computer using the rocker switch on the right-side panel
when you 're looking at the computer from the front.

2. After a few moments the following will be displayed on the TV

screen:

+*+ i_ C rir1C ODC'RE 64 E:A ; I C: 2 +*++
E41 RAM 'SYSTEM 3 ,'?-'911 E:A .IC E•"iTE'=• FREE

READY

n-- CURSOR SIGNALS
COMMODORE 64 IS
WAITING FOR YOUR
INPUT.

8

Aft

•

•

9

I

3. If your TV has a manual fine tuning knob, adjust the TV until you get

a clear picture.

4. You may also want to adjust the color and tint controls on the TV for

the best display. You can use the color adjustment procedure de-

scribed later to get everything setup properly. When you first get a

picture, the screen should appear mostly dark blue, with a light

blue border and letters.

If you don't get the expected results, recheck the cables and connec-

tions. The accompanying chart will help you isolate any problem.

TROUBLESHOOTING CHART

Symptom Cause

Indicator Light

not "On"

Computer not

Remedy

Make sure power

switch is in "On"

position

Power cable Check power socket

not plugged for loose or dis-

in connected power

cable.

Power supply Check connection

not plugged with wall outlet

in

Bad fuse in Take system to

computer authorized dealer

for replacement of

fuse

TV on wrong Check other

channel channel for

picture (3 or 4)

Incorrect Computer hooks up to

hookup VHF antenna terminals

Video cable Check TV output

not plugged cable connection

in

Computer set Set computer for

for wrong some channel as TV

channel (3 or 4)

9

Symptom Cause Remedy

Random pattern Cartridge not Reinsert
on TV with properly cartridge after
cartridge in inserted turning off power

place

Picture without Poorly tuned Retune TV
color TV

Picture with Bad color Adjust color/
poor color adjustment hue/brightness

on TV controls on TV

Sound with TV volume up Adjust volume of

excess high TV

background

noise

Picture OK, TV volume too Adjust volume of

but no sound low TV

Aux. output Connect sound

not properly jack to aux. input

connected on amplifier and
select aux. input

TIP: The COMMODORE 64 was designed to be used by everyone.
But we at Commodore recognize that computer users may, occasionally, run into

difficulties. To help answer your questions and give you some fun programming

ideas, Commodore has created several publications to help you. You might also find

that it's a good idea to join a Commodore Users Club to help you meet some other

COMMODORE 64 owners who can help you gain knowledge and experience.

CURSOR

The flashing square under READY is called the cursor and indicates

where what you type on the keyboard will be displayed on the screen.

As you type, the cursor will move ahead one space, as the original

cursor position is replaced with the character you typed. Try typing on

the keyboard and watch as characters you type are displayed on the TV

screen.

10

COLOR ADJUSTMENT

There is a simple way to get a pattern of colors on the TV so you can

easily adjust the set . Even though you may not be familiar with the

operation of the computer right now , just follow along, and you'll see
how easy it is to use the Commodore 64.

First, look on the left side of the keyboard and locate the key marked

M. This stands for ConTRoL and is used, in conjunction with other

keys, to instruct the computer to do a specific task.

a 15
•LK tMIn s>NI CYM PUR No ILU . YEt . o«

s .^... 8 • W E : R . 'r . Y- U I C3

RUN
OP A 8 C3 F C3 H J KsoP aeaR8T

Cc a1N/PT z x C - V B - N M
Mai P_'3a Q E4 P38 sit 11;- rTfi:

To use a control function, you hold down the= key while depress-

ing a second key.

Try this: hold the= key while also depressing theakey . Then re-

lease both keys. Nothing obvious should have happened, but if you

touch any key now, the screen will show the character displayed in re-

verse type, rather than normal type-like the opening message or any-

thing you typed earlier.

Hold down the . What happens? If you did the above pro-
cedure correctly, you should see a light blue bar move across the screen

11

and then move down to the next line as long as the

pressed.

SPACE BAR

++ COMMODORE 64 BASIC V2 *+**
64K RAM SYSTEM 3 E911 E:ASIC BYTES FREE

READY

is de-

Now, hold =while depressing any of the other number keys. Each

of them has a color marked on the front. Anything displayed from this

point will be in that color. For example, hold M and thefkey and

release both. Now hold the SPACE BAR

Watch the display. The bar is now in yellow! In a like manner you can

change the bar to any of the other colors indicated on the number keys

by holding • and the appropriate key.

Change the bar to a few more different colors and then adjust the

color and tint controls on your TV so the display matches the colors you

selected.

The display should appear something like this:

**** COFIMCODORE 64 BASIC Y2 *+**
64K RAM SYSTEM 38911 BASIC BYTES FREE

READY
WORED BAR

O GREEN BAR
O BLUE BAR
p YELLOW BAR

At this point everything is properly adjusted and working correctly.

The following chapters will introduce you to the BASIC language. How-

ever, you can immediately start using some of the many prewritten ap-

plications and games available for the Commodore 64 without knowing

anything about computer programming.

Each of these packages contains detailed information about how to

use the program. It is suggested, though, that you read through the first

few chapters of this manual to become more familiar with the basic

operation of your new system.

12

T

CHAPTER

GETTING STARTED
• Keyboard
• Back to Normal
• Loading and Saving Programs

• PRINT and Calculations

• Precedence
• Combining Things

m

KEYBOARD
Now that you 've got everything set up and adjusted, please take a

few moments to familiarize yourself with the keyboard which is your
most important means of communication with the Commodore 64.

You will find the keyboard similar to a standard typewriter keyboard
found in most areas . There are , however , a number of new keys which
control specialized functions . What follows is a brief description of the

various keys and how they function . The detailed operation of each key

will be covered in later sections.

•

RETURN

The key signals the computer to look at the information that

you typed and enters that information into memory.

SHIFT

The ® key works like that on a standard typewriter. Many keys

are capable of displaying two letters or symbols and two graphic char-

acters. In the "upper/lower case" mode the ® key gives you stan-

dard upper case characters. In the "upper case/graphic" mode the

® key will display the graphic character on the right hand side of

the front part of the key.
In the case of special YELLOW function keys, the ® key will give

you the function marked on the front of the key.

14

EDITING

No one is perfect, and the Commodore 64 takes that into account. A

number of editing keys let you correct typing mistakes and move infor-

mation around on the screen.

CRSR

There are two keys marked IM (CuRSoR), one with up and down

arrows ffl= the other with left and right arrows ^ . You can

use these keys to move the cursor up and down or left and right. In the

unshifted mode, the keys will let you move the cursor down and to

the right. Using the key and keys allows the cursor to be

moved either up or to the left. The cursor keys have a special repeat

feature that keeps the cursor moving until you release the key.

INST/DEL

If you hit the key, the cursor will move back a space, eras-

ing (DELeting) the previous character you typed. If you're in the middle

of a line, the character to the left is deleted and the characters to the

right automatically move together to close up the space.

A ®ed ®i allows you to INSerT information on a

example, if you noticed a typing mistake in the beginning of

perhaps you left out part of a name-you could use the

line. For

a line-

key to=CRSR

move back to the error and then hit ®i to insert a

just type in the missing letter.

CLR/HOME

CLR/HOME

space. Then

positions the cursor at the "HOME" position of the screen,

which is the upper left-hand corner. A shifted will clear the

screen and place the cursor in the home position.

^^IIt operates as the name implies. It restores the computer to the

normal state it was in before you changed things with a program or

some command. A lot more will be said on this in later chapters.

15

FUNCTION KEYS

The four function keys on the right side of the keyboard can be "pro-

grammed" to handle a variety of functions. They can be defined in

many ways to handle repetitive tasks.

CTRL

TheMkey, which stands for ConTRoL, allows you to set colors, and

perform other specialized functions. You hold the =key down while

depressing another designated key to get a control function. You had an

opportunity to try the= key when you changed text colors to create

different color bars during the setup procedure.

RUN/STOP

Normally, depressing the key will stop the execution of a

BASIC program. It signals the computer to STOP doing something. Using

l

16

the key in the shifted mode will allow you to automatically

load a program from tape.

® COMMODORE KEY

The Commodore key ® performs a number of functions. First, it

allows you to move between the text and graphic display modes.

When the computer is first turned on, it is in the Upper Case/Graphic

mode, that is, everything you type is in upper case letters. As was men-
tioned, using the ® key in this mode will display the graphic on the

right side of the keys.

If you hold down the ® key and ® key, the display will change

to upper and lower case. Now, if you hold down the ® key and any

other key with a graphic symbol, the graphic shown on the left side of

the key will be displayed.

To get bock into the upper case/graphic mode hold down the ® key

and ® key again.

The second function of the ® key is to allow you access to a second

set of eight text colors. By holding down the ® key and any of the

number keys, any text now typed will be in the alternate color available

from the key you depressed. Chapter 5 lists the text colors available

from each key.

BACK TO NORMAL

Now that you've had a chance to look over the keyboard, let's explore

some of the Commodore 64's many capabilities.

If you still have the color bars on the screen from adjusting your TV

set, hold ® and . The screen should clear and the cursor

will be positioned in the "home" spot (upper left-hand corner of the

screen).

Now, simultaneously hold ® and the o key. This sets the text color

back to light blue. There is one more step needed to get everything back

to normal. Hold M and a (Zero not Oh!). This sets the display mode
back to normal. If you remember, we turned REVERSE type on with the

MQ to create the color bars (the color bars were actually reversed

spaces). If we were in the normal text mode during the color test, the

cursor would have moved, but just left blank spaces.

17

TIP:

Now that you've done things the hard way, there is a simple way to reset the

machine to the normal display. First press the key and then press

the JIM key. must always be held down in order to use the

key function.

This will clear the screen and return everything to normal. If there is a program in

the computer, it will be left untouched. This is a good sequence to remember, espe-

cially if you do a lot of programming.

If you wish to reset the machine as if it were turned off and then switched on

again, type, SYS64759 and press I=.. Be careful using this command! It will

wipe out any program or information that is currently in the computer.

LOADING AND SAVING PROGRAMS

One of the most important features of the Commodore 64 is the ability

to save and load programs to and from cassette tape or disk.

This capability allows you to save the programs you write for use at a

later time, or purchase prewritten programs to use with the Commodore

64.

Make sure that either the disk drive or datasette unit is attached
properly.

LOADING PREPACKAGED PROGRAMS

For those of you interested in using only prepackaged programs

available on cartridges, cassette, or disk here's all you have to do:

1. CARTRIDGES : The Commodore 64 computer has a line of programs

and games on cartridge. The programs offer a wide variety of business

and personal applications and the games are just like real arcade

games-not imitations. To load these games, first turn on your TV set.

Next turn OFF your Commodore 64. YOU MUST TURN OFF YOUR COM-

MODORE 64 BEFORE INSERTING OR REMOVING CARTRIDGES OR YOU

MAY DAMAGE THE CARTRIDGE AND/OR YOUR COMMODORE 64!

Third insert the cartridge. Now turn your Commodore 64 on. Finally type

the appropriate START key as is listed on the instruction sheet that comes

with each game.

2. CASSETTES : Use your DATASSETTE recorder and the ordinary audio cas-

18

0

settes that came as part of your prepackaged program. Make sure

the tape is completely rewound to the beginning of the first side.

Then, just type LOAD. The computer will answer with PRESS PLAY ON

TAPE, so you respond by pressing play on your datasette machine. At

this point the computer screen will go blank until the program is

found. The computer will say FOUND (PROGRAM NAME) on the

screen. Now you press down on the ® KEY. This will actually

load the program into the computer. If you want to stop the loading
simply press the key.

3. DISK : Using your disk drive, carefully insert the preprogrammed disk

so that the label on the disk is facing up and is closest to you. Look

for a little notch on the disk (it might be covered with a little piece of

tape). If you're inserting the disk properly the notch will be on the left

side. Once the disk is inside close the protective gate by pushing down

on the lever. Now type LOAD "PROGRAM NAME", 8 and hit the

^^IIIID key. The disk will make noise and your screen will say:

SEARCHING FOR PROGRAM NAME
LOADING

READY

I

When the READY comes on and the 0 is on, just type RUN, and

your prepackaged software is ready to use.

LOADING PROGRAMS FROM TAPE

Loading a program back from tape or disk is just as simple. For tape,

rewind the tape back to the beginning and type:

LOAD "PROGRAM NAME"

If you don't remember the program name, just type LOAD and the

first program on the tape will be loaded into memory.

After you press i the computer will respond with:

19

s
PRESS PLAY ON TAPE

® 1^

After you depress the play key, the screen will blank, turning the
border color of the screen as the computer searches for the program.

When the program is found, the screen will display:

FOUND PROGRAM NAME

To actually LOAD the program, depress the ® key. To abandon the

I

I

I

11

II

LOADing procedure, hit ^ . If you hit the Commodore key, the

screen will again turn the border color while the program is LOADed.

After the LOADing procedure is completed, the screen will return to the

normal state and the READY prompt will reappear.

LOADING PROGRAMS FROM DISK

Loading a program from disk follows the same format. Type:

LORD "PROGRAM NAME",8

The 8 is the code for the disk, so you're just letting the computer know

that you want the program loaded from the disk.

After you hit

shows:

the disk will start whirring and the display

SEARCHING FOR PROGRAM NAME
LOADING

READY

I

20

4

II h

NOTE:

When you load a new program into the computer's memory, any in-

structions that were in the computer previously will be erased. Make

sure you save a program you're working on before loading a new one.

Once a program has been loaded, you can RUN it, LIST it, or make

changes and re-save the new version.

SAVING PROGRAMS ON TAPE

After entering a program, if you wish to save it on tape, type:

SAVE "PROGRAM NAME"

"PROGRAM NAME" can be up to 16 characters long. After you hit

the computer will respond with:

PRESS PLAY AND RECORD ON TAPE

Press both the record and play keys on the datasette. The screen will

blank, turning the color of the border.

After the program is saved on tape, the READY prompt will reappear,

indicating that you can start working on another program, or just turn

off the computer for a while.

SAVING PROGRAMS ON DISK

Saving a program on disk is even simpler. Type:

SAVE "PROGRAM NAME" ,

21

The 8 is the code for the disk, so you're just letting the computer know

you want the program saved to disk.
After you press ^ the disk will start to turn and the computer

will respond with:

SAVIt-IG "PROGRA11 NAME"

READY

PRINT AND CALCULATIONS

Now that you've gotten through a couple of the more difficult opera-

tions you need in order to keep the programs you like, lets start making

some programs for you to save.

Try typing the following exactly as shown:

PR I tIT "C:OMMO ADORE. 64"
CCiPINFOO 'E h4

READY
n

TYPE THIS LINE AND
HIT

COMPUTER TYPED

If you make a typing mistake, use the ®i key to erase the char-

acter immediately to the left of the cursor. You can delete as many

characters as necessary.

Let's see what went on in the example above. First, you instructed

(commanded) the computer to PRINT whatever was inside the quote

marks. By hitting ^ you told the computer to do what you in-

structed and COMMODORE 64 was printed on the screen.

When you use the PRINT statement in this form, whatever is enclosed

in quotes is printed exactly as you typed it.

If the computer responded with:

?SYNTAX ERROR

ask yourself if you made a mistake in typing, or forgot the quote marks.

22

0

40

The computer is precise and expects instructions to be given in a specific
form.

But don't get worried; just remember to enter things as we present

them in the examples and you'll get along great with the Commo-

dore 64.

Remember, you can't hurt the computer by typing on it, and the best

way to learn BASIC is to try different things and see what happens.

PRINT is one of the most useful and powerful commands in the BASIC

language. With it, you can display just about anything you wish, includ-

ing graphics and results of computations.

For example, try the following. Clear the screen by holding down the

® key and key and type (be sure to use the '1' key for
one, not a letter 'I'):

PRINT 12 +

HIT
TYPE THIS LINE AND

Aphu

COMPUTER PRINTED
THE ANSWER ,

What you've discovered is that the Commodore 64 is a calculator in its

basic form. The result of "24" was calculated and printed automatically.

In fact, you can also perform subtraction, multiplication, division, ex-

ponentiation, and advanced math functions such as calculating square

roots, etc. And you're not limited to a single calculation on a line, but

more on that later.

Note that in the above form, PRINT behaved differently from the first

example. In this case, a value or result of a calculation is printed, rather than

the exact message you entered because the quote marks were omitted.

ADDITION

The plus sign (+) signals addition: we instructed the computer to print

the result of 12 added to 12. Other arithmetic operations take a similar

form to addition. Remember to always hit after typing PRINT

and the calculation.

23

ii

SUBTRACTION

To subtract, use the conventional minus (-) sign. Type:

MULTIPLICATION

If you wanted to multiply 12 times 12, use the asterisk (*) to represent

multiplication. You would type:

•1

DIVISION

Division uses the familiar "/". For example , to divide 144 by 12, type:

24

0

EXPONENTIATION

In a like fashion, you can easily raise a number to a power (this is the

same as multiplying a number by itself a specified number of times).

The 'T' (Up arrow) signifies exponentiation.

PRINT 12 ' 5
248832

This is the same as typing:

PRINT 12 * 12 * 12 * 12 * 12
248832

TIP:

BASIC has a number of shortcut ways of doing things. One such way is abbreviat-

ing BASIC commands (or keywords). A ? can be used in place of PRINT, for exam-

ple. As we go on you'll be presented with many commands; Appendix D shows the

abbreviations for each and what will be displayed on the screen when you type the

abbreviated form.

The last example brings up another important point: many calcula-

tions may be performed on the same line, and they can be of mixed

types.

You could calculate this problem:

25

Up to this point we've just used small numbers and simple examples.

However, the Commodore 64 is capable of more complex calculations.

You could, for example, add a number of large figures together. Try
this, but don't use any commas, or you'll get an error:

'1: 123.45 + 345. 78 + 7895.687
8364.917

That looks fine, but now try this:

12123123.45 + 345.78 + 7895.687
12131364.9

If you took the time to add this up by hand, you would get a different

result.

What's going on here? Even though the computer has a lot of power,

there's a limit to the numbers it can handle. The Commodore 64 can

work with numbers containing 10 digits. However when a number is

printed, only nine digits are displayed.

So in our example, the result was "rounded" to fit in the proper

range. The Commodore 64 rounds up when the next digit is five or more;

it rounds down when the next digit is four or less.

Numbers between 0.01 and 999,999,999 are printed using standard

notation. Numbers outside this range are printed using scientific nota-

tion.

Scientific notation is just a process of expressing a very large or small

number as a power of 10.

If you type:

123000000000000000
1.23E+17

26

w

i

This is the same as 1.23 * 10T17 and is used just to keep things tidy.

There is a limit to the numbers the computer can handle, even in

scientific notation. These limits are:

Largest: ±- 1.70141183E+38

Smallest (different from zero): ± 2.93873588-39

PRECEDENCE

If you tried to perform some mixed calculations different from the

examples we showed earlier, you might not have gotten the results that

you expected. The reason is that the computer performs calculations in a

certain order.

In this calculation:

20 + 8/2

you can't tell whether the answer should be 24 or 14 until you know in

which order to perform the calculations. If you add 20 to 8 divided by 2

(or 4), then the result is 24. But, if you add 20 plus 8 and then divide by

2 the answer is 14. Try the example and see what result you get.

The reason you got 24 is because the Commodore 64 performs calcu-

lations left to right according to the following:

First: - minus sign indicating negative numbers

Second: T exponentiation, left to right

Third: multiplication and divisions, left to right

Fourth: +- addition and subtraction, left to right

Follow along according to the order of precedence, and you will see

that in the above example the division was performed first and then the

addition to get a result of 24.

Make up some problems of your own and see if you can follow along

and predict the results according to the rules set down above.

There's also an easy way to alter the precedence process by using

parentheses to set off which operations you want performed first.

For example, if you want to divide 35 by 5-plus-2 you type:

27

you will get 35 divided by 5 with 2 added to the answer, which is not

what you intended at all. To get what you really wanted, try this:

2 35 / (5 + 2)
5

What happens now is that the computer evaluates what is contained

in the parentheses first. If there are parentheses within parentheses, the

innermost parentheses are evaluated first.

Where there are a number of parentheses on a line, such as:

7 (1 21 + 9) * (6 + 1)
147

the computer evaluates them left to right. Here 21 would be multiplied

by 7 for the result of 147.

COMBINING THINGS

Even though we've spent a lot of time in areas that might not seem

very important, the details presented here will make more sense once

you start to program, and will prove invaluable.

To give you an idea how things fit in place, consider the following:

how could you combine the two types of print statements we've exam-

ined so far to print something more meaningful on the screen?

We know that by enclosing something within quote marks prints that

information on the screen exactly as it was entered, and by using moth

operators, calculations can be performed. So why not combine the two

types of PRINT statements like this:

SEMICOLON MEANS NO SPACE.

" 5 * 9 = ' 5 * 9
5 * 9 = 45

Ah

28

Even thcugh this might seem a bit redundant, what we've done is

simply use both types of print statements together. The first part prints

"5 * 9 =" exactly as it was typed. The second part does the actual work

and prints the result, with the semicolon separating the message part of

the statement from the actual calculation.

You can separate the parts of a mixed print statement with punctua-

tion for various formats. Try a comma in place of the semicolon and see

what happens.
For the curious, the semicolon causes the next part of the statement to

be printed immediately after the previous part, without any spaces. The

comma does something different. Even though it is an acceptable

separator, it spaces things out more. If you type:

the numbers will be printed across the screen and down on to the next

line.

The Commodore 64's display is organized into 4 areas of 10 columns

each. The comma tabs each result into the next available area. Since

we asked for more information to be printed than would fit on one line,

(we tried to fit five 10-column areas on one line) the last item was moved

down to the next line.

The basic difference between the comma and semicolon in formatting

PRINT statements can be used to our advantage when creating more

complex displays: it will allow us to create some sophisticated results

very easily.

29

CHAPTE R

BEGINNING
BASIC

PROGRAMMING
• The Next Step
-GOT4

• Editing Tips"
• Variables
• IF . . . THEN

• FOR . . . NEXT Loops

m

THE NEXT STEP

Up to now we've performed some simple operations by entering a
single line of instructions into the computer. Once ^ was de-
pressed, the operation that we specified was performed immediately.
This is called the IMMEDIATE or CALCULATOR mode.

But to accomplish anything significant, we must be able to have the

computer operate with more than a single line statement. A number of

statements combined together is called a PROGRAM and allows you to

use the full power of the Commodore 64.

To see how easy it is to write your first Commodcre 64 program, try

this:

Clear the screen by holding the ® key, and then depressing the
CLR'HOME key. 0
Type NEW and press . (This just clears out any numbers that

40might have been left in the computer from your experimenting.)

Now type the following exactly as shown (Remember to hit '

after each line)
•

10 ?"C0Mt`lCIDCIRE 64" I
20 GUTU 1 0

Now, type RUN and hit -watch what happens. Your screen

I

I
will come alive with COMMODORE 64. After you' ve finished watching

the display, hit IJUM1 E to stop the program.

A number of important concepts were introduced in this short pro-

gram that are the basis for all programming.

Notice that here we preceded each statement with a number. This

LINE number tells the computer in what order to work with each state-

ment. These numbers are also a reference point, in case the program

needs to get back to a particular line. Line numbers can be any whole

number (integer) value between 0-63,999.

10 PRINT "COMMODORE 64"

STATEMENT

LINE NUMBER

32

COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 14
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
BREAK IN 10
READY
n

It is good programming practice to number lines in increments of

10-in case you need to insert some statements later on.

Besides PRINT , our program also used another BASIC command,

GOTO. This instructs the computer to go directly to a particular line and
perform it , then continue from that point.

-+ 10 PRINT "COMMODORE 64"

20 GOTO 10

In our example, the program prints the message in line 10, goes to

the next line (20), which instructs it to go back to line 10 and print the

message over again. Then the cycle repeats. Since we didn't give the

computer a way out of this loop, the program will cycle endlessly, until

we physically stop it with the key.

Once you've stopped the program, type: LIST. Your program will be

displayed, intact, because it's still in the computer's memory. Notice,

too, that the computer converted the ? into PRINT for you. The program

can now be changed, saved, or run again.

Another important difference between typing something in the im-

mediate mode and writing a program is that once you execute and

clear the screen of an immediate statement, it's lost. However, you can

always get a program back by just typing LIST.
By the way, when it comes to abbreviations don't forget that the

computer may run out of space on a line if you use too many.

33

EDITING TIPS
If you make a mistake on a line, you have a number of editing

options.

1. You can retype a line anytime , and the computer will automatically
substitute the new line for the old one.

2. An unwanted line can be erased by simply typing the line number

and

3. You can also easily edit an existing line, using the cursor keys and
editing keys.

Suppose you made a typing mistake in a line of the example. To
correct it without retyping the entire line , try this:

Type LIST, then using the ® and I keys together move the

cursor up until it is positioned on the line that needs to be changed.
Now, use the cursor-right key to move the cursor to the character you

want to change , typing the change over the old character . Now hit
t»M and the corrected line will replace the old one.

If you need more space on the line, position the cursor where the

space is needed and hit ® and 1=111 at the same time and a

space will open up. Now just type in the additional information and hit
s . Likewise , you can delete unwanted characters by placing the

cursor to the right of the unwanted character and hitting the

key.

IN*

To verify that changes were entered , type LIST again , and the cor-

rected program will be displayed! And lines don 't have to be entered in

numerical order . The computer will automatically place them in the

proper sequence.

Try editing our sample program on page 33 by changing line 10 and

adding a comma to the end of the line. Then RUN the program again.

10 PRINT "COMMODORE",
DON'T FORGET TO MOVE THE

CURSOR PAST LINE 20 BEFORE

YOU RUN THE PROGRAM.

VARIABLES
Variables are some of the most used features of any programming

language, because variables can represent much more information in

the computer. Understanding how variables operate will make comput-

ing easier and allow us to accomplish feats that would not be possible

otherwise.

S

e

111

34

C^ t1MC ADORE COMMODORE COMMODORE COMMODORE
G IMMClDORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
BREAK: IN 10
READY

Imagine a number of boxes within the computer that can each hold a

number or a string of text characters. Each of these boxes is to be

labeled with a name that we choose. That name is called a variable

and represents the information in the respective box.

For example, if we say:

10 X% = 15

20 X = 23.5
30 X$ _ "THE SUM OF X%+X

The computer might represent the variables like this:

X% 15

X 23.5

X$ THE SUM OF X%+X =

A variable name represents the box, or memory location, where the

current value of the variable is stored. As you can see, we can assign

either an integer number, floating point number, or a text string to a

variable.

The % symbol following a variable name indicates the variable will

represent an integer number. The following are valid integer variable

names:

35

A%

X%

A1%

NM%

The '$' following the variable name indicates the variable will repre-

sent a text string . The following are examples of string variables:

A$
X$
Ml$

Floating point variables follow the some format , with the type indi-

cator:

Al

X

Y
MI

In assigning a name to a variable there are a few things to keep in

mind. First, a variable name can have one or two characters. The first

character must be an alphabetic character from A to Z; the second

character can be either alphabetic or numeric (in the range 0 to 9). A

third character can be included to indicate the type of variable (integer

or text string), % or $.

You can use variable names having more than two alphabetic

characters , but only the first two are recognized by the computer. So

PA and PARTNO are the same and would refer to the some variable

box.

The last rule for variable names is simple: they can't contain any

BASIC keywords (reserved words) such as GOTO, RUN, etc. Refer back
to Appendix D for a complete list of BASIC reserved words.

To see how variables can be put to work, type in the complete pro-

gram that we introduced earlier and RUN it. Remember to hit

after each line in the program.

NEW
10 :•: = 15
20 X = 23. 5
30 X$ = " THE SUM OF X% + X =
40 PRINT "X! = " . Xi:, "X = . X
50 PRINT X$; X% + X

^tID

36

If you did everything as shown, you should get the following result

printed on the screen.

RUN
X% = 15 X = 23 .5

THE SUM OF Xj + X = 38.5
READY

We've put together all the tricks learned so far to format the display

as you see it and print the sum of the two variables.

In lines 10 and 20 we assigned an integer value to X% and assigned a

floating point value to X. This puts the number associated with the vari-

able in its box. In line 30, we assigned a text string to X$. Line 40

combines the two types of PRINT statements to print a message and the

actual value of X% and X. Line 50 prints the text string assigned to X$

and the sum of X% and X.

Note that even though X is used as part of each variable name, the

identifiers % and $ make X%, X, and X$ unique, thus representing

three distinct variables.

But variables are much more powerful. If you change their value, the

new value replaces the original value in the same box. This allows you

to write a statement like:

X = X + 1

This would never be accepted in normal algebra, but is one of the

most used concepts in programming. It means: take the current value of

X, add one to it and place the new sum into the box representing X.

IF ... THEN

Armed with the ability to easily update the value of variables, we can

now try a program such as:

37

NEW
1 ►0CT=0
20 ?"COMMODORE 64"
:30 CT = CT + 1
40 IF CT c_ 5 THEN 20
50 END
RUN
COMMODORE 64
COMMODORE 64
COMMODORE 64

COMMODORE 64
COMMODORE 64

What we've done is introduce two new BASIC commands, and pro-

vided some control over our runaway little print program introduced at
the start of this chapter.

IF . . . THEN adds some logic to the program. It says IF a condition

holds true THEN do something. IF the condition no longer holds true,

THEN do the next line in the program.

A number of conditions can be set up in using an IF . . . THEN state-

ment:

SYMBOL MEANING

< Less Than

> Greater Than

<>

Equal To

Not Equal To

Greater Than or Equal

or Equal To
To

< = Less Than
The use of any one of these

powerful.

10 CT = 0

20 ?"COMMODORE 64"

30 CT = CT + 1

40 IF CT < 5 THEN 20

I
50 END

conditions is simple , yet surprisingly
I

38

In the sample program , we've set up a " loop" that has some con-

straints placed on it by saying: IF a value is less than some number

THEN do something.

Line 10 sets CT (CounT) equal to 0. Line 20 prints our message . Line 30

adds one to the variable CT. This line counts how many times we do the

loop. Each time the loop is executed , CT goes up by one.
Line 40 is our control line. If CT is less than 5 , meaning we 've exe-

cuted the loop less than 5 times, the program goes back to line 20 and

prints again . When CT becomes equal to 5- indicating 5 COMMODORE

64's were printed- the program goes to line 50 , which signals to END
the program.

Try the program and see what we mean . By changing the CT limit in

line 40 you can have any number of lines printed.

IF . . . THEN has a multitude of other uses , which we ' ll see in future

examples.

FOR ... NEXT LOOPS
There is a simpler, and preferred way to accomplish what we did in

the previous example by using a FOR . . . NEXT loop. Consider the
following:

am

113 FOR C. T = 1 TO 5
20 PRINT "COMMODORE 64"
:110 NEXJ CT

RIIN
COMMODORE 64
COMMODORE 64
CCIMI.ICICIC IRE 64
COMMODORE 64
I_ CIpIMC ID0F'E 64

As you can see, the program has become much smaller and more

direct.

CT starts at 1 in line 10. Then , line 20 does some printing . In Line 30

39

CT is incremented by 1. The NEXT statement in line 30 automatically

sends the program back to line 10 where the FOR part of the FOR .. .

NEXT statement is located. This process will continue until CT reaches the
limit you entered.

The variable used in a FOR . . . NEXT loop can be incremented by

smaller amounts than 1, if needed.

Try this:

NEW

10 FOR NB = 1 TO 10 STEP .5
20 PRINT NB,
30 NEXT NB

RUN
1 1.5 2 2.5
3 3.5 4 4.5
5 5.5 6 6.5
7 7.5 8.5
9 9.5 10

If you enter and run this program, you'll see the numbers from 1 to

10, by .5, printed across the display.

All we're doing here is printing the values that NB assumes as it goes

through the loop.

You can even specify whether the variable is increasing or decreas-

ing. Substitute the following for line 10:

10 FOR NB = 10 to 1 STEP -.5

and watch the opposite occur, as NB goes from 10 to 1 in descending

order.

S

0

•
S

•

40

GHAP7Elt

ADVANCED BASIC
• Introduction
• Simple Animation
-Nested Loops
• INPUT
• GET

• Random Numbers and Other Functions
• Guessing Game
• Your Roll
• Random Graphics
-CHR$ and ASC Functions

m

INTRODUCTION

The next few chapters have been written for people who have be-

come relatively familiar with the BASIC programming language and the

concepts necessary to write more advanced programs.

For those of you who are just starting to learn how to program, you

may find some of the information a bit too technical to understand

completely . But take heart. . . because for these two fun chapters,

SPRITE GRAPHICS and CREATING SOUND , we've set up some simple

examples that are written for the new user. The examples will give you
a good idea of how to use the sophisticated sound and graphics

capabilities available on your COMMODORE 64.

If you decide that you want to learn more about writing programs in
BASIC, we've put a bibliography (Appendix N) in the back of this man-

ual.
If you are already familiar with BASIC programming , these chapters

will help you get started with advanced BASIC programming techniqu-

es. More detailed information can be found in the COMMODORE 64
PROGRAMMER'S REFERENCE MANUAL, available through your local

Commodore dealer.

42

1

SIMPLE ANIMATION

Let's exercise some of the Commodore 64's graphic capabilities by

putting together what we've seen so far, together with a few new con-

cepts. If you're ambitious, type in the following program and see what

happens. You will notice that within the print statements we can also

include cursor controls and screen commands. When you see something

like {CRSR LEFT} in a program listing, hold the ® key and hit the

CRSR LEFT/ RIGHT key. The screen will show the graphic representation
of a cursor left (two vertical reversed bars). In the same way, pressing

® and shows as a reversed heart.

NEW

10 REM BOUNCING BALL
20 PRINT "{CLR/HOME}
25 FOR X = 1 TO 10 : PRINT "{CRSR/DOWN }": NEXT
30 FOR BL = 1 TO 40
40 PRINT" •{CRSR LEFT)";: REM (• is a SHIFT-Q)

&50 FOR TM TO 5
60 NEXT TM
70 NEXT BL
75 REM MOVE B1' RIGHT TO LEFT
80 FOR BL ,;-,- 40 TO 1 STEP -1
90 PRINT" {CRSR LEFT}{ CRSR LEFT}•{CRSR LEFT)";
100 FOR TM = 1 TO 5
110 NEXT TM
120 NEXT BL
130 GOTO 20

TIP:

All words in this text will be completed on one line. However, as long as you don't
hit

word.

your 64 will automatically move to the next line even in the middle of a

The program will display a bouncing ball moving from left to right,
and back again, across the screen.

If we look at the program closely, (shown on page 44) you can see

how this feat was accomplished.

Line 10 is a REMark that just tells what the program does; it has no

43

10 REM BOUNCING BALL

-20 PRINT "{CLR/HOME}"
25 FOR X = 1 TO 10 : PRINT "{CRSR/DUWN}": NEXT
30 FOR BL = i TO 40
40 PRINT" •{CRSR LEFT} ";:R.EM (• is a SHIFT-Q)
50 FOR TM = 1 TO 5

60 NEXT TM
70 NEXT BL
75 REM MOVE BALL RIGHT TO LEFT

80 FOR BL = 40 TO 1 STEP -1

90 PRINT " {CRSR LEFT}{CRSR LEFT}•{CRSR LEFT)";
T ME100 1 TO5

110 NEXT TM
120 NEXT BL

- 130 GGT0 20

effect on the program itself. Line 20 clears the screen of any informa-

tion.

Line 25 PRINTs 10 cursor-down commands. This just positions the ball

in the middle of the screen. If line 25 was eliminated the ball would

move across the top line of the screen.
Line 30 sets up a loop for moving the ball the 40 columns from the left

to right.

Line 40 does a lot of work. It first prints a space to erase the previous

ball positions, then it prints the ball, and finally it performs a cursor-left

to get everything ready to erase the current ball position again.

The loop set up in lines 50 and 60 slows the ball down a bit by delay-

ing the program. Without it, the ball would move too fast to see.

Line 70 completes the loop that prints balls on the screen, set up in

line 30. Each time the loop is executed, the ball moves another space to

the right. As you notice from the illustration, we have set up a loop

within a loop.

This is perfectly acceptable. The only time you get in trouble is when

the loops cross over each other. It's helpful in writing programs to check

yourself as illustrated here to make sure the logic of a loop is correct.

To see what would happen if you cross a loop, reverse the statements

in lines 60 and 70. You will get an error because the computer gets

confused and cannot figure out what's going on.

Lines 80 through 120 just reverse the steps in the first part of the

program, and move the ball from right to left. Line 90 is slightly differ-

ent from line 40 because the ball is moving in the opposite direction (we

have to erase the ball to the right and move to the left).

44

And when that's all done the program goes back to line 20 to start the

whole process over again . Pretty neat! To stop the program hold

down and hit

For a variation on the program, edit line 40 to read:

40 PRINT "•";
TO MAKE THE S. HOLD THE SHIFT

KEY DOWN AND HIT THE LETTER "Q."

Run the program and see what happens now. Because we left out the

cursor control, each ball remains on the screen until erased by the ball

moving right to left in the second part of the program.

INPUT

Up to now, everything within a program has been set before it is run.

Once the program was started, nothing could be changed. INPUT

allows us to pass new information to a program as it is running and

have that new information acted upon.

To get an idea of how INPUT works, type NEW

short program:

10 INPUT A$
20 PRINT "YOU TYPED:
.30 PRINT
40 GOTO 10
RUN
2 COMMODORE 54
YOU TYPED: COMMODORE 64

and enter this

YOU TYPED

COMPUTER
RESPONDED

What happens when you run this program is simple. A question mark

will appear, indicating that the computer is waiting for you to type

something. Enter any character, or group of characters, from the

keyboard and hit i. The computer will then respond with "YOU

TYPED :" followed by the information you entered.

This may seem very elementary, but imagine what you can have the

computer do with any information you enter.

You can INPUT either numeric or string variables, and even have the

INPUT statement prompt the user with a message. The format of INPUT is:

INPUT "PROMPT MESSAGE";VARIABLE

PROMPT MUST BE 38 CHARACTERS OR LESS.

45

Or, just:

INPUT VARIABLE

NOTE: To get out of this program hold down the
um M6 keys.

MIsI and

The following program is not only useful, but demonstrates a lot of

what has been presented so far, including the new input statement.

NEW

1 F:EM TEMF'ERATI_IF:E C:ONVERICON PRC'GF:A19
5 PR I NT " { i_ LF:;•'HCit'lE)
10

20
341

40
50
60
70

80

PRINT "CONVERT FF:COM FAHRENHEIT OR CELSIUS
F/C'" : INF'CIT A:

I F A$ = "y' THEN 20
IF AS _ "F" THEN 100
IF AF <? "C" THEN 10
INPUT "ENTER DEO±REES CEL=:I U'_ : ".:C
F = :C*9:'/5+ 2
PRINT C;" DEC;. CELSIUS F;" DEG.
FAHRENHEIT"
PRINT

_:fO i 0Ti1 10
100 INPUT "ENTER DEGREE FAHRENHEIT: ";F
1 10 C. = (:: F- ? *5r'99
120 PRINT F:" DES=.

C:EL!-:; I US
1:300 PRINT
14e0 GCITO 10

FAHRENHEIT = "; C_.;" DEG.

If you enter and run this program, you'll see INPUT in action.

Line 10 uses the input statement to not only gather information, but

also print our prompt. Also notice that we can ask for either a number or

string (by using a numeric or string variable).

Lines 20, 30, and 40 do some checks on what is typed in. In line 20, if

nothing is entered (just ^ is hit), then the program goes back to

line 10 and requests the input again. In line 30, if F is typed, you know

the user wants to convert a temperature in degrees Fahrenheit to Cel-

sius, so the program branches to the part that does that conversion.

Line 40 does one more check. We know there are only two valid

choices the user can enter. To get to line 40, the user must have typed

some character other than F. Now, a check is made to see if that char-

acter is a C; if not, the program requests input 'again.

This may seem like a lot of detail, but it is good programming prac-

tice. A user not familiar with the program can become very frustrated if

it does something strange because a mistake was made entering infor-

mation.

Once we determine what type of conversion to perform, the program

does the calculation and prints out the temperature entered and the

converted temperature.

The calculation is just straight math, using the established formula for

temperature conversion. After the calculation is finished and answer

printed, the program loops back and starts over.

After running, the screen might look like this:

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C): ?F
ENTER DEGREES FAHRENHEIT: 32
:32 DEG . FAHRENHEIT = 0 DEG. CELSIUS

CONVERT FROM FAHRENHEIT OR CELSIUS (F,C):

After running the program , make sure to save it on disk or tape. This

program, as well as others presented throughout the manual , can form

the base of your program library.

GET
GET allows you to input one character at a time from the keyboard

without hitting. This really speeds entering data in many appli-

cations . Whatever key is hit is assigned to the variable you specify with

GET.
The following routine illustrates how GET works:

NEW

1 PRINT " {CLR/HOME} "
10 GET A$: IF AS = " THEN 10
20 PRINT AS;
30 GOTO 10

47

If you RUN the program, the screen will clear and each time you hit a

key, line 20 will print it on the display, and then GET another character.

It is important to note that the character entered will not be displayed

unless you specifically PRINT it to the screen, as we've done here.

The second statement on line 10 is also important. GET continually

works, even if no key is pressed (unlike INPUT that waits for a response),

so the second part of this line continually checks the keyboard until a key

is hit.

See what happens if the second part of line 10 is eliminated.

To stop this program you can hit the MM and J:M keys.

The first part of the temperature conversion program could easily be

rewritten to use GET. LOAD the temperature conversion program, and

modify lines 10, 20 and 40 as shown:

10 PRINT " CONVERT FROM FAHRENHEIT OR CELSIUS
(F/C7"

20 GET A$: IF AS = "''_THEN
40 IF AS C:> "C" THEN 20

This modification will make the program operate smoother, as nothing

will happen unless the user types in one of the desired responses to

select the type of conversion.

Once this change is made, make sure you save the new version of the

program.

RANDOM NUMBERS AND OTHER FUNCTIONS

The Commodore 64 contains a number of functions that are used to

perform special operations. Functions could be thought of as built-in

programs included in BASIC.. But rather than typing in a number of

statements each time you need to perform u specialized calculation, you

just type the command for the desired function and the computer does

the rest.

Many times when designing a game or educational program, you

need to generate a random number, to simulate the throw of dice, for

example. You could certainly write a program that would generate these

numbers, but an easier way to call upon the RaNDom number function.

To see what RND actually does, try this short program:

48

NEW

10 FOR X = 1 To 1e IF YOU LEAVE OUT THE COMMA YOUR LIST
20 PRINT RND (1) , OF NUMBERS WILL APPEAR30 NEXT

AS 1 COLUMN

After running the program, you will see a display like this:

.789280697 .664673958

.256373663 . 0123442287

.682952381 3.90587275E-04

.402343724 . 879300926

.158209063 .245596701

Your numbers don't match? Well, if they did we would all be in

trouble, as they should be completely random!

Try running the program a few more times to verify that the results are

always different. Even if the numbers don't follow any pattern, you

should start to notice that some things remain the same every time the

program is run.

First, the results are always between 0 and 1, but never equal to 0 or

1 . This will certainly never do if we want to simulate the random toss of

dice, since we're looking for numbers between 1 and 6.

The other important feature to look for is that we are dealing with real

numbers (with decimal places). This could also be a problem since

whole (integer) numbers are often needed.

There are a number of simple ways to produce numbers from the

RND function in the range desired.

Replace line 20 with the following and run the program again:

20 PRINT 6*RND(1),

RUN

3.60563664 4.53660853
5.47238963 8. 40850227
3.19265054 4.39547668
3.16331095 5.50620749
9.32527884 4.17090293

49

0

That cured the problem of not having results larger than 1, but we still

hove the decimal part of the result to deal with . Now, another function
can be called upon.

The INTeger function converts real numbers into integer values.

Once more , replace line 20 with the following and run the program to

see the effect of the change:

Ira? : 6* tl[I :: 1PRINT

M

A
El I

That took care of a lot , getting us closer to our original goal of

generating random numbers between 1 and 6. If you examine closely

what we generated this last time , you'll find that the results range from

0 to 5, only.

As a last step , add a one to the statement , as follows:

20 PRINT INT (6*RND(1))+1,

Now, we have achieved the desired results.
In general , you can place a number, variable , or any BASIC expres-

sion within the parentheses of the INT function. Depending on the range

desired , you just multiply the upper limit by the RND function. For
example , to generate random numbers between 1 and 25 , you could

type:

20 PRINT INT(25*RND(1))+1

The general formula for generating a set of random numbers in a

certain range is:

NUMBER=INT(LOWER LIMIT+(UPPER - LOWER+1)*RND(1))

GUESSING GAME

Since we've gone to some lengths to understand random numbers,
why not put this information to use? The following game not only illus-

50

trates a good use of random numbers, but also introduces some addi-

tional programming theory.

In running this program, a random number, NM, will be generated.

NEW

1 REM NUMBER GUESSING GAME
2 PRINT "{CLR/HOME)"

` INDICATES NO
SPACE AFTER
QUOTATION MAR

5 INPUT "ENTER UPPER LIMIT FOR GUESS ".LI
10 NM = INT(LI*RND(1))+1
15 CN = 0
20 PRINT "I'VE GOT THE NUMBER.":PRINT
30 INPUT "WHAT'S YOUR GUESS".: GU
35 CN = CN + 1
40 IF GU > NM THEN PRINT "MY NUMBER IS

LOWER": PRINT : GOTO 30
50 IF GU < NM THEN PRINT "MY NUMBER IS

HIGHER": PRINT : GOTO 30
60 PRINT "GREAT! YOU GOT MY NUMBER"
65 PRINT "IN ONLY ": CN :"GUESSES.":PRINT
70 PRINT "DO YOU WANT TO TRY ANOTHER (Y/N?":
80 GET AN$: IF AN$="" THEN 80
90 IF RN$ = "Y" THEN 2
100 IF AN$ C? "N" THEN 70
110 END

You can specify how large the number will be at the start of the pro-

gram. Then, it's up to you to guess what the number is.
A sample run follows along with an explanation.

ENTER UPPER LIMIT FOR GUESS?
I'VE GOT THE NUMBER..

WHAT'S YOUR GUESS 7 15
MY NUMBER IS HIGHER.

WHAT'S YOUR GUESS ? 20
MY NUMBER. IS LOWER.

WHAT 'S YOUR GUESS ? 19
GREAT ! YOU GOT MY NUMBER
IN ONLY 3 GUESSES.

DO YOU J WANT TO TRY ANOTHER. (Y/N`-

51

IF/THEN statements compare your guess to the number generated.

Depending on your guess , the program tells you whether your guess was
higher or lower than the random number generated.

From the formula given for determining random number range, see if

you can add a few lines to the program that allow the user to also

specify the lower range of numbers generated.

Each time you make a guess, CN is incremented by I to keep track of
the number of guesses . In using the program, see if you can use good

reasoning to guess a number in the least number of tries.

When you get the right answer , the program prints out the "GREAT!

YOU GOT MY NUMBER" message, along with the number of tries it took.

You can then start the process over again . Remember , the program

generates a new random number each time.

PROGRAMMING TIPS:

In lines 40 and 50, a colon is used to separate multiple statements on a single line.

This not only saves typing, but in long programs will conserve memory space.

Also notice in the IF/THEN statements on the same two lines, we instructed the

computer to PRINT something, rather than immediately branching to some other point

in the program.

The last point illustrates the reason behind using line numbers in increments of 10:

After the program was written, we decided to add the count part. By just adding

those new lines at the end of the program, numbered to fall between the proper

existing lines, the program was easily modified.

YOUR ROLL

The following program simulates the throw of two dice. You can enjoy

it as it stands, or use it as part of a larger game.

5 PRINT " Care to try ,Your luck? "
10 PRINT "RED DICE = " ;INT(6•RND(1))+1
20 PRINT "WHITE DICE = " ;INT(6*RND(1))+1
30 PRINT "HIT SPACE BAR FOR ANOTHER ROLL ":PRINT
40 GET AS: IF AS = "" THEN 40
50 IF AS = CHRS(32) THEN 10

Care to try your luck?

From what you've learned about random numbers and BASIC, see if

you can follow what is going on.

52

RANDOM GRAPHICS

As a final note on random numbers, and as an introduction to design-

ing graphics, take a moment to enter and run this neat little program:

10 PRINT "{C:LR: HOME)
20 PRINT CHR$(205.5 + RND':Ii) ;

40 GOTrO 20

As you may have expected, line 20 is the key here. Another function,

CHR$ (Character String), gives you a character, based on a standard

code number from 0 to 255. Every character the Commodore 64 can

print is encoded this way (see Appendix F).

To quickly find out the code for any character, just type:

PRINT ASC("X")

where X is the character you're checking (this can be any printable

character, including graphics). The response is the code for the char-

acter you typed. As you probably figured out, "ASC" is another function,

which returns the standard "ASCII" code for the character you typed.

You can now print that character by typing:

PRINT CHR$(X)

If you try typing:

PRINT CHR$ (205); CHR$(206)

you will see the two right side graphic characters on the M and N keys.

These are the two characters that the program is using for the maze.

By using the formula 205 . 5 + RND (1) the computer will pick a random

number between 205.5 and 206 . 5. There is a fifty-fifty chance of the

number being above or below 206. CHR$ ignores any fractional values,

so half the time the character with code 205 is printed and the remain-

ing time code 206 is displayed.

If you'd like to experiment with this program , try changing 205.5 by

adding or subtracting a couple tenths from it . This will give either char-

acter a greater chance of being selected.

53

s
01

0
0
2

0

0
0

CHAPTER 5

ADVANCED COLOR
AND GRAPHIC

COMMANDS
• Color and Graphics
• PRINTing Colors
• Color CHR$ Codes
• PEEKS and POKES'
• Screen Graphics
• More Bouncing Balls

b11

COLOR AND GRAPHICS

Up to now we've explored some of the sophisticated computing
capabilities of the Commodore 64. But one of its most fascinating fea-
tures is an outstanding ability to produce color and graphics.

You've seen a quick example of graphics in the "bouncing ball" and

"maze" programs. But these only touched on the power you command.

A number of new concepts will be introduced in this section to explain

graphic and color programming and show how you can create your own

games and advanced animation.

Because we've concentrated on the computing capabilities of the ma-

chine, all the displays we've generated so far were a single color (light

blue text on a dark blue background, with a light blue border).

In this chapter we'll see how to add color to programs and control all

those strange graphic symbols on the keyboard.

PRINTING COLORS

As you discovered if you tried the color alignment test in Chapter 1,

you can change text colors by simply holding the= key and one of

the color keys. This works fine in the immediate mode, but what hap-

pens if you want to incorporate color changes in your programs?

When we showed the "bouncing ball" program, you saw how

keyboard commands, like cursor movement, could be incorporated

within PRINT statements. In a like way, you can also add text color

changes to your programs.

You have a full range of 16 text colors to work with. Using them

key and a number key, the following colors are available:

1 2 3 4 5 6 7 8
Black White Red Cyan Purple Green Blue Yellow

If you hold down the ® key along with the appropriate number

key, these additional eight colors can be used:

1 2 3 4 5 6 7 8

Orange Brown It . Gray 1 Gray 2 Lt. It. Gray 3

Red Green Blue

TYPE NEW, and experiment with .he following. Hold down them

key and at the some time hit the 0 key. Next, hit the Q key without

56

•

holding down the =key. Now, while again depressing the Mkey

at the same time hit the key. Release theMkey and hit theOkey.

Move through the numbers, alternating with the letters, and type out the

word RAINBOW as follows:

10 PRINT " 1 R1A1I1N1B 1O1W"

00000000

RUN
RAINBOW

Just as cursor controls show as graphic characters within the quote

marks of print statements, color controls are also represented as graphic

characters.

In the previous example, when you held down 0 and typedua

'£" was displayed. M0 displayed a "-". Each color control will

display its unique graphic code when used in this way. The table shows

the graphic representations of each printable color control.

KEYBOARD COLOR DISPLAY KEYBOARD COLOR DISPLAY

00 BLACK [g 0 ORANGE

m0 WHITE ®0 BROWN

m© RED ®0 LT. RED

M O CYAN L ®0 GRAY 1

M0 PURPLE 0 ® 0 GRAY 2

=0 GREEN 0 to 0 LT. GREEN UI
m0 BLUE can LT. BLUE

=0 YELLOW © ® 0 GRAY 3

Even though the PRINT statement may look a bit strange on the

screen, when you RUN the program, only the text will be displayed. And

it will automatically change colors according to the color controls you

placed in the print statement.

Try a few examples of your own, mixing any number of colors within a

single PRINT statement. Remember, too, you can use the second set of

text colors by using the Commodore key and the number keys.

TIP:

You will notice after running a program with color or mode (reverse) changes, that the

"READY" prompt and any additional text you type is the same as the lost color or

mode change . To get back to the normal display, remember to depress:

7r::r6iPlli and

57

COLOR CHR$ CODES

Take a brief look at Appendix F, then turn back to this section.
You may have noticed in looking over the list of CHR$ codes in

Appendix F that each color (as well as most other keyboard controls,

such as cursor movement) has a unique code. These codes can be

printed directly to obtain the same results as typing • and the

appropriate key within the PRINT statement.

For example, try this:

NEW
10 FEINT CHR# 1::14 ' : PEN { C•LF'i` HCOME }
L_t FE:I'ITi::HHHGE' ME Tii"i

RUN
CHR :: _ 0;' CHANGE'_; ME TO?

The text should now be green. In many cases, using the CHR$ func-

tion will be much easier, especially if you want to experiment with

changing colors. The following program is a different way to get a rain-

bow of colors. Since there are a number of lines that are similar (40-

110) use the editing keys to save a lot of typing. See the notes after the

listing to refresh your memory on the editing procedures.

NEW

1 PEN AUTOMATIC CCILOF: E:HR'=.
5 PRINT C:HR.(147) : REM C:HR.(147:)= CLR/HOME
10 PRINT CHR$ 18) ., ' .-:F*EP1 REVERSE BAR
20 CL = INT(8•RNG(1)>+1
_:I_I ON CL GOTi 411 11 f.11, G,^:4+, !11 1311 1111
40 PRINT CHF:3 (5) GOT0 10 -
50 PRINT GCOTCO 10
60 PRINT C:HF:f'30:? C:OTO 11
7 C+ PRINT CHR$ (:: =:1 :? GOTO 10
;_:0 FEI NT CHR 144:? ; : OC'TO 10
90 PRINT CHR$(156:?;: GOTO 10
101 PRINT CHF3: 158); : GOTO 10
110 PRINT CHR$<:159:?;: GOTCI 10

58

Type lines 5 through 40 normally. Your display should look like this:

1 REM AUTOMATIC: COLOR BARE:

5 PRINT CHR$(147) REM i_HR $(147;'= CLR,-'HOME
113 PRINT CHR$(18 } : " "; :REM REVERSE BARS
20 CL = I NT *RND 1 +1
30 ON C:L GOTO 40,50,60,70, 80,90,100 .,110
40 PRINT CHR'$<5::' ; CiOTO 10

EDITING NOTES

Use the CRSR-UP key to position the cursor on line 40. Then type 5

over the 4 of 40. Next, use the CRSR-RIGHT key to move over to the 5 in
the CHR$ parentheses. Hit ® rm-M to open up a space and type

'28'. Now just hit i with the cursor anywhere on the line.

The display should now look like this:

1 REM AUTOMATI C COLOR E:ARS
5 PRINT CHR$':: 14) REM CHF $ f 14 ::' = CLR:-' HCir1E
10 PRINT CHR$':: 18::' ; . : REM REVER'_.E BAR
20 CL = I NT (=:*RND':: 1 :')+ 1
:30 ON CL OOTO 40,`U,513 „•0..80,90 101+.110
50 PRINT CHR$:'2 ::, :: GO TO 10
0

Don't worry. Line 40 is still there. LIST the program and see. Using the

same procedure, continue to modify the last line with a new line number

and CHR$ code until all the remaining lines have been entered. See, we

told you the editing keys would come in handy. As a final check, list the

entire program to make sure all the lines were entered properly before

you RUN it.

Here is a short explanation of what's going on.

You've probably figured out most of the color bar program by now

except for some strange new statement in line 30. But let's quickly see

59

what the whole program actually does. Line 5 prints the CHR$ code for

CLR/HOME.
Line 10 turns reverse type on and prints 5 spaces, which turn out to be

a bar, since they're reversed. The first time through the program the bar

will be light blue, the normal text color.
Line 20 uses our workhorse, the random function to select a random

color between 1 and 8.

Line 30 contains a variation of the IF . . . THEN statement which is

called ON . . . GOTO. ON . . . GOTO allows the program to choose

from a list of line numbers to go to. If the variable (in this case CL) has a

value of 1, the first line number is the one chosen (here 40). If the value

is 2, the second number in the list is used, etc.

Lines 40-110 just convert our random key colors to the appropriate

CHR$ code for that color and return the program to line 10 to PRINT a

section of the bar in that color. Then the whole process starts over

again.

See if you can figure out how to produce 16 random numbers, ex-

pand ON . . . GOTO to handle them, and add the remaining CHR$

codes to display the remaining 8 colors.

PEEKS AND POKES

No, we're not talking about jabbing the computer, but we will be able

to "look around" inside the machine and "stick" things in there.

Just as variables could be thought of as a representation of "boxes"

within the machine where you placed your information, you can also

think of some specially defined "boxes" within the computer that repre-

sent specific memory locations.

The Commodore 64 looks at these memory locations to see what the

screen's background and border color should be, what characters are to

be displayed on the screen-and where-and a host of other tasks.

By placing, "POKEing," a different value into the proper memory lo-

cation, we can change colors, define and move objects, and even

create music.

These memory locations could be represented like this:

53280

X

BORDER

COLOR

53281

Y

BACKGROUND

COLOR

60

53282 53283

O
1

n

0

On page 60 we showed just four locations, two of which control the

screen and background colors. Try typing this:

POKE 53281,7

The background color of the screen will change to yellow because we

placed the value '7'-for yellow-in the location that controls the

background color of the screen.

Try POKEing different values into the background color location, and

see what results you get. You can POKE any value between 0 and 255,

but only 0 through 15 will work.

The actual values to POKE for each color are:

0 BLACK 8 ORANGE

1 WHITE 9 BROWN
2 RED 10 Light RED

3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YELLOW 15 GRAY 3

Can you think of a way to display the various background and border

combinations? The following may be of some help:

10 FOR 88 = 0 TO 15
20 FOR BO = 0 TO 15
30 POKE 53280, BR.
40 POKE 53281, BO
50 FOR X = 1 TO 2000 NE:<T X
60 NEXT 80 : NEXT 88

RUN

Two simple loops were set up to POKE various values to change the

background and border colors. The DELAY loop in line 50 just slows

things down a bit.

61

For the curious, try:

? PEEK (53280) AND 15

You should get a value of 15. This is the last value BORDER was given

and makes sense because both the background and border colors are

GRAY (value 15) after the program is run.

By entering AND 15 you eliminate all other values except 1-15, be-
cause of the way color codes are stored in the computer. Normally you

would expect to find the some value that was last POKEd in the location.

In general , PEEK lets us examine a specific location and see what value

is presently there. Can you think of a one line addition to the program

that will display the value of BACK and BORDER as the program runs?

How about this:

25 PRINT CHR$ (147); "BORDER = ";PEEK (53280) AND 15, "BACK-

GROUND = "; PEEK (53281) AND 15

SCREEN GRAPHICS

In all the printing of information that you've done so for, the computer

normally handled information in a sequential fashion: one character is

printed after the next, starting from the current cursor position (except

where you asked for a new line, or used the ',' in PRINT formatting).

To PRINT data in a particular spot you can start from a known place

on the screen and PRINT the proper number of cursor controls to format

the display. But this takes program steps and is time consuming.

But just as there are certain spots in the Commodore 64's memory to

control color, there are also locations that you can use to directly control

each location on the screen.

SCREEN MEMORY MAP

Since the computer's screen is capable of holding 1000 characters (40

columns by 25 lines) there are 1000 memory locations set aside to han-

dle what is placed on the screen. The layout of the screen could be

thought of as a grid, with each square representing a memory location.

And since each location in memory can contain a number from 0 to

255, there are 256 possible values for each memory location. These

values represent the different characters the Commodore 64 can display

(see Appendix Q. By POKEing the value for a character in the appro-

62

W

priate screen memory location, that character will be displayed in the

proper position.

0 10

COLUMN
20 30 39

1063

1024 -
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

0

20

24

f
2023

Screen memory in the Commodore 64 normally begins at memory

location 1024, and ends at location 2023. Location 1024 is the upper left

corner of the screen. Location 1025 is the position of the next character

to the right of that, and so on down the row. Location 1063 is the

right-most position of the first row. The next location following the last

character on a row is the first character on the next row down.

Now, let's say that you're controlling a ball bouncing on the screen.
The ball is in the middle of the screen, column 20, row 12. The formula

for calculation of the memory location on the screen is:

POINT = 1024 + X + 40*Y
COLUMN

ROW

where X is the column and Y is the row.

Therefore, the memory location of the ball is:

1024 + 20 + 480 or 1524
COLUMN

ROW (40' 12)

63

Clear the screen with ® and CIR/HOME and type:

POKE 1524,81
POKE 55796,1

Li
COLOR

LOCATION

COLOR MEMORY MAP

A ball appears in the middle of the screen! You have placed a char-

acter directly into screen memory without using the PRINT statement.

The ball that appeared was white. However there is a way to change

the color of an object on the screen by altering another range of mem-

ory. Type:

LOCATION
POKE 55796,2. COLOR

The ball's color changes to red. For every spot on the Commodore 64's

screen there are two memory locations, one for the character code, and

the other for the color code. The color memory map begins at location

55296 (top left-hand corner), and continues on for 1000 locations. The

0

55296
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

f
56295

10

COLUMN

20 30 39

55335

L
20

24

64

same color codes, from 0-15, that we used to change border and

background colors can be used here to directly change character colors.

The formula we used for calculating screen memory locations can be

modified to give the locations to POKE color codes. The new formula is:

COLOR PRINT = 55296 + X + 40*Y

MORE BOUNCING BALLS

Here's a revised bouncing ball program that prints directly on the

screen with POKEs, rather than using cursor controls within PRINT state-

ments. As you will see after running the program, it is much more flexi-

ble than the earlier program, and will lead up to programming much

more sophisticated animation.

NEW

10 PRINT " { CLR/HUME)"
20 POKE 53280 , 7 : POKE 53281,13
30 X = 1 : Y = 1
40 DX = 1 DY = 1
50 POKE 1024 + X + 40*Y.81
60 FOR T = 1 TO 10 : NEXT
70 POKE 1024 + X + 40*Y,32
80 X = X + DX
90 IF X < = 0 OR X i = 39 THEN DX = -DX
100 Y = Y + DY
110 IF Y = 0 OR Y ? = 24 THEN DY = -DY
120 GOTO 50

Line 10 clears the screen, and line 20 sets the background to light

green with a yellow border.

The X and Y variables in line 30 keep track of the current row and

column position of the ball. The DX and DY variables in line 40 are the

horizontal and vertical direction of the ball's movement. When a +1 is

added to the X value, the ball is moved to the right; when -1 is added,

the ball moves to the left. A + 1 added to Y moves the ball down a row;

a -1 added to Y moves the ball up a row.

Line 50 puts the ball on the screen at the current cursor position. Line

60 is the familiar delay loop, leaving the ball on the screen just long

enough to see it.

Line 70 erases the ball by putting a space (code 32) where the ball

was on the screen.

65

Line 80 adds the direction factor to X. Line 90 tests to see if the ball

has reached one of the side walls, reversing the direction if there's a

bounce. Lines 100 and 110 do the same thing for the top and bottom
walls.

Line 120 sends the program back to display and moves the ball

again.

By changing the code in line 50 from 81 to another character code,

you can change the ball to any other character. If you change DX or DY

to 0 the ball will bounce straight instead of diagonally.

We can also add a little more intelligence. So for the only thing you

checked for is the X and Y values getting out of bounds for the screen.

Add the following lines to the program.

21 FOR L = 1 TO 10
25 POKE 1024 + INT(RND(1)*1000), 166
27 NEXT L
55 IF PEEK(1024 + X + 40*Y) = 166 THEN DX _ -DX:

GOTO 80

105 IF PEEK<1024 + X + 40*Y) = 166 THEN DY = -DY:

GOTO 100

Lines 21 to 27 put 10 blocks on the screen in random positions. Lines

85 and 105 check (PEEK) to see if the ball is about to bounce into a

block, and changes the ball's direction if so.

0

0

e

•
0

66

C HAPTER

SPRITE GRAPHICS
• Introduction to Sprites

• Sprite Creation
• Additional Notes on Sprite
• Binary Arithmetic

67

INTRODUCTION TO SPRITES

In previous chapters dealing with graphics , we saw that graphic

symbols could be used in PRINT statements to create animation and add

chartlike appearances to our displays.

A yygy was also shown to POKE character codes in specific screen

memory locations . This would then place the appropriate characters di-

rectly on the screen in the right spot.

Creating animation in both these cases requires a lot of work because
objects must be created from existing graphic symbols. Moving the ob-
ject requires a number of program statements to keep track of the ob-

ject and move it to a new spot . And, because of the limitation of using

graphic symbols , the shape and resolution of the object might not be as
good as required.

Using sprites in animated sequences eliminates a lot of these prob-
lems. A sprite is a high-resolution programmable object that can be

made into just about any shape- through BASIC commands. The object

can be easily moved around the screen by simply telling the computer

the position the sprite should be moved to. The computer takes care of
the rest.

And sprites have much more power than just that. Their color can be
changed ; you can tell if one object collides with another ; they can be

made to go in front and behind another ; and they can be easily ex-

panded in size, just for starters.

The penalty for all this is minimal. However , using sprites requires

knowing some more details about how the Commodore 64 operates and

how numbers are handled within the computer . It's not as difficult as it

sounds , though . Just follow the examples and you'll be making your own

sprites do amazing things in no time.

SPRITE CREATION
Sprites are controlled by a separate picture-maker in the Commodore

64. This picture maker handles the video display. It does all the hard

work of creating and keeping track of characters and graphics, creating

colors, and moving around.

This display circuit has 46 different "ON/OFF" locations which act like

internal memory locations. Each of these locations breaks down into a

series of 8 blocks. And each block can either be "on" or "off". We'll get

into more detail about this later. By POKEing the appropriate decimal

value in the proper memory location you can control the formation and

movement of your sprite creations.

68

r

AM

IML

In addition to accessing many of the picture making locations we will

also be using some of the Commodore 64's main memory to store infor-

mation (data) that defines the sprites. Finally, eight memory locations

directly after the screen memory will be used to tell the computer exactly

which memory area each sprite will get its data from.

As we go through some examples, the process will be very

straightforward, and you'll get the hang of it.

So let's get on with creating some sprite graphics. A sprite object is 24

dots wide by 21 dots long. Up to eight sprites can be controlled at a
time. Sprites are displayed in a special independent 320 dot wide by

200 dot high area. However, you can use your sprite with any mode,

high-resolution, low-resolution, text etc.

Say you want to create a balloon and have it float around the sky.

The balloon could be designed as in the 24 by 21 grid on page 70.

The next step is to convert the graphic design into data the computer

can use. Get a piece of notebook or graph paper and set up a sample

grid that is 21 spaces down and 24 spaces across. Across the top write

128,64,32,16,8,4,2,1, three times (as shown) for each of the 24

squares. Number down the left side of the grid 1-21 for each row. Write

the word DATA at the end of each row. Now fill in the grid with any

design or use the balloon that we have. It's easiest to outline the shape

first and then go back and fill in the grid.
Now if you think of all the squares you filled in as "on" then substitute

a 1 for each filled square. For the one's that aren't filled in, they're "off"

so put a zero.

Starting on the first row, you need to convert the dots into three sepa-

rate pieces of data the computer can read. Each set of 8 squares is

equal to one piece of data called a byte in our balloon. Working from

the left, the first 8 squares are blank, or 0, so the value for that series of

numbers is 0.

The middle series looks like this (again a 1 indicates a dot, 0 is a

space):

128 64 32 16 8 4 2 1

0 1 1 1 1 1 1 1

T T T T T T T T
0 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127

The third series on the first row also contains blanks, so it, too, equals

zero. Thus, the data for the first line is:

DATA 0, 127, 0

69

a

0

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21

5 10 15
COLUMN

20 24

The series that make up row two are calculated like this:

Series 1: 0 0 0 0 0 0 1 •
1 = 1 •

Series 2: 1 1 1 1 1 1 1 1

T T T T T T T T
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

Series 3: 1

SERIES SERIES SERIES
1 2 3

128 32 8 2 128 32 8 2 128 32 8 2
64 16 4 11 64 16 4 11 64 16 4 1

1

1

T T
128 + 64

0 0 I 0

For row 2, the data would be:

DATA 1,255,192

0 0 0

= 192

In the same way, the three series that make up each remaining row

would be converted into their decimal value. Take the time to do the

remainder of the conversion in this example.

Now that you have the data for your object, how can it be put to use?

Type in the following program and see what happens.

70

1 REM UP, UP, AND RWRY!

5 PRINT "{CLRIHOME}"

10 V= 53248 : REM START OF DISPLAY CHIP
11 POKE V+21. 4 : REM ENABLE SPRITE 2
12 POKE 2042, 13 : REM SPRITE 2 DATA FROM 13TH BLK
20 FOR N = 0 TO 62: READ Q : POKE 832+N,Q: NEXT
30 FOR X = 0 TO 200 GETS ITS INFO. FROM DATA'

40 POKE V+4,X: REM UPDATE X COORDINATES
50 POKE V+5,X: REM UPDATE Y COORDINATES
60 NEXT X
70 GOTO 30_ INFO. READ IN FROM Q-

200 DATA 0,127,0,1,255,192,3,255,224,3,231,224
210 DATA 7,217,240,7,223,240,7,217,240,3,231,224
220 DATA 3,255,224,3,255,224,2,255,160,1,127,64
230 DATA 1,62,64, 0,156,128 , 0,156 , 128,0,73,0,0,73,0
240 DATA 0,62,0,0 , 62,0,0,62,0,0,28,0
FOR MORE DETAIL ON READ & DATA SEE CHAPTER 8.

If you typed everything correctly, your balloon is smoothly flying

across the sky (page 72).

In order to understand what happened, first you need to know what

picture making locations control the functions you need. These locations,

called registers,could be illustrated in this manner:

Register(s) Description

0 X coordinate of sprite 0

1 Y coordinate of sprite 0

2 - 15 Paired like 0 and 1 for sprites 1-7

16 Most Significant Bit-X Coordinate

21 Sprite appear: 1 =appear 0=disappear

29 Expand sprite in "X" Direction

23 Expand sprite in "Y" Direction

39 - 46 Sprite 0 - 7 color

In addition to this information you need to know from which 64 byte

section sprites will get their data (1 byte is not used).

This data is handled by 8 locations directly after screen memory:

2040 41 42 43 44 45 46 2047

T T T
SPRITE 0

T T T T
1 2 3 4 5 6 7

Now let 's outline the exact procedure to get things moving and finally
write a program.

71

r

ACTUAL SCREEN PHOTO

There are only a few things necessary to actually create and move an

object.

1. Make the proper sprite(s) appear on the screen by POKEing into lo-

cation 21 a 1 for the bit which turns on the sprite.

2. Set sprite pointer (locations 2040-7) to where sprite data should be

read from.

3. POKE actual data into memory.

4. Through a loop, update X and Y coordinates to move sprite around.

5. You can, optionally, expand the object, change colors, or perform a

variety of special functions. Using location 29 to expand your sprite in

the "X" direction and location 23 in the "Y" direction.

There are only a few items in the program that might not be familiar

from the discussion so far.

In line 10;

V=53248

sets V to the starting memory location of the video chip. In this way we

just increase V by the memory number to get the actual memory loca-

tion. The register numbers are the ones given on the sprite register map.

0

0

72

In line 11,

POKE V+21,4

makes sprite 2 appear by placing a 4 in what is called the sprite enable

register (21) to turn on sprite 2. Think of it like this:

SPRITES

21

128 64 32 16

7

0

6

0

5

0

4

0

3

0

Decimal values of each
sprite number

2 1

2 1

1 0

0

0

Sprite Level Number

=4

Put a I For The SPRITE You Want

Each sprite level is represented in section 21 of the sprite memory and

4 happens to be sprite level 2. If you were using level 3 you would put a
1 in sprite 3 which has a value of 8. In fact if you used both sprites 2

and 3 you would put a 1 in both 4 and 8. You would then add the

numbers together just like you did with the DATA on your graph paper.

So, turning on sprites 2 and 3 would be represented as V+21,12.

In line 12;

POKE 2042,13

instructs the computer to get the data for sprite 2 (location 2042) from

the 13th area of memory. You know from making your sprite that it

takes up 63 sections of memory. You may not have realized it, but those

numbers you put across the top of your grid equal what is known as 3

bytes of the computer. In other words each collection of the following

numbers, 128,64,32,16,8,4,2,1 equals 1 byte of computer memory.

Therefore with the 21 rows of your grid times the 3 bytes of each row,

each sprite takes up 63 bytes of memory . I WHOLE SPRITE

20 FOR N = 0 to 62 : READ Q: POKE 832+N , Q: NEXT

This line handles the actual sprite creation. The 63 bytes of data that

represent the sprite you created are READ in through the loop and

POKEd into the 13th block of memory. This starts at location 832.

30 FOR X = 0 TO 200

40 POKE V+41

50 POKE V+S,X

If you remember from school the X coordinate represents an objects

horizontal movement across the screen and the Y coordinate represents

the sprite 's vertical movement across the screen. Therefore as the values

73

of X change in line 30 from 0 to 200 (one number at a time) the sprite

moves across the screen DOWN and TO THE RIGHT one space for each

number. The numbers are READ by the computer fast enough to make
the movement appear to be continuous, instead of 1 step at a time. If
you need more details take a look at the register map in Appendix O.

When you get into moving multiple objects, it would be impossible for

one memory section to update the locations of all eight objects. There-

fore each sprite has its own set of 2 memory sections to make it move on

the screen.

Line 70 starts the cycle over again, after one pass on the screen. The

remainder of the program is the data for the balloon. Sure looks differ-

ent on the screen, doesn't it?

Now, try adding the following line:

25 POKE V+23,4 : POKE V+29,4: REM EXPAND

and RUN the program again. The balloon has expanded to twice the

original size ! What we did was simple. By POKEing 4 (again to indicate

sprite 2) into memory sections 23 and 29 , sprite 2 was expanded in the

X and Y direction.

It's important to note that the sprite will start in the upper left-hand

corner of the object. When expanding an object in either direction, the

starting point remains the same.

For some added excitement , make the following changes:

11 POKE V+21,12

12 POKE 2042 , 13 : POKE 2043,13

30 FOR X = 1 to 190

45 POKE V+6,X

55 POKE V + 7,190-X

A second sprite (number 3) has been turned on by POKEing 12 into the

memory location that makes the sprite appear (V+21). The 12 turns

sprites 3 and 2 on (00001100 = 12).
The added lines 45 and 55 move sprite 3 around by POKEing values

into sprite 3's X and Y coordinate locations (V+6 and V+7).
Want to fill the sky with even more action ? Try making these addi-

tions:
28 IS REALLY 4 (SPRITE 2) + 8

(SPRITE 3) + 16 (SPRITE 4)
11 POKE V+21,28-

12 POKE 2042,13:POKE 2043,13:POKE 2044,13
25 POKE V+23,12 : POKE V+29,12

48 POKE V+8,X

58 POKE V+9,100

P

D

5

74

In line 11 this time, another sprite (4) was made to appear by POKE-

ing 28 into the appropriate "on" location of the sprite memory section.

Now sprites 2-4 are on (00011100 = 28).
Line 12 indicates that sprite 4 will get its data from the same

memory area (13th 63 section area) as the other sprites by POKEing
2044,13.

In line 25, sprites 2 and 3 are expanded by POKEing 12 (Sprites 2

and 3 on) into the X and Y direction expanded memory locations (V+23

and V+29).

Line 48 moves sprite 3 along the X axis. Line 58 positions sprite 3

halfway down the screen, at location 100. Because this value does not

change, like it did before with X=0 to 200, sprite 3 just moves horizon-

tally.

ADDITIONAL NOTES ON SPRITES

Now that you've experimented with sprites, a few more words are in

order. First, you can change a sprite's color to any of the standard 16

color codes (0-15) that were used to change character color. These can

be found in Chapter 5 or in appendix G.

For example, to change sprite 1 to light green, type: POKE

V+40,13 (be sure to set V=53248).

You may have noticed in using the example sprite programs that

the object never moved to the right-hand edge of the screen. This was

because the screen is 320 dots wide and the X direction register can

only hold a value up to 255. How then can you get an object to move

across the entire screen?

There is a location on the memory map that has not been men-

tioned yet. Location 16 (of the map) controls something called the most

significant bit (MSB) of the sprite's X direction location. In effect, this

allows you to move the sprite to a horizontal spot between 256 and 320.

The MSB of X register works like this: after the sprite has been

moved to X location 255, place a value into memory location 16 repre-

senting the sprite you want to move. For example, to get 2 to move to

horizontal locations 256-320, POKE the value for sprite 2 which is (4) into

memory location 16:

POKE V+ 16,4.

Now start from 0 again in the usual X direction register for sprite 2

(which is in location 4 of the map). Since you are only moving another 64

spaces, X locations would only range between 0 and 63 this time.

75

This whole concept is best illustrated with a version of the original

sprite 1 program:

10 V= 532-48 : POKE V+211,4 : POKE 2042,13 5
20 FOR N = 0 Ti] 62 : READ Q : POKE 832+N,Q NEXT
25 POKE V+5, 100 5
30 FOR X=0TO255
40 POKE V+4,X 10
50 NEXT

60 POKE V+16,4 I

70 FORX=0TO63
80 POKE 'd+4 , X
90 NEXT
100 POKE V+16,0
110 GOTO 30

1k

Line 60 sets the most significant bit for sprite 2. Line 70 starts moving

the standard X direction location, moving sprite 2 the rest of the way

across the screen.

Line 100 is important because it "turns off" the MSB so that the

sprite can start moving from the left edge of the screen again.

To define multiple sprites, you may need additional blocks for the

sprite data. You can use some of BASIC's RAM by moving BASIC. Before

typing or loading your program type:

POKE44,16:POKE 16*256,0:NEW

Now, you can use blocks 32 through 41 (locations 2048 through 4095) to

store sprite data.

BINARY ARITHMETIC

It is beyond the scope of this introductory manual to go into details of

how the computer handles numbers. We will, however, provide you with

a good base for understanding the process and get you started on

sophisticated animation.

But, before you get too involved we have to define a few terms:

BIT-This is the smallest amount of information a computer can store.

W

0

0

O

76

Think of a BIT as a switch that is either "on" or "off". When a BIT is

"on" it has a value of 1; when a BIT is "off" it has a value of 0.

After BIT, the next level is BYTE.

BYTE -This is defined as a series of BITS. Since a BYTE is made up of

8 BITS, you can actually have a total of 256 different combinations

of BITS. In other words, you can have all BITS "off" so your BYTE

will look like this:

128

0

16

0

8
0

and its value will be 0. All BITS "on" is:

64

0

32

0

128 64 32

1 1 1

16

1

8

1

which is 128+64 + 32+16+8 +2+1=255.

The next step up is called a REGISTER.

4

0

4

1

2
0

2

1

0

REGISTER -Defined as a block of BYTES strung together. But, in this

case each REGISTER is really only 1 BYTE long. A series of REGIS-

TERS makes up a REGISTER MAP. REGISTER MAPS are charts like

the one you looked at to make your BALLOON SPRITE. Each REGIS-

TER controls a different function, like turning on the SPRITE is really

called the ENABLE REGISTER. Making the SPRITE longer is the EX-

PAND X REGISTER, while making the SPRITE wider is the EXPAND Y

REGISTER. Keep in mind that a REGISTER is a BYTE that performs a

specific task.

Now let 's move on to the rest of BINARY ARITHMETIC.

BINARY TO DECIMAL CONVERSION

Decimal Value

128 64 32 16 8 4 2 1

0 0 0 0 0 0 0 1 2T0

0 0 0 0 0 0 1 0 2 TI
0 0 0 0 0 1 0 0 2T2

0 0 0 0 1 0 0 0 2T3

0 0 0 1 0 0 0 0 2T4

0 0 1 0 0 0 0 0 2T5

0 1 0 0 0 0 0 0 2T6

1 0 0 0 0 0 0 0 217

77

Using combinations of all eight bits, you can obtain any decimal value

from 0 to 255. Do you start to see why when we POKEd character or

color values into memory locations the values had to be in the 0-255
range? Each memory location can hold a byte of information.

Any possible combination of eight 0's and l's will convert to a

unique decimal value between 0-255. If all places contain a 1 then the
value of the byte equals 255. All zeros equal a byte value of zero;
"00000011" equals 3, and so on. This will be the basis for creating data
that represents sprites and manipulating them. As just one example, if
this byte grouping represented part of a sprite (0 is a space, 1 is a

colored area):

2t 2s 25 24 23 22 21 20

128+ 64 + 32+ 16+ 8 + 4+ 2+ 1 + = 255

Then we would POKE 255 into the appropriate memory location to
represent that part of the object.

T1PF

To save you the trouble of converting binary numbers into decimal values-we'll
need to do that a lot-the following program will do the work for you. It's a good
idea to enter and save the program for future use.

5 REM BINARY TO DECIMAL CONVERTER
10 INPUT "ENTER 8-BIT BINARY NUMBER :":A$
12 IF LEN (A$) :: 8 THEN PRINT "8 BITS PLEASE...":

GOTO 10
15 TL = 0 : C = 0
20 FOR X = 8 to 1 STEP -1 : C = C_. + 1
30 TL = TL + VAL(MID$(A$,C,1))*2f(X-1)
40 NEXT X
50 PRINT A$;" BINARY = ";TL;" DECIMAL"
60 GOTO 10

This program takes your binary number, which was entered as a string , and looks

at each character of the string, from left to right (the MID$ function). The variable C

indicates what character to work on as the program goes through the loop.

The SAL function, in line 30, returns the actual value of the character. Since we

are dealing with numeric characters, the value is the same as the character. For

example , if the first character of AS is 1 then the value would also be 1.

The final part of line 30 multiplies the value of the current character by the proper

power of 2. Since the first value is in the 2T7 place, in the example, TL would first

equal 1 times 128 or 128. If the bit is 0 then the value for that place would also be

zero.

This process is repeated for all eight characters as TL keeps track of the running
total decimal value of the binary number.

S

0

S
0

s
s

78 0
S

. 7^,CHAPTER ,.;

CREATING SOUND
• Using Sound if You're Not a Computer-

Programmer
• Structure of a Sound Program
• Sample Sound Program
• Making Music on Your Commodore 64
• Important Sound Settings
• Playing a Song on the Commodore 64
• Creating Sound Effects
• Sample Sound Effects to Try

79

USING SOUND IF YOU 'RE NOT A COMPUTER
"PROGRAMMER"

Most programmers use computer sound for two purposes: making
music and generating sound effects. Before getting into the "intricacies"
of programming sound, let's take a quick look at how a typical sound

program is structured . . . and give you a short sound program you can
experiment with.

STRUCTURE OF A SOUND PROGRAM
To begin with, there are five settings which you should know in order

to generate sound on your COMMODORE 64: VOLUME , ATTACK/ DE-
CAY, SUSTAIN / RELEASE (ADSR), WAVEFORM CONTROL and HIGH
FREQUENCY /LOW FREQUENCY . The first three settings are usually set
ONCE at the beginning of your program. The high and low frequency

settings must be set for EACH NOTE you play. The waveform control

starts and stops each note.

SAMPLE SOUND PROGRAM
Before you start you have to choose a VOICE . There are 3 voices.

Each voice requires different sound setting numbers for Waveform, etc.

You can play 1, 2 or 3 voices together but our sample uses only VOICE

NUMBER 1. Type in this program line by line . . . be sure to hit the

RETURN key after each line:

First clear sound chip. 5 FORL=54272TO54296:

POKEL,O:NEXT
1. Set VOLUME at highest setting. 10 POKE54296,15
2. Set ATTACK/DECAY rates to 20 POKE54277,190

define how fast a note rises to and

falls from its peak volume level (0

to 255).

3. Set SUSTAIN/RELEASE to define 30 POKE 54278,248 is

level to prolong note and rate to ,b
release it.

4. Find the note/tone you want to 40 POKE54273,17:POKE54272,37

play in the TABLE OF MUSICAL

NOTES in Appendix M and enter

the HIGH -FREQUENCY and LOW-

FREQUENCY values for that note

(each note requires 2 POKEs).

80

S

S

0

0

5. Start WAVEFORM with one of 50 POKE54276,17

4 standard settings (17, 33, 65

or 129);.

6. Enter a time loop to set the 60 FORT=1TO250:NEXT
DURATION of the note to be
played (a quarter note is approx.

"250" but may vary since a longer

program can affect the timing).

7. Turn off note. 70 POKE54276,16

To hear the note you just created , type the word RUN and then hit the

key. To view the program type the word LIST and hit

To change it, retype the lines you want to alter.
L

MAKING MUSIC ON YOUR COMMODORE 64

You don't have to be a musician to make music on your COMMODORE

64! All you need to know are a few simple numbers which tell your

computer how loud to set the volume, which notes to play, how long to

play them, etc. But first . . . here's a program which gives you a quick

demonstration of the COMMODORE 64's incredible music capabilities,

using only ONE of your computer's 3 separate voices.

Type the word NEW and hit to erase your previous pro-
gram , then enter this program, type the word RUN and hit the

key.

5 REM MUSICAL SCALE 4 .-Title of program.

7 FORL=54272TO54296:POKEL,O:NEXT

10 POKE 54296,15-E

20 POKE 54277,9 t
30 POKE 54276,17'

40 FORT=1TO30O : NEXI<
50 READ A'

Sets volume at highest setting (15).

Sets Attack/Decay
Sustain/Release level (each note)
Determines waveform (type of sound).

Duration (how long) each note plays.

Reads first number in line 110 DATA.

81

60 READ B F

70 IFB=-1THENEND

Reads second number in line 110 DATA.

ENDS when it READS -1 in line 900.

80 POKE 54273,A: POKE54272, B E--POKES the first number from DATA in line 110 (A= 17)

as HIGH FREQUENCY and second number (B=37)

as LOW FREQUENCY . Next time program loops

around it READS A as 19 and B as 63 , and so on,

and POKEs these numbers into the HIGH and LOW

FREQUENCY locations . The number 54273=HIGH

FREQUENCY for VOICEI and 54272= LOW FRE-

QUENCY for VOICEI.

85 POKE 54276,17 E -- Start note
90 FORT=1 TO250: NEXT: POKE54276, 16 Let it ploy then stop note

1 00
FORT=1TO50:NEXT Time for release.

100 GOT020 E Loops back to reset CONTROL and play new note.

110 DATA] 7,37,19,63,21,154,22,227 Musical note values from note value chart in Appendix

120 DATA 25,177,28,214,32,94,34,175 M. Each pair of numbers represents one note. For

example , 17 and 37 represent "C" of the 4th oc-

900 DATA-1,-1

tave, 19 and 63 represent " D" and so on.

When program reaches -1 it turns off HIGH/LOW

FREQUENCY settings and ENDS as instructed in

line 70.

O

To change the sound to a "harpsichord," change Line 85 to read

POKE54276,33 and Line 90 to read FORT= 1T0250:NEXT: POKE54276,32

and RUN the program again . (To change the line, hit the

to stop the program, type the word LIST and hit

RUN/STOP key

, then retype

the program line you want to change ; the new line will automatically

replace the old one). What we did here is change the "waveform" from

a "triangular" shaped sound wave to a "sawtooth" wave. Changing the

WAVEFORM can drastically change the sound produced by the COM-

MODORE 64 . . . but . . . waveform is only one of several settings you

can change to make different musical tones and sound effects! You can

also change the ATTACK/DECAY rate of each note . . . for example, to

change from a "harpsichord " sound to a more "banjo " sound try chang-

ing lines 20 and 30 to read:

20 POKE54277,3

Sets no sustain for banjo effect.30 POKE54278,0

82

e

S

S

As you've just seen , you can make your COMMODORE 64 sound like
different musical instruments . Let's take a closer look at how each sound
setting works

IMPORTANT SOUND SETTINGS

1 VOLUME -To turn on the volume and set it to the highest level, type:
POKE 54296,15. The volume setting ranges from 0 to 15 but you 'll use 15
most of the time. To turn "off" the volume, type:

POKE 54296,0

You only have to set the volume ONCE at the beginning of your pro-

gram, since the some setting activates all three of the Commodore 64's

VOICES. (Changing the volume during a musical note or sound effect

can produce interesting results but is beyond the scope of this introduc-

tion.)

2. ADSR and WAVEFORM CONTROL SETTING -You've already seen

how changing the waveform can change the sound effect from

"xylophone" to "harpsichord" Each VOICE has its own WAVEFORM

CONTROL SETTING which lets you define four different types of

waveforms: Triangle, Sawtooth, Pulse (Square) and Noise . The CON-

TROL also activates the COMMODORE 64's ADSR feature, but we'll

come back to this in a moment . A sample waveform start setting looks

like this:

POKE 54276,17

where the first number (54276) represents the control setting for VOICE 1

and the second number (17) represents the start for a triangular
waveform. The settings for each VOICE and WAVEFORM combination
are shown in the table below.

ADSR AND WAVEFORM CONTROL SETTINGS

CONTROL
REGISTER

Note Start/Stop Numbers
TRIANGLE SAWTOOTH PULSE NOISE

VOICE 1 54276 17/16 33/32 65/64 129/128

VOICE 2 54283 17/16 33/32 65/64 129/128

VOICE 3 54290 17/16 33/32 65/64 129/128

Although the control registers are different for each voice the

waveform settings are the same for each type of waveform . To see how

83

this works, look at Lines 85 and 90 in the musical scale program. In this

program, immediately after setting the frequency in Line 80, we set the
CONTROL SETTING for VOICE 1 in Line 85 by POKEing 54276,17. This

turned on the CONTROL for VOICE 1 and set it to a TRIANGLE
WAVEFORM (17). In Line 70 we POKE 54276,16, stopping the note. La-
ter, we changed the waveform start setting from 17 to 33 to create a

SAWTOOTH WAVEFORM and this gave the scale a "harpsichord" effect.

See how the CONTROL SETTING and WAVEFORM interact? Setting the

waveform is similar to setting the volume, except each voice has its own

setting and instead of POKEing volume levels we're defining waveforms.

Next, we'll look at another aspect of sound . . . the ADSR feature.

3. ATTACK/DECAY SETTING -As we mentioned before, the ADSR

CONTROL SETTING not only defines the waveform but it also activates

the ADSR , or ATTACK/DECAY/SUSTAIN/RELEASE feature of the COM-

MODORE 64. We'll begin by looking at the ATTACK/DECAY setting. The

following chart shows the various ATTACK and DECAY levels for each

voice. If you're not familiar with the concepts of sound attack and de-

cay, you might think of "attack" as the rate at which a note/sound arises

to its MAXIMUM VOLUME. The DECAY is the rate at which the note/

sound falls from its highest volume level back to the SUSTAIN level. The

following chart shows the ATTACK/DECAY setting for each voice, and the

numbers for each attack and decay setting. Note that YOU MUST

COMBINE ATTACK AND DECAY SETTINGS BY ADDING THEM UP AND

ENTERING THE TOTAL. For example, you can set a HIGH ATTACK rate

and a LOW DECAY rate by adding the high attack number (64) to the

low decay number (1). The total (65) will tell the computer to set the high

attack rate and low decay rate . You can also increase the attack rates

by adding them together (128 + 64 + 32 + 16 = MAX. ATTACK RATE

of 240).

ATTACK/DECAY RATE SETTINGS
ATTACK/ DECAY HIGH MEDIUM LOW LOWEST HIGH MED . LOW LOWEST

SETTING ATTACK ATTACK ATTACK ATTACK DECAY DECAY DECAY DECAY
VOICE 1 54277 128 64 32 16 8 4 2

VOICE 2 54284 128 64 32 16 8 4 2

VOICE 3 54291 128 64 32 16 8 4 2

If you set an attack rate with no decay, the decay is automatically

zero, and vice-versa. For example, if you POKE 54277,64 you set a

medium attack rate with zero decay for VOICE 1. If you POKE 54277,66

you set a medium attack rate and a low decay rate (because 66=64+2

and sets BOTH settings). You can also add up several attack values, or

several decay values. For example, you can add a low attack (32) and a

84

•

medium attack (64) for a combined attack rate of 96, then add a

medium decay of 4 and . . . presto . . . POKE 54277,100.

At this point, a sample program will better illustrate the effect. Type

the word NEW, hit HIT M-L and type in this program and RUN it:

5 FOR L=54272TO54296: POKE L , 0:NEXT(

10 PRINT"HIT ANY KEY" --

20 POKE54296,15 <

30 POKE54277,64 <

40 P0KE54273 , 17:P0KE54272,37 E

60 GETK$: IFK$=""THEN60 <-

70 POKE54276,17:FORT =1 T0200:NEXT

80 POKE54276,16:FORT =1T050:NEXT <

90 GOTO2O E

Duration the note plays.

Screen message.

Set volume at highest level.

Set Attack/Decay.

Poke one note into VOICE 1.

Check the keyboard.

Set Vhvefonn control (triangle).

Turn off settings.

Loop back and do it again.

Here, we're using VOICE 1 to create one note at a time . . . with a

MEDIUM ATTACK RATE and ZERO DECAY. The key is Line 40. POKEing the
ATTACK/ DECAY setting with the number 64 activates a MEDIUM attack
rate . The result sounds like someone bouncing a ball in an oil drum.
Now for the fun part. Hit the

type the word LIST and hit
key to stop the program, then®r

^ID . Now type this line and hit

(the new line 40 automatically replaces the old line 40):

40 POKE 54277,190

Type the word RUN and hit to see how it sounds. What we've

done here is combine several attack and decay settings. The settings

are: HIGH ATTACK (128) + LOW ATTACK (32) + LOWEST ATTACK (16)

+ HIGH DECAY (8) + MEDIUM DECAY (4) + LOW DECAY(2) = 190.

This effect sounds like a sound an oboe or other "reedy" instrument

might make. If you'd like to experiment, try changing the waveform and

attack/decay numbers in the musical scale example to see how an

"oboe" sounds. Thus . . . you can see that changing the attack/decay

rates can be used to create different types of sound effects.

4. SUSTAIN/RELEASE SETTING -Like Attack/Decay, the SUSTAIN/

RELEASE setting is activated by the ADSR/WAVEFORM Control. SUSTAIN/

RELEASE lets you "extend" (SUSTAIN) a portion of a particular sound, like

the "sustain pedal" on a piano or organ which lets you prolong a note.

Any note or sound can be sustained at any one of 16 levels. The

SUSTAIN/RELEASE Setting may be used with a FOR . . . NEXT loop to

85

determine how long the note will be held at SUSTAIN volume before

being released. The following chart shows the numbers you have to

POKE to reach different SUSTAIN/RELEASE, rates.

SUSTAIN/ RELEASE RATE SETTINGS
SUSTAIN/ RELEASE HIGH MEDIUM LOW LOWEST HIGH MED . LOW LOWEST

CONTROL SETTING SUSTAIN SUSTAIN SUSTAIN SUSTAIN RELEASE RELEASE RELEASE RELEASE

VOICE 1 54278 128 64 32 16 8 4 2

VOICE 2 54285 128 64 32 16 8 4 2

VOICE 3 54292 128 64 32 16 8 4 2

As an example, if you're using VOICEI, you can set a HIGH SUSTAIN

LEVEL by typing: POKE 54278,128 or you could combine a HIGH SUSTAIN

LEVEL with a LOW RELEASE RATE by adding 128 + 2 and then POKE

54278,130. Here's the same sample program we used in the ATTACK/

DECAY section above . . . with a SUSTAIN/RELEASE feature added.

Notice the difference in sounds.

5 FORL=54272T 054296: POKE L,0: NEXT

10 POKE54296,15

20 POKE54277,64

30 POKE54278,128 'E-

40 P0KE54273,17:P0KE54272,37 ^-

50 PRINT"HIT ANY KEY" <

60 GETK$:IFK$=" "THEN60 E

70 POKE54276,17:FORT=1T0200:NEXT

80 POKE54276,16:FORT=1TO50:NEXTf

90 GOTO60

,Duration the note plays.

Set volume at highest level.

Set Attack/Decay.

Set Sustain/ Release

POKE one note into VOICE I.

Screen message.

Check the keyboard.

Set VAoveform control (triangle).

Torn off settings.

Loop back and do it again.

In Line 30, we tell the computer to SUSTAIN the note at a HIGH SUS-

TAIN LEVEL (128 from chart above) . . . after which the tone is released

in Line 80. You can vary the duration of a note by changing the "count"

in Line 70. To see the effect of using the release function try changing

Line 30 to POKE54278,89 (SUSTAIN = 80, RELEASE = 9).
5. CHOOSING VOICES AND SETTING HIGH/LOW FREQUENCY

SOUND VALUES -Each individual note on the Commodore 64 requires

TWO SEPARATE POKE COMMANDS . . . one for HIGH FREQUENCY and

one for LOW FREQUENCY. The MUSICAL NOTE VALUE table in Appendix

M shows you the corresponding POKES you need to play any note in the

86

qc

Commodore 64's eight octave range. The HIGH and LOW FREQUENCY

POKE COMMANDS are different for each VOICE you use-this allows

you to program all 3 voices independently to create 3-voice music or

exotic sound effects.

The HIGH and LOW FREQUENCY POKE COMMANDS for each voice

are shown in the chart below, which also contains the NOTE VALUES for
the middle (fifth) octave.

VOICE NUMBER POKE SAMPLE MUSICAL NOTES -FIFTH OCTAVE

& FREQUENCY NUMBER C C# D D# E F F# G G# A A# B C C#

VOICEI/HIGH 54273 34 36 38 40 43 45 48 51 54 57 61 64 68 72

VOICEI/LOW 54272 75 85 126 200 52 198 127 97, 111 172 126 188 149 169

VOICE2/HIGH 54280 34 36 3 440 43 45 48 51 54 57 61 64 68 72
VOICE2/LOW 54279 75 85 126 200 52 198 127 97 111 172 126 188 149 169

VOICE3/HIGH 54287 34 36 38 40 43 45 48 51 54 57 61 64 68 72
VOICE3/LOW 54286 75 85 126 200 52 198 127 97 111 172 126 188 149 169

As you can see, there are 2 settings for each voice, a HIGH FRE-

QUENCY setting and a LOW FREQUENCY setting. To play a musical note,

you must POKE a value into the HIGH FREQUENCY location and POKE

another value into the LOW FREQUENCY location. Using the settings in

our VOICE/FREQUENCY/NOTE VALUE table, here's the setting that plays

a C note from the 5th octave (VOICED:

POKE 54273,34:POKE 54272,75.

The same note on VOICE2 would be:

POKE 54280,34:POKE 54279,75.

Used in a program, it looks like this:

5 FORL=54272TO54296:POKE L,O:NEXT

10 V=54296:W=54276:A=54277: Set numbers equal to letters.

S=54278:H =54273:L=54272

20 POKEV,15:POKEA,190:POKES, 89 ^- POKE .oIume , woveform , ottack/de<ay.
30 POKEH,34:POKEL,75 POKE hi/lo freq. notes

40 POKEW,33:FORT=1TO200:NEXTstart note, let it play

50 POKEW,32 (stop note

87

PLAYING A SONG ON THE COMMODORE 64

The following program can be used to compose or play a song (using

VOICEI). There are two important lessons in this program: First, note

how we abbreviate all the long control numbers in the first line of the

program ... after that, we can use the letter W for "Waveform" instead

of the number 54276.

The second lesson concerns the way we use the DATA. This program

is set up to let you enter 3 numbers for each note: the HIGH FREQUENCY

NOTE VALUE, the LOW FREQUENCY NOTE VALUE, and the DURATION

THE NOTE WILL BE PLAYED.

For this song, we used a duration "count" of 125 for an eighth note,

250 for a quarter note, 375 for a dotted quarter note, 500 for a half

note and 1000 for a whole note. These number values can be increased
or decreased to match a particular tempo, or your own musical taste.

To see how a song gets entered, look at Line 100. We entered 34

and 75 as our HIGH and LOW FREQUENCY settings to play a "C" note

(from the sample scale shown previously) and then the number 250 for a

quarter note. So the first note in our song is a quarter note C. The

second note is also a quarter note, this time the note is "E" ... and so

on to the end of our tune. You can enter almost any song this way,

adding as many DATA statement lines as you need. You can continue the

note and duration numbers from one line to the next but each line must

begin with the word DATA. DATA-1,-1,-1 should be the last line in your

program. This line "ends" the song.

Type the word NEW to erase your previous program and type in the

following program, then type RUN to hear the song.

MICHAEL ROW THE BOAT ASHORE - 1 MEASURE

2 FORL=54272TO54296 : POKEL,O:NEXT

5 V=54296:W=54276:A=54277 : HF=54273:LF=54272:5=54278:

PH =54275 : PL=54274

10 POKEY , 15:POKEA , 88:POKEPH , 15:POKEPL , 15:POKES,89

20 READH : IFH=-1THENEND

30 READL
40 READD

60 POKEHF , F:POKELF , L:POKEW,65

80 FORT=1 TOD : NEXT : POKEW,64

85 FORT = 1TO50:NEXT

88

90 GOTO10

100 DATA34 , 75,250 ,43,52 , 250,51 , 97,375 ,43,52 , 125,51,97

105 DATA250 ,57,172,250

110 DATA51 , 97,500 ,0,0,125 ,43,52 , 250,51 ,97,250,57,172

115 DATA 1000,51,97,500

120 DATA-1,-1,-1

CREATING SOUN D EFFECTS

Unlike music, sound effects are more often tied to a specific pro-

gramming "action" such as the explosion made by an astro-fighter as it

crashes through a barrier in a space game . . . or the warning buzzer in

a business program that tells the user he's about to erase his disk by

mistake.
You have a wide range of options available if you want to create

different sound effects. Here are 10 programming ideas which might

help you get started experimenting with sound effects-

1. Change the volume while a note is playing, for example to create

an "echo" effect.

2. Vary between two notes rapidly to create a sound "tremor."

3. Waveform . . . try different settings for each voice.

4. Attack/Decay . . . to alter the rate a sound rises toward its "peak"

volume and rate it diminishes from that peak.

5. Sustain/ Release . . . to change sustain to volume of a sound effect,

and rate it diminishes from that volume.
6. Multivoice effects . . . playing more than one voice at the same

time, each voice independently controlled, or one voice playing

longer or shorter than another, or serving as an "echo" or response

to a first note.

7. Changing notes on the scale, or changing octaves, using the values

in the MUSICAL NOTE VALUE table.

8. Use the Square Waveform and different Pulse Settings to create

different effects.
9. Use the Noise Waveform to generate "white noise" for accenting

tonal sound effects or creating explosions, gunshots or footsteps.

The same musical notes that create music can also be used with the

Noise Waveform to create different types of white noise.

10. Combine several HIGH/LOW frequencies in rapid succession across

different octaves.
11. Filter . . . try the extra POKE setting in Appendix M.

89

SAMPLE SOUND EFFECTS TO TRY

The following programs may be added to almost any BASIC program.

They are included to give you some programming ideas and demon-

strate the Commodore 64's sound effect range.

Notice the programming shortcut we're using in Line 10. We can

abbreviate those long cumbersome sound setting numbers by defining

them as easy -to-use letters (numeric variables). Line 10 simply means

that these easy to remember LETTERS can be used instead of those long

numbers . Here , V = Volume, W=Waveform, A=Attack/Decay, H=High

Frequency (VOICE]), and L= Low Frequency (VOICE]). We then use these

letters instead of numbers in our program . . . making our program

shorter , typing faster , and the sound settings easier to remember and

spot.

DOLL CRYING

10 V=54296:W=54276:A=54277: H=54273:L=54272

20 POKEV , 15:POKEW,65:POKEA,15
30 FORX=20OTO5STEP -2:POKE H , 40:POKE L,X:NEXT
40 FORX = 150TO5STEP-2:POKEH , 40:POKEL ,X:NEXT

50 POKEW,O

SHOOTING SOUND ... USING VOICE1 , NOISE WAVEFORM , FADING
VOLUME

V

I

S

•

10 V=54296:W=54276:A=54277:H =54273:L=54272

20 FORX= I5TOOSTEP-1:POKEV,X:POKEW,129:POKEA,

15:POKEH,40:POKEL,200:NEXT

30 POKEW,O:POKEA,0 S

S

•

0

01

90

C HAPTER 8

ADVANCED DATA
HANDLING

• READ and DATA

• AveraesJ

Subscripted Variables
One-Dimensional Arrays

Averages Revisited
• DIMENSION
• Simulated Dice Roll With Arrays
• Two-Dimensional Arrays

READ AND DATA

You've seen how to assign values to variables directly within the pro-

gram (A = 2), and how to assign different values while the program is

running-through the INPUT statement.

There are many times, though, when neither one of these ways will

quite fit the job you're trying to do, especially it it involves a lot of

information.

Try this short program:

10 READ
" • , .PR INT I NOWr

►_t GOTO 10
40 DATA 1, '4, 10. _̀ 16, 2 4. 56

.. I' N0W 1

IS NOW 10.1. 5
I NOW 16

I S NOW . 2:34. 56

OUT OF DATA ERROR IN 10
READY
I

In line 10, the computer READs one value from the DATA statement

and assigns that value to X. Each time through the loop the next value in

the DATA statement is read and that value assigned to X, and PRINTed.

A pointer in the computer itself keeps track of which value is to be used

next:

Pointer

40 DATA 1, 34, 10.5, 16, 234.56

When all the values have been used , and the computer executed the

loop again , looking for another value , the OUT OF DATA error was dis-

played because there were no more values to READ.

92

Ah

S

S

i1
L

S

S

•

S

S

0

S

S

It is important to follow the format of the DATA statement precisely:

40 DATA 1, 34, 10.5, 16 , 234.56

T T
Comma separates No Comma

each item

Data statements can contain integer numbers, real numbers (234.65),

or numbers expressed in scientific notation. But you can't READ other

variables, or have arithmetic operations in DATA lines. This would be

incorrect:

40 DATA A, 23/56, 2*5

You can, however, use a string variable in a READ statement and then

place string information in the DATA line. The following is acceptable:

NEW

10 FOR > = 1 to 3
15 READ AS
20 PRINT "A$ IS NOW As
30 NEXT
40 DATA 'THIS. IS. FUN

RUN

AS IS NOW THIS
AS IS NOW IS
AS IS NOW FUN
READY

Notice that this time, the READ statement was placed inside a FOR

. . . NEXT loop. This loop was then executed to match the number of

values in the data statement.

In many cases you will change the number of values in the DATA

statement each time the program is run. A way to avoid counting the

number of values and still avoid an OUT OF DATA ERROR is to place a

"FLAG" as the last value in the DATA line. This would be a value that

your data would never equal, such as a negative number or a very

large or small number. When that value is READ the program will

branch to the next part.

There is a way to reuse the same DATA later in the program by RE-

93

STOREing the data pointer to the beginning of the data list. Add line 50
to the previous program:

50 GOTO 10

You will still get the OUT OF DATA error because as the program

branches back to line 10 to reread the data , the data pointer indicates

all the data has been used . Now, add:

45 RESTORE

and RUN the program again . The data pointer has been RESTOREd and
the data can be READ continuously.

AVERAGES
The following program illustrates a practical use of READ and DATA,

by reading in a set of numbers and calculating their average.

1IM

5 T = o : i= T
I vi RE HD
2E^ IF = -1 THFF4 PEN lHLCf Fier' Ft-H';

CT = C-I + 1

1371 T = T + PEN UP10TE TOTAL

40 1 +

50 PRINT "THERE WERE "; CT; "'. HLI_IE:_, REHLI"
l_t PRINT "TOTAL = T

7C1 PRINT T:'t_T
80 DATA 75 , 80. 62. 91 . -. -1

RI_IN

THERE WERE 7 WiLUES_: READ
TOTAL = 56r.

AVERAGE = i3. 14 2_9

Line 5 sets CT, the CounTer , and T , Total , equal to zero. Line 10 READs

a value and assigns the value to X . Line 20 checks to see if the value is
our flag (here a - 1). If the value READ is part of the valid DATA, CT is

incremented by 1 and X is added to the total.
When the flag is READ , the program branches to line 50 which PRINTs

94

the number of values read. Line 60 PRINTs the total, and line 70 divides

the total by the number of values to get the average.

By using a flag at the end of the DATA, you can place any number of

values in DATA statements-which may stretch over several lines-

without worrying about counting the number of values entered.

Another variation of the READ statement involves assigning informa-

tion from the some DATA line to different variables. This information can

even be a mixture of string data and numeric values. You can do all this

in the following program that will READ a name, some scores-say

bowling-and print the name, scores, and the average score:

z

1G

40
50
60

READ N$,A.F:.i_
PRINT SCORE_ WERE: C
PRINT "AND THE HVERAGE IS:
PRINT: GOTO 10
DHTH P1IJ^E, 190, 1:=:5, 16-.5, 1111_-'K, c. 25: 245. 190
DATA JOHN, 155, 185, 205, PAIIL, 160.. 17''±, 18?

N I kE ' _: C^ ARE: WERE: 1 `+►_i t8'5 l p'---,5
AND THE AVERAGE I S : 1:0

DICK'S SCORES WERE : 225 245 190
AND THE AVERAGE IS : 22`0

In running the program , the DATA statements were set up in the some

order that the READ statement expected the information : a name (a
string), then three values . In other words N$ the first time through gets

the DATA "MIKE", A in the READ corresponds to 190 in the data state-
ment , " B" to 185 and "C" to 165. The process is then repeated in that

order for the remainder of the information . (Dick and his scores, John
and his scores , and Paul and his scores.)

SUBSCRIPTED VARIABLES

In the past we've used only simple BASIC variables, such as A, A$,

and NU to represent values . These were a single letter followed by a

95

letter or single digit. In any of the programs that you would write, it is

doubtful that we would have a need for more variable names than

possible with all the combinations of letters or numbers available. But
you are limited in the way variables are used with programs.

Now let's introduce the concept of subscripted variables.

A(1)

Subscript

Variable

This would be said: A sub 1 . A subscripted variable consists of a letter

followed by a subscript enclosed within parentheses. Please note the

difference between A, Al, and A(1). Each is unique. Only A(1) is a

subscripted variable.

Subscripted variables, like simple variables, name a memory location

within the computer. Think of subscripted variables as boxes to store
information, just like simple variables:

A(O)

A(1)

A(2)

A(3)

A(4)

If you wrote:

10 A(¢) = 25: A(3) = 55 : A(4) = -45.3

Then memory would look like this:

A(O)

A(1)

A(2)

A(3)

A(4)

25

55

-45.3

This group of subscripted variables is also called an array. In this

case, a one -dimensional array . Later on, we ' ll introduce multidimen-

sional arrays.
Subscripts can also be more complex to include other variables, or

computations. The following are valid subscripted variables:

A(X) A(X+ 1) A(2+1) A(1 * 3)

The expressions within the parentheses are evaluated according to the

same rules for arithmetic operations outlined in Chapter 2.

®I

96

Now that the ground rules are in place, how can subscripted vari-

ables be put to use? One way is to store a list of numbers entered with

INPUT or READ statements.

Let's use subscripted variables to do the averages a different way.

5 PRINT i HR$(147)
I0 INPUT "HOW MANY NUMBERS : " ; X
2@ FOR A = 1 TO ,
30 PRINT "ENTER VALUE # ".AA :INPUT B<'A`)
40 NE`<T
50 SIJ = @

6@ FOR A = 1 TO X
70 SU = SU + B(A)
r'@ NEXT
90 PRINT PRINT "AVERAGE _ SU/X

RUN

HOW MANY NUME:ER'=: : ` 5
ENTER VALUE # 1 ? 125
ENTER VALUE # ? 167
ENTER VALUE # .3 1F9
ENTER VALUE # 4 167
ENTER VALUE # ? 1 58

AVERAGE = 161.

There might have been an easier way to accomplish what we did in

this program, but it illustrates how subscripted variables work. Line 10

asks for how many numbers will be entered. This variable, X, acts as

the counter for the loop within which values are entered and assigned to

the subscripted variable, B.

Each time through the INPUT loop, A is increased by 1 and so the next

value entered is assigned to the next element in the array A. For exam-

ple, the first time through the loop A = I, so the first value entered

is assigned to B(1). The next time through, A = 2; the next value is

assigned to B(2), and so on until all the values have been entered.

But now a big difference comes into play. Once all the values have

been entered, they are stored in the array, ready to be put to work in a

variety of ways. Before, you kept a running total each time through the

97

e

INPUT or READ loop, but never could get back the individual pieces of

data without re-reading the information.

In lines 50 through 80, another loop has been designed to add up the
various elements of the array and then display the average. This sepa-
rate part of the program shows that all of the values are stored and can

be accessed as needed.
To prove that all of the individual values are actually stored separately

in an array , type the following immediately after running the previous

program:

FOR A = 1 TO 5 : ?B (A),: NEXT

125 167 189 167

158

The display will show your actual values as the contents of the array

are PRINTed.

DIMENSION

If you tried to enter more than 10 numbers in the previous example,

you got a DIMENSION ERROR. Arrays of up to eleven elements (sub-

scripts 0 to 10 for a one-dimensional array) may be used where needed,

just as simple variables can be used anywhere within a program. Arrays

of more than eleven elements need to be "declared " in a dimension
statement.

Add this line to the program:

5 DIM B(100)

This lets the computer know that you will have a maximum of 100

elements in the array.

The dimension statement may also be used with a variable, so the

following line could replace line 5 (don't forget to eliminate line 5):

15 DIM B(X)

This would dimension the array with the exact number of values that
will be entered.

Be careful, though. Once dimensioned, an array cannot be redimen-

sioned in another part of the program. You can, however, have multiple

arrays within the program and dimension them all on the some line, like

this:

10 DIM C (20), D(50), E(40)

S
e

98

SIMULATED DICE ROLL WITH ARRAYS

As programs become more complex , using subscripted variables will

cut down on the number of statements needed, and make the program

simpler to write.

A single subscripted variable can be used, for example, to keep track

of the number of times a particular face turns up:

1 REM DICE SIMULATION : PRINT CHR$(147)
10 INPUT "HOW MANY ROLLS:";X
20 FOR L = 1 TO X
30 R = INT (6*RND(1))+1
40 F(R) = F(R) + 1
50 NEXT L
60 PRINT "FACE", "NUMBER OF TIMES"
70 FOR C = 1 TO 6 : PRINT C, F(C): NEXT

The array F, for FACE, will be used to keep track of how many times a
particular face turns up. For example, every time a 2 is thrown, F(2) is

increased by one. By using the same element of the array to hold the

actual number on the face that is thrown, we've eliminated the need for

five other variables (one for each face) and numerous statements to

check and see what number is thrown.

Line 10 asks for how many rolls you want to simulate.

Line 20 establishes the loop to perform the random roll and increment

the proper element of the array by one each for each toss.

After all of the required tosses are completed, line 60 PRINTs the

heading and line 70 PRINTs the number of times each face shows up.

A sample run might look like this:

HOW MANY POLLS: ? 1000
FACE NUMBER OF TIMES
1 148

1 'S

17
4 1 r.r.

5 1
6 161 9

Well, at least it wasn't loaded!

Just as a comparison, the following is one way of re-writing the same

program, but without using subscripted variables. Don't bother to type it

in, but do notice the additional statements necessary.

99

10 INPUT "HOW MANY ROLLS:";X
20 FOR L = 1 TO X
30 R = INT(6*RNO (l))+1
40 I F R= 1 THEN F 1 = F 1 + 1: NEXT
41 IF R = 2 THEN F2 = F2 + 1 : NEXT
42 IF R = 3 THEN F3 = F3 + 1 : NEXT
43 IF R = 4 THEN F4 = F4 + 1 : NEXT
44 IF R = 5 THEN F5 = F5 + 1 : NEXT
45 IF R = 6 THEN F6 = F6 + 1 : NEXT
60 PRINT "FACE ", "NUMBER OF TIMES"
70 PRINT 1, F1
71 PRINT 2, F2
72 PRINT 3, F3
73 PRINT 4, F4

74 PRINT 5, F5
75 PRINT 6, F6

The program has doubled in size from 8 to 16 lines. In larger pro-

grams the space savings from using subscripted variables will be even

more dramatic.

TWO-DIMENSIONAL ARRAYS

Earlier in this chapter you experimented with one-dimensional arrays.

This type of array was visualized as a group of consecutive boxes within

memory each holding an element of the array. What would you expect

a two-dimensional array to look like?

First, a two-dimensional array would be written like this:

ARRAY NAME

and could be represented as a two-dimensional grid within memory:

0 1 2 3

L J

4 5 6

The subscripts could be thought of as representing the row and col-

umn within the table where the particular element of the array is stored.

100

A(3,4) = 255

COLUMN

0 1

ROW

2 3 4 5 6

255

If we assigned the value 255 to A(3,4), then 255 could be thought of

as being placed in the 4th column of the 3rd row within the table.

Two-dimensional arrays behave according to the same rules that were

established for one-dimensional arrays:

They must be dimensioned: DIM A(20,20)

Assignment of data: A(l,1) = 255

Assign values to other variables: AB = A(1,1)

PRINT values: PRINT A(l,l)

If two-dimensional arrays work like their smaller counterparts, what

additional capabilities will the expanded arrays handle?

Try this: can you think of a way using a two-dimensional array to

tabulate the results of a questionnaire for your club that involved four

questions and had up to three responses for each question? The prob-

lem could be represented like this:

CLUB QUESTIONNAIRE

Ql: ARE YOU IN FAVOR OF RESOLUTION #1?

q 1-YES q2-NO q3-UNDECIDED

. . . and so on.

101

mil

The array table for this problem could be represented like this:

YES

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

RESPONSES

NO UNDECIDED

The program to do the actual tabulation for the questionnaire might
look like that shown on page 103.

This program makes use of many of the programming techniques that

have been presented so far. Even if you don't have any need for the

actual program right now, see if you can follow how the program

works.

The heart of this program is a 4 by 3 two-dimensional array, A(4,3).

The total responses for each possible answer to each question are held

in the appropriate element of the array. For the sake of simplicity, we

don't use the first rows and column (A(0,0) to A(0,4)). Remember,

though, that those elements are always present in any array you design.

In practice, if question one is answered YES, then A(1,1) is in-

cremented by one-row 1 for question 1 and column 1 for a YES re-

sponse. The rest of the questions and answers follow the same pattern.

A NO response for question three would add one to element A(3,2), and

so on.

•
e

do.

102

0

20 PRINT "{CLR/H E}"
30 FOR R = 1 TO 4
40 PRINT "QUESTION # : "; R
50 PRINT " 1-YES 2-NO 3-UNDECIDED 11
60 PRINT "WHAT WAS THE RESPONSE :
61 GET C : IF C < 1 or C>3 THEN 61
65 PRINT C: PRINT
70 A(R , C) = A(R,C) + 1: REM UPDATE ELEMENT
80 NEXT R
85 PRINT
90 PRINT "00 YOU WANT TO ENTER ANOTHER": PRINT

"RESPONSE (YIN)";
i00 GET A$: IF A$ = "" THEN 100
110 IF A3 = "Y" THEN 20
120 IF A$ <> "N" THEN 100
130 PRINT "{ CLRIHOME }";"THE TOTAL RESPONSES

WERE :":PRINT
140 PRINT `SPC(18);"RESPONSE"
141 PRINT "QUESTION ","YES","NO ","UNDECIDED"
142 PRINT "--- ---- ------------°---------------
150 FOR R = I TO 4
160 PRINT R, A(R,1), A(R,2), A(R,3)
170 NEXT R
RUN

QUESTION # : 1
1-YES 2-NO 3-UNDECIDED
WHAT WAS THE RESPONSE 1 1

QUESTION # : 2
1-YES 2-NO 3-UNDECIDED
WHAT WAS THE RESPONSE 1

And so on...

THE TOTAL-RESPONSES WERE:

RESPONSE
QUESTION YES NO UNDEC InFn

1 6 1 0
2 5 2 0
3 7 0 0
4 2 4- 1

103

E

INTRODUCTION

Now that you've become more intimately involved with your Commo-

dore 64, we want you to know that our customer support does not stop

here. You may not know it, but Commodore has been in business for

over 23 years. In the 1970's we introduced the first self-contained per-

sonal computer (the PET). We have since become the leading computer

company in many countries of the world. Our ability to design and

manufacture our own computer chips allows us to bring you new and

better personal computers at prices way below what you'd expect for

this level of technical excellence.

Commodore is committed to supporting not only you, the end user,

but also the dealer you bought your computer from, magazines which

publish how-to articles showing you new applications or techniques,

and . . . importantly . . . software developers who produce programs

on cartridge, disk and tape for use with your computer. We encourage

you to establish or join a Commodore "user club" where you can learn

new techniques, exchange ideas and share discoveries. We publish two

separate magazines which contain programming tips, information on

new products and ideas for computer applications. (See Appendix N).

In North America, Commodore provides a "Commodore Information

Network" on the CompuServe Information Service . . . to access this

network, all you need is your Commodore 64 computer and our low cost

VICMODEM telephone interface cartridge (or other compatible modem).
The following APPENDICES contain charts, tables, and other informa-

tion which help you program your Commodore 64 faster and more

efficiently. They also include important information on the wide variety

of Commodore products you may be interested in, and a bibliography

listing of over 20 books and magazines which can help you develop your

programming skills and keep you current on the latest information con-

cerning your computer and peripherals.

106

i

APPENDIX A

COMMODORE 64 ACCESSORIES
AND SOFTWARE

ACCESSORIES

The Commodore 64 will support Commodore VIC 20 storage devices

and accessories-DATASSETTE recorder, disk drive, modem, printer -

so your system can expand to keep pace with changing needs.

• Datasette Recorder-This low cost tape unit enables programs and

data to be stored on cassette tape, and played back at a later

time. The datasette can also be used to play pre-written programs.

• Disk-The single disk unit uses standard 51/4-inch floppy diskettes,

about the size of a 45 RPM record, to store programs and data.

Disks allow faster access to data and hold up to 170,000 char-

acters of information each. Disk units are "intelligent," meaning

they have their own microprocessor and memory. Disks require no

resources from the Commodore 64, such as using part of main

memory.

• Modem-A low-cost communication device,the VICMODEM allows

access to other computers over ordinary telephone lines. Users will

have access to the full resources of large data bases such as The

Source, CompuServe, and Dow Jones News Retrieval Service (North

America only).

• Printer-The VIC printer produces printed copies of programs,

data, or graphics. This 30 character per second dot-matrix printer

uses plain tractor feed paper and other inexpensive supplies. The

printer attaches directly to the Commodore 64 without any addi-

tional interfaces.

• Interface Cartridges-A number of specialized cartridges will be

available for the Commodore 64 to allow various standard devices

such as modems, printers, controllers, and instruments to be at-

tached to the system.

107

With a special IEEE-488 Cartridge, the Commodore 64 will support

the full range of CBM peripherals including disk units and printers.

Additionally, a Z80 cartridge will allow you to run CP/M* on the
Commodore 64, giving you access to the largest base of
microcomputer applications available.

SOFTWARE

Several categories of software will be offered for the Commodore 64,

providing you with a wide variety of personal, entertainment, and edu-

cational applications to choose from.

BUSINESS AIDS

• An Electronic Spreadsheet package will allow you to plan budgets,

and perform "what if?" analysis. And with the optional graphic

program , meaningful graphs may be created from the spreadsheet

data.

• Financial planning , such as loan amortization , will be easily han-

dled with the Financial Planning Package.

• A number of Professional Time Management programs will help

manage appointments and work load.
• Easy-to-use Data Base programs will allow you to keep track of

information . . . mailing lists . . . phone lists . . . inventories . . .

and organize information in a useful form.

• Professional Word Processing programs will turn the Commodore 64

into a full -featured word processor . Typing and revising memos,

letters , and other text material become a breeze.

ENTERTAINMENT

• The highest quality games will be available on plug-in cartridges

for the Commodore 64, providing hours of enjoyment. These pro-

grams make use of the high resolution graphics and full sound

range possible with the Commodore 64.

• Your Commodore 64 allows you all the fun and excitement avail-

able on MAX games because these two machines have completely

compatible cartridges.

' CP/M is a registered trademark of Digital Research Inc.

108

4P

T

EDUCATION

• The Commodore 64 is a tutor that never tires and always gives

personal attention. Besides access to much of the vast PET educa-

tional programs, additional educational languages that will be

available for the Commodore 64 include PILOT, LOGO and other

key advanced packages.

109

APPENDIX B

ADVANCED CASSETTE OPERATION

Besides saving copies of your programs on tape, the Commodore 64

can also store the values of variables and other items of data, in a

group called a FILE. This allows you to store even more information than

could be held in the computer's main memory at one time.

Statements used with data files are OPEN, CLOSE, PRINT#, INPUT#,

and GET#. The system variable ST (status) is used to check for tape

markers.

In writing data to tape, the same concepts are used as when display-
ing information on the computer's screen. But instead of PRINTing in-

formation on the screen, the information is PRINTed on tape using a

variation of the PRINT command-PRINT#.

The following program illustrates how this works:

10 PRINT "WRITE-TO-TAPE-PROGRAM"
20 OPEN 1,1,1,"DATA FILE"
:30 PRINT "TYPE DATA TO BE STORED OR TYPE STOP"
50 PRINT
60 INPUT "DATA";A$
70 PRINT #1, AS
80 IF AS '>"STOP" THEN 50
90 PRINT
100 PRINT "CLOSING FILE"
110 CLOSE 1

The first thing that you must do is OPEN a file (in this case DATA FILE).

Line 10 handles that.
The program prompts for the data you want to save on tape in line

60. Line 70 writes what you typed-held in A$-onto the tape. And the

process continues.

If you type STOP, line 110 CLOSES the file.

•

0

0

0

0

0

110

To retrieve the information, rewind the tape, and try this:

10 PPIHT "READ-TAPE-PROGRAM"
20 nPEN 1.1.0."DATA FILE"
30 PRINT " FILE OPEN"
4 ► PRINT
50 INPUT#1. AS
60 PRINT AS
70 IF AS = "STOP" THEN END
80 GOTO 40

Again, the file "DATA FILE" first must be OPENed. In line 50 the pro-

gram INPUTs A$ from tape and also PRINTs A$ on the screen. Then the

whole process is repeated until "STOP" is found, which ENDs the pro-

gram.

A variation of GET-GET#-can also be used to read the data back

from tape. Replace lines 50-80 in the program above with:

50 GET#1. AS
60 IF AS = "" THEN END
70 PRINT A$. RSC(A5'
80 GOTO 50

111

APPENDIX C

COMMODORE 64 BASIC

This manual has given you an introduction to the BASIC language-

enough for you to get a feel for computer programming and some of

the vocabulary involved. This appendix gives a complete list of the rules

(SYNTAX) of Commodore 64 BASIC, along with concise descriptions.

Please experiment with these commands. Remember, you can't do any

permanent damage to the computer by just typing in programs, and the

best way to learn computing is by doing.

This appendix is divided into sections according to the different types

of operations in BASIC. These include:

1. Variables and Operators : describes the different type of variables,

legal variable names, and arithmetic and logical operators.

2. Commands : describes the commands used to work with programs,

edit, store, and erase them.

3. Statements : describes the BASIC program statements used in num-

bered lines of programs.

4. Functions : describes the string, numeric, and print functions.

VARIABLES

The Commodore 64 uses three types of variables in BASIC. These are

real numeric, integer numeric, and string (alphanumeric) variables.

Variable names may consist of a single letter, a letter followed by a

number, or two letters.

An integer variable is specified by using the percent (%) sign after the

variable name. String variables have the dollar sign ($) after their

name.

EXAMPLES

Real Variable Names : A, A5, BZ

Integer Variable Names : A%, A5%, BZ%

112

I*

®1

0

String Variable Names: A$, A5$, BZ$

Arrays are lists of variables with the same name, using extra numbers

to specify the element of the array. Arrays are defined using the DIM

statement, and may contain floating point, integer, or string variables.

The array variable name is followed by a set of parentheses () enclos-

ing the number of variables in the list.

A(7), BZ%(1 1), A$(50), PT(20,20)

NOTE: There are three variable names which are reserved for use by

the Commodore 64, and may not be defined by you. These variables

are: ST, TI, and TI$. ST is a status variable which relates to input/output

operations. The value of ST will change if there is a problem loading a

program from disk or tape.

TI and TI$ are variables which relate to the real-time clock built into

the Commodore 64. The variable TI is updated every '/both of a second.

It starts at 0 when the computer is turned on, and is reset only by chang-

ing the value of TI$.

TI$ is a string which is constantly updated by the system. The first two

characters contain the number of hours, the 3rd and 4th characters the

number of minutes, and the 5th and 6th characters are the number of

seconds. This variable can be given any numeric value, and will be

updated from that point.

Tl$ = "101530" sets the clock to 10:15 and 30 seconds AM.

This clock is erased when the computer is turned off, and starts at

zero when the system is turned back on.

OPERATORS

The arithmetic operators include the following signs:

+ Addition

- Subtraction

* Multiplication

/ Division

T Raising to a power (exponentiation)

On a line containing more than one operator, there is a set order in

which operations always occur. If several operations are used together

113

on the same line, the computer assigns priorities as follows : First, ex-

ponentiation. Next , multiplication and division, and last , addition and
subtraction.

You can change the order of operations by enclosing within pa-
rentheses the calculation to be performed first. Operations enclosed in
parentheses will take place before other operations.

There are also operations for equalities and inequalities:

= Equal To

< Less Than

> Greater Than
<= Less Than or Equal To

>= Greater Than or Equal To

<> Not Equal To

Finally, there are three logical operators:

AND

OR

NOT

These are used most often to join multiple formulas in IF . . . THEN

statements . For example:

IF A = B AND C = D THEN 100 (Requires both parts to be true)

IF A = B OR C = D THEN 100 (Allows either part to be true)

COMMANDS

CONT (Continue)

This command is used to restart the execution of a program which has

been stopped by either using the STOP key, a STOP statement, or an

END statement within the program. The program will restart at the exact

place from where it left off.

CONT will not work if you have changed or added lines to the pro-

gram (or even just moved the cursor), or if the program halted due to an

error, or if you caused an error before trying to restart the program. In

these cases you will get a CAN'T CONTINUE ERROR.

114

S
O

LIST

The LIST command allows you to look at lines of a BASIC program in

memory. You can ask for the entire program to be displayed, or only

certain line numbers.

LIST Shows entire program

LIST 10- Shows only from line 10 until end

LIST 10 Shows only line 10

LIST -10 Shows lines from beginning until 10

LIST 10-20 Shows line from 10 to 20, inclusive

LOAD

This command is used to transfer a program from tape or disk into

memory so the program can be used. If you just type LOAD and hit

RETURN, the first program found on the cassette unit will be placed in

memory. The command may be followed by a program name enclosed

within quotes. The name may then be followed by a comma and a

number or numeric variable, which acts as a device number to indicate

where the program is coming from.

If no device number is given, the Commodore 64 assumes device #l,

which is the cassette unit. The other device commonly used with the

LOAD command is the disk drive, which is device #8.

LOAD Reads in the next program on tape

LOAD "HELLO" Searches tape for program called
HELLO, and loads program, if found

LOAD A$ Looks for program whose name is in the variable A$

LOAD "HELLO",8 Looks for program called HELLO on the disk drive

LOAD "*",8 Looks for first program on disk

NEW

This command erases the entire program in memory, and also clears

out any variables that may have been used. Unless the program was
SAVEd, it is lost. BE CAREFUL WHEN YOU USE THIS COMMAND.

The NEW command can also be used as a BASIC program statement.

When the program reaches this line, the program is erased. This is use-

ful if you want to leave everything neat when the program is done.

115

RUN

This command causes execution of a program, once the program is

loaded into memory. If there is no line number following RUN, the com-

puter will start with the lowest line number. If a line number is desig-

nated, the program will start executing from the specified line.

RUN Starts program at lowest line number

RUN 100 Starts execution at line 100

RUN X UNDEFINED STATEMENT ERROR. You must

always specify an actual line number,
not a variable representation

SAVE

This command will store the program currently in memory on cassette

or disk. If you just type SAVE and RETURN, the program will be SAVEd on

cassette. The computer has no way of knowing if there is a program

already on that tape, so be careful with your tapes or you may erase a

valuable program.

If you type SAVE followed by a name in quotes or a string variable,

the computer will give the program that name, so it can be more easily

located and retrieved in the future. The name may also be followed by

a device number.

After the device number, there can be a comma and a second

number, either 0 or 1. If the second number is 1, the Commodore 64 will

put an END-OF-TAPE marker after your program. This signals the

computer not to look any further on the tape if you were to give an
additional LOAD command. If you try to LOAD a program and the com-

puter finds one of these markers, you will get a FILE NOT FOUND ER-

ROR.

SAVE Stores program to tape without name

SAVE "HELLO" Stores on tape with name HELLO

SAVE A$ Stores on tape with name in A$

SAVE "HELLO", 8 Stores on disk with name HELLO

SAVE "HELLO", l ,1 Stores on tape with name HELLO

and follows program with END-OF-

TAPE marker

W

P

116

VERIFY

This command causes the computer to check the program on disk or

tape against the one in memory. This is proof that the program is actu-

ally SAVEd, in case the tape or disk is bad, or something went wrong

during the SAVE. VERIFY without anything after the command causes the

Commodore 64 to check the next program on tape, regardless of name,

against the program in memory.

VERIFY followed by a program name, or a string variable, will search

for that program and then check. Device numbers can also be included

with the verify command.

VERIFY Checks the next program on tape

VERIFY "HELLO" Searches for HELLO, checks against memory

VERIFY "HELLO",8 Searches for HELLO on disk, then checks

STATEMENTS

CLOSE

This command completes and closes any files used by OPEN state-

ments. The number following CLOSE is the file number to be closed.

CLOSE 2 Only file #2 is closed

CLR

This command will erase any variables in memory, but leaves the

program itself intact. This command is automatically executed when a

RUN command is given.

CMD

CMD sends the output which normally would go to the screen (i.e.,

PRINT statements, LISTs, but not POKEs onto the screen) to another de-

vice instead. This could be a printer, or a data file on tape or disk. This

device or file must be OPENed first. The CMD command must be fol-

lowed by a number or numeric variable referring to the file.

117

OPEN 1,4 OPENS device #4, which is the printer

CMD 1 All normal output now goes to printer

LIST The program listing now goes to

the printer, not the screen

To send output back to the screen , CLOSE the file with CLOSE 1.

DATA

This statement is followed by a list of items to be used by READ
statements. Items may be numeric values or text strings, and items are
separated by commas. String items need not be inside quote marks
unless they contain space, colon, or comma. If two commas have noth-

ing between them, the value will be READ as a zero for a number, or an
empty string.

DATA 12, 14.5, "HELLO, MOM", 3.14, PART1

DEF FN

This command allows you to define a complex calculation as a func-

tion with a short name. In the case of a long formula that is used many

times within the program, this can save time and space.

The function name will be FN and any legal variable name (1 or 2

characters long). First you must define the function using the statement

DEF followed by the function name. Following the name is a set of pa-

rentheses enclosing a numeric variable. Then follows the actual formula

that you want to define, with the variable in the proper spot. You can

then "call" the formula, substituting any number for the variable.

10 DEF FNA(X) = 12*(34.75 - X/.3)

20 PRINT FNA(7) T

T 7 is nserted where
X is in the formula

For this example , the result would be 137.

DIM

When you use more than 11 elements of an array, you must execute a

DIM statement for the array. Keep in mind that the whole array takes up

118

I&I

0

0

room in memory, so don't create an array much larger than you'll need.

To figure the number of variables created with DIM, multiply the total

number of elements in each dimension of the array.

10 DIM A$(40), B7(15), CC%(4,4,4)

T T T
41 ELEMENTS 16 ELEMENTS 125 ELEMENTS

You can dimension more than one array in a DIM statement. How-

ever, be careful not to dimension an array more than once.

END

When a program encounters an END statement , the program halts, as

if it ran out of lines. You may use CONT to restart the program.

FOR . . . TO . . . STEP

This statement works with the NEXT statement to repeat a section of

the program a set number of times. The format is:

FOR (Var. Name)=(Start of Count) TO (End of Count) STEP(Count By)

The loop variable will be added to or subtracted from during the

program. Without any STEP specified, STEP is assumed to be 1. The start

count and end count are the limits to the value of the loop variable.

10 FOR L = 1 TO 10 STEP .1

20 PRINT L

30 NEXT L

The end of the loop value may be followed by the word STEP and

another number or variable. In this case, the value following STEP is

added each time instead of 1. This allows you to count backwards, or

by fractions.

GET

The GET statement allows you to get data from the keyboard, one

character at a time. When GET is executed, the character that is typed is

assigned to the variable. If no character is typed, then a null (empty)

character is assigned.

119

GET is followed by a variable name, usually a string variable. If a

numeric variable was used and a nonnumeric key depressed, the pro-

gram would halt with an error message. The GET statement may be

placed into a loop, checking for any empty result. This loop will continue

until a key is hit.

10 GET A$: IF A$ ="" THEN 10

GET#

The GET# statement is used with a previously OPENed device or file,

to input one character at a time from that device or file.

GET #1,A$

This would input one character from a data file.

GOSUB

This statement is similar to GOTO, except the computer remembers

which program line it lost executed before the GOSUB. When a line with

a RETURN statement is encountered, the program jumps back to the

statement immediately following the GOSUB. This is useful if there is a

routine in your program that occurs in several parts of the program.

Instead of typing the routine over and over, execute GOSUBs each time

the routine is needed.

20 GOSUB 800

GOTO OR GO TO

When a statement with the GOTO command is reached, the next line

to be executed will be the one with the line number following the word

GOTO.

IF...THEN

IF. . .THEN lets the computer analyze a situation and take two possi-

ble courses of action, depending on the outcome. If the expression is

true, the statement following THEN is executed. This may be any BASIC

statement.

If the expression is false, the program goes directly to the next line.

The expression being evaluated may be a variable or formula, in

which case it is considered true if nonzero, and false if zero. In most

cases, there is an expression involving relational operators

<=, >=, <>, AND, OR, NOT).

120

9

10 IF X > 10 THEN END

INPUT

The INPUT statement allows the program to get data from the user,

assigning that data to a variable. The program will stop, print a ques-

tion mark (?) on the screen, and wait for the user to type in the answer

and hit RETURN.
INPUT is followed by a variable name, or a list of variable names,

separated by commas. A message may be placed within quote marks,

before the list of variable names to be INPUT. If more than one variable

is to be INPUT, they must be separated by commas when typed.

10 INPUT "PLEASE ENTER YOUR FIRST NAME ";A$

20 PRINT "ENTER YOUR CODE NUMBER"; : INPUT B

INPUT#

INPUT# is similar to INPUT, but takes data from a previously OPENed

file or device.

10 INPUT#1, A

LET

LET is hardly ever used in programs, since it is optional, but the

statement is the heart of all BASIC programs. The variable name which

is to be assigned the result of a calculation is on the left side of the

equal sign, and the formula on the right.

10 LET A 5

20 LET D$ _ "HELLO"

NEXT

NEXT is always used in conjunction with the FOR statement. When the

program reaches a NEXT statement, it checks the FOR statement to see

if the limit of the loop has been reached. If the loop is not finished, the

loop variable is increased by the specified STEP value. If the loop is

finished, execution proceeds with the statement following NEXT.

121

NEXT may be followed by a variable name, or list of variable names,

separated by commas. If there are no names listed, the last loop started

is the one being completed. If variables are given, they are completed

in order from left to right.

10 FOR X = I TO 100: NEXT

ON

This command turns the GOTO and GOSUB commands into special

versions of the IF statement . ON is followed by a formula , which is

evaluated . If the result of the calculation is one, the first line on the list is

executed ; if the result is 2, the second line is executed , and so on. If the

result is 0, negative , or larger than the list of numbers, the next line
executed will be the statement following the ON statement.

10 INPUT X

20 ON X GOTO 10,20,30,40,50

OPEN

The OPEN statement allows the Commodore 64 to access devices such

as the cassette recorder and disk for data, a printer, or even the screen.

OPEN is followed by a number (0-255), to which all following statements

will refer. There is usually a second number after the first, which is the

device number.

The device numbers are:

0 Screen

1 Cassette

4 Printer

8 Disk

Following the device number may be a third number, separated

again by a comma, which is the secondary address. In the case of the

cassette, this is 0 for read, 1 for write, and 2 for write with end-of-tape

marker.

In the case of the disk, the number refers to the buffer, or channel,

number. In the printer, the secondary address controls features like ex-

panded printing. See the Commodore 64 Programmer's Reference Man-

ual for more details.

122

10 OPEN 1,0 OPENs the SCREEN as a device

20 OPEN 2,1,0,"D" OPENs the cassette for reading,

file to be searched for is D

30 OPEN 3,4 OPENs the printer

40 OPEN 4,8,15 OPENs the data channel on the disk

Also see : CLOSE, CMD, GET#, INPUT #, and PRINT#, system variable

ST, and Appendix B.

POKE

POKE is always followed by two numbers, or formulas. The first loca-

tion is a memory location; the second number is a decimal value from 0

to 255, which will be placed in the memory location, replacing any pre-

viously stored value.

10 POKE 53281,0

20 S=4096* 13

30 POKE S+29,8

PRINT

The PRINT statement is the first one most people learn to use, but

there are a number of variations to be aware of. PRINT can be followed

by:

Text String with quotes

Variable names

Functions

Punctuation marks

Punctuation marks are used to help format the data on the screen.

The comma divides the screen into four columns, while the semicolon

suppresses all spacing. Either mark can be the last symbol on a line.

This results in the next thing PRINTed acting as if it were a continuation

of the some PRINT statement.

10 PRINT "HELLO"

20 PRINT "HELLO",A$
30 PRINT A+B

123

40 PRINT J;
60 PRINT A,B,C,D

Also see: POS, SPC and TAB functions

PRINT#

There are a few differences between this statement and PRINT.
PRINT# is followed by a number, which refers to the device or data file
previously OPENed. This number is followed by a comma and a list to be

printed. The comma and semicolon have the same effect as they do in

PRINT. Please note that some devices may not work with TAB and SPC.

100 PRINT#1,"DATA VALUES"; A%, Bl, C$

READ

READ is used to assign information from DATA statements to vari-

ables, so the information may be put to use . Care must be taken to
avoid READing strings where READ is expecting a number , which will

give a TYPE MISMATCH ERROR.

REM (Remark)

REMark is a note to whomever is reading a LIST of the program. It

may explain a section of the program, or give additional instructions.

REM statements in no way affect the operation of the program, except

to add to its length. REM may be followed by any text.

RESTORE

When executed in a program, the pointer to which an item in a DATA

statement will be READ next is reset to the first item in the list. This gives

you the ability to re-READ the information. RESTORE stands by itself on a

line.

RETURN

This statement is always used in conjunction with GOSUB. When the

program encounters a RETURN, it will go to the statement immediately

following the GOSUB command. If no GOSUB was previously issued, a

RETURN WITHOUT GOSUB ERROR will occur.

124

STOP

This statement will halt program execution. The message, BREAK IN

xxx will be displayed, where xxx is the line number containing STOP. The

program may be restarted by using the CONT command. STOP is nor-

mally used in debugging a program.

SYS

SYS is followed by a decimal number or numeric value in the range

0-65535. The program will then begin executing the machine language

program starting at that memory location. This is similar to the USR

function, but does not allow parameter passing.

WAIT

WAIT is used to halt the program until the contents of a memory loca-

tion changes in a specific way. WAIT is followed by a memory location

(X) and up to two variables . The format is:

WAIT X,Y,Z

The contents of the memory location are first exclusive-ORed with the

third number, if present, and then logically ANDed with the second
number. If the result is zero, the program goes back to that memory

location and checks again. When the result is nonzero, the program

continues with the next statement.

NUMERIC FUNCTIONS

ABS(X) (absolute value)

ABS returns the absolute value of the number, without its sign (+ or

-). The answer is always positive.

ATN(X) (arctangent)

Returns the angle, measured in radians, whose tangent is X.

125

O
O

COS(X) (cosine)

Returns the value of the cosine of X, where X is an angle measured in

radians.

EXP(X) 0

Returns the value of the mathematical constant e(2.71827183) raised
0

to the power of X.

FNxx(X)

Returns the value of the user-defined function xx created in a DEF

FNxx(X) statement.

0

A

way

INT(X) 0
Returns the truncated value of X, that is, with all the decimal places

to the right of the decimal point removed. The result will always be less

than, or equal to, X. Thus, any negative numbers with decimal places

will become the integer less than their current value.

LOG(X) (logarithm)

Will return the natural log of X. The natural log to the base e (see

EXP(X)). To convert to log base 10, simply divide by LOG(10).

PEEK(X)

Used to find out contents of memory location X, in the range 0-65535,

giving a result from 0-255. PEEK is often used in conjunction with the

POKE statement.

RND(X) (random number)

RND(X) returns a random number in the range 0-1. The first random

number should be generated by the formula RND(-TI) to start things off

differently every time. After this, X should be a 1 or any positive

number. If X is zero, the result will be the same random number as the

last one.

126

ft

0

A negative value for X will reseed the generator. The use of the same

negative number for X will result in the same sequence of "random"

numbers.

The formula for generating a number between X and Y is:

N = RND(1)*(Y-X)+X

where,

Y is the upper limit

X is the lower range of numbers desired.

SGN(X) (sign)

This function returns the sign (positive, negative, or zero) of X. The

result will be + 1 if positive, 0 if zero, and -I if negative.

SIN(X) (sine)

SIN(X) is the trigonometric sine function. The result will be the sine of

X, where X is an angle in radians.

SQR(X) (square root)

This function will return the square root of X, where X is a positive

number or 0. If X is negative , an ILLEGAL QUANTITY ERROR results.

TAN(X) (tangent)

The result will be the tangent of X, where X is an angle in radians.

USR(X)

When this function is used, the program jumps to a machine language

program whose starting point is contained in memory locations. The pa-

rameter X is passed to the machine language program, which will re-

turn another value back to the BASIC program. Refer to the Commodore

64 Programmer's Reference Manual for more details on this function

and machine language programming.

127

STRING FUNCTIONS

ASC(X$)

This function will return the ASCII code of the first character of X$.
0

CHR$(X) 0

This is the opposite of ASC, and returns a string character whose

ASCII code is X.

0

LEFT$(X$,X)
0

Returns a string containing the leftmost X characters of $X.

LEN(X$)

Returned will be the number of characters (including spaces and

other symbols) in the string X$.

MID$(X$,S,X)

This will return a string containing X characters starting from the Sth

character in X$.

RIGHT$(X$,X)

Returns the rightmost X characters in X$.

STR$(X)

This will return a string which is identical to the PRINTed version of X.

VAL(X$)

This function converts X$ into a number, and is essentially the inverse

operation from STR$. The string is examined from the leftmost character

to the right, for as many characters as are in recognizable number for-

mat.

O
0
O

da

128

10 X = VAL(" 123.456") X = 123.456

10 X = VAL("12A13B") X = 12

10 X = VAL(" RIUO17") X = 0
10 X = VAL ("-1.23.45.67") X = -1.23

OTHER FUNCTIONS

FRE(X)

This function returns the number of unused bytes available in memory,

regardless of the value of X. Note that FRE(X) will read out n negative

numbers if the number of unused bytes is over 32K.

POS(X)

This function returns the number of the column (0-39) at which the

next PRINT statement will begin on the screen. X may have any value

and is not used.

SPC(X)

This is used in a PRINT statement to skip X spaces forward.

TAB(X)

TAB is also used in a PRINT statement; the next item to be PRINTed will

be in column X.

129

APPENDIX D

ABBREVIATIONS FOR
BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commo-

dore 64 BASIC allows the user to abbreviate most keywords. The ab-

breviation for PRINT is a question mark. The abbreviations for other

words are made by typing the first one or two letters of the word, fol-

lowed by the SHIFTed next letter of the word. If the abbreviations are
used in a program line, the keyword will LIST in the full form.

Looks like
Corn- Abbrevi- this on
mand ation screen

ABS A B

AND A N

Looks like
Corn- Abbrevi- this on
nand ation screen

END E®N

EXP E ®X E

FN NONE FN

Al

AZ
ASC A S A

ATN A T A

CHR$ C H C

CLOSE CL ® 0

CLR C ® L

CMD C MM

CONT C =0

COS NONE

IV

11

l__!1

FOR F =0

E Z

F fl

QFRE F R F

GET GE G ff^
GET# NONE GET#

CL[7]

CD
C N

C

GOSUB GO ®S GO

GOTO G ® 0

V
G

IF NONE IF

INPUT NONE INPUT

INPUT# I ® N I 2

cos

DATA D A D

DEF D E D

DIM D =I D

A

ff

N

130

INT NONE INT

Looks like

Com- Abbrevi- this on
mand ation screen

LEFT$ LE ® F

LEN NONE

LET L ® E

LIST L ® I L

LOAD L ® 0

LOG NONE

MID$ MM I M

NEW NONE

NEXT N ® E N

NOT N= O

ON NONE

OPEN O® P

OR NONE OR

PEEK P ® E P

POKE P ® 0

POS NONE

PRINT ?

PRINT# P ® R P

READ R ® E

REM NONE

RESTORE RE S

RETURN RE T

Looks like
Com- Abbrevi- this on
mend ation screen

LE

LEN

RIGHT$ R m I R

RND R M N R

RUN R M U R

5I
z

L nj

L

LOG

NEW

N F7

ON

O EI

f^l

SAVE S M A S

SGN S M G S

SIN S m I S

SSPC(S ® P

SQR S m Q

lz^
ltl
F]

71
S ®

STATUS ST ST

STEP ST E ST

STOP S T S

STR$ ST R ST

SYS S Y S

TAB(T A T

TAN NONE

THEN T ® H T

TIME TI TI

P fl

POS

?

IV

RE Q

TIME$ TI$

tj

11

TAN

TI$

USR U S U

VAL V A V

VERIFY V E V

WAIT W A W

131

rn

a

APPENDIX E

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the Commodore

64 character sets. It shows which numbers should be POKEd into screen

memory (locations 1024-2023) to get a desired character. Also shown is

which character corresponds to a number PEEKed from the screen.
Two character sets are available, but only one set at a time. This

means that you cannot have characters from one set on the screen at

the same time you have characters from the other set displayed. The

sets are switched by holding down the ® and ® keys simul-

taneously.

From BASIC, POKE 53272,21 will switch to upper case mode and

POKE 53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE. The

reverse character code may be obtained by adding 128 to the values
shown.

If you want to display a solid circle at location 1504, POKE the code

for the circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to control the color of each

character displayed on the screen (locations 55296-56295). To change

the color of the circle to yellow (color code 7) you would POKE the corre-

sponding memory location (55776) with the character color: POKE

55776,7.

Refer to Appendix G for the complete screen and color memory

maps, along with color codes.

SCREEN CODES
SET 1 SET 2 POKE SET 1 SET 2 POKE SET 1 SET 2 POKE

C C 3 F f 6

A a 1 D d 4 G g 7

B b 2 E e 5 H h 8

132 •

0

SET 1 SET 2 POKE I SET 1 SET 2 POKE I SET 1 SET 2 POKE

I i 9 37 A 65

J j 10 38 If] B 66

K k 11 39 8 C 67

L 1 12 40 D 68

M m 13 41 E 69

N n 14 42 2 F 70

0 0 15 43 G 71

P p 16 44 11 H 72

Q q 17 45 RI I 73

R r 18 46 A.I J 74

S s 19 47 K 75

T t 20 0 48 L 76

U u 21 1 49 N M 77

V v 22 2 50 z N 78

W w 23 3 51 0 79

X x 24 4 52 P 80

Y y 25 5 53 Q 81

Z z 26 6 54 2 R 82

27 7 55 S 83

£ 28 8 56 11 T 84

] 29 9 57 I^d U 85

T 30 58 V 86

31 59 W 87

SPACE 32 60 LTJ X 88

33 61 LU Y 89

34 62 Ffl Z 90

35 63 91

$ 36 H 64 92

133

SET 1 SET 2 POKE

m
IT 9

N

SPACE

104

SET 1 SET 2 POKE

q ® 105

106

® 107

108

109

Fil 110

® 111

112

113

114

® 115

116

SET 1 SET 2 POKE

PF]

117

118

119

120

121

122

123

124

125

126

127

Codes from 128-255 are reversed images of codes 0-127.

134

O

APPENDIX F

ASCII AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT
CHR$(X), for all possible values of X. It will also show the values ob-

tained by typing PRINT ASC("x"), where x is any character you can type.

This is useful in evaluating the character received in a GET statement,

converting upper/lower case, and printing character based commands

(like switch to upper/lower case) that could not be enclosed in quotes.

PRINTS CHRS PRINTS CHR$ PRINTS CHR$ PRINTS CHR$

0 a 17 34 3 51

1 18 # 35 4 52

2 19 $ 36 5 53

3 20 % 37 6 54

4 21 & 38 7 55

® 5 22 39 8 56

6 23 (40 9 57

7 24) 41 58

DISABLES®®8 25 * 42 59

ENABLES ®®9 26 + 43 C 60

10 27 44 = 61

11 An 28 - 45 62

12
a

29 46 ? 63

13 AM 30 / 47 @ 64

14 31 0 48 A 65

15 32 1 49 B 66

16 33 2 50 C 67

135

PRINTS CHR$ PRINTS CHRS PRINTS CHRS PRINTS CHR$

D 68 97 126 155

E 69 m 98 0 127 in 156

F 70 8 99 128 N 157

G 71 8 100 129 AM 158

H 72 r7l 101 130 159

I 73 102 131 160

J 74 I 103 132 E 161

K 75 I 104 f1 133 162

L 76 n 105 f3 134 E 163

M 77 106 f5 135 164

N 78 107 f7 136 q 165

0 79 108 f2 137 166

P 80 N 109 f4 138 q 167

Q 81 z 110 f6 139 168

140 q 169R 82 111 f8

S 83 71 112 M=141 q 170

T 84 113 142 ® 171

U 85 114 143 q 172

V 86 v 115 144 173

W 87 116 145 174

X 88 117 146 q 175

Y 89 118 IN 147 176

Z 90 0 119 148 177

[91 120 149 178

£ 92 11 121 150 179

] 93 122 151 q 180

T 94 123 152 q 181

95 124 153 q 182

H 96 m 125 If 154 q 183

136

PRINTS CHR$ PRINTS CHRS PRINTS CHRS PRINTS CHRS

17 184

185

Lj 186

187

188

189

190

191

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

137

APPENDIX G

SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing char-

acters on the screen, and the locations used to change individual char-

acter colors, as well as showing character color codes.

SCREEN MEMORY MAP

0

1024-
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
1704
1744
1784
1824
1864
1904
1944
1984

10

1

COLUMN
20 30 39

1063

i
0

20

j 24

f
2023

•

138

The actual values to POKE into a color memory location to change a

character's color are:

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 1 0 Light RED

3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN

6 BLUE 14 Light BLUE

7 YELLOW 15 GRAY 3

For example, to change the color of a character located at the upper

left-hand corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

0 10
COLUMN

20 30 39

55335

55296
55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

-- --------- - ---
- - - - - - - - - - - - -

-- --------- -
f

56295

139

20

24

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to Commodore 64 BASIC may be calcu-

lated as follows:

FUNCTION BASIC EQUIVALENT

SECANT SEC(X)=1/COS(X)
COSECANT CSC(X)= 1/SIN(X)
COTANGENT COT(X)=1/TAN(X)
INVERSE SINE ARCS[N(X)=ATN(X/SQR(-X*X+1))

INVERSE COSINE ARCCOS(X)=-ATN(X/SQR

(-X*X +1)) +7r/2

INVERSE SECANT ARCSEC(X)=ATN(X/SQR(X*X-1))
INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X*X-1))

+(SGN(X)-1 *7r/2

INVERSE COTANGENT ARCOT(X)=ATN(X)+7r/2
HYPERBOLIC SINE SINH(X)=(EXP(X)-EXP(-X))/2
HYPERBOLIC COSINE COSH(X)=(EXP(X)+EXP(-X))/2
HYPERBOLIC TANGENT TANH(X)=EXP(-X)/(EXP(x)+EXP

(-X))*2+ 1

HYPERBOLIC SECANT SECH(X)=2/(EXP(X)+EXP(-X))

HYPERBOLIC COSECANT CSCH(X)=2/(EXP(X)-EXP(-X))
HYPERBOLIC COTANGENT COTH(X)=EXP(-X)/(EXP(X)

-EXP(-X))*2+ 1
INVERSE HYPERBOLIC SINE ARCSINH(X)=LOG(X+SQR(X*X+1))

INVERSE HYPERBOLIC COSINE ARCCOSH(X)=LOG(X+SQR(X*X-1))
INVERSE HYPERBOLIC TANGENT ARCTANH(X)=LOG((1+X)/(1-X))/2
INVERSE HYPERBOLIC SECANT ARCSECH(X)=LOG((SQR

(-X*X+1)+1/X)
INVERSE HYPERBOLIC COSECANT ARCCSCH(X)=LOG((SGN(X)*SQR

(X*X+ 1/x)
INVERSE HYPERBOLIC COTAN- ARCCOTH(X)=LOG((X+1)/(x-1))/2
GENT

• I

140

APPENDIX I

PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be
made to the Commodore 64.

1) Game I/O 4) Serial I/O (Disk/ Printer)

2) Cartridge Slot 5) Modulator Output

3) Audio/Video 6) Cassette

7) User Port

Control Port 1
Note

U 1 2 3 4 5
O O O O O

O O O O
6 7 8 9

Pin

1

2

3

4

5

6

7

8

9

Type

JOYAO

JOYA1

JOYA2

JOYA3

POT AY

BUTTON A/LP

+5V

GND

POT AX

Control Port 2
Pin

1

2

3

4

5

6

7

8

9

Type

JOYBO

JOYBI

JOYB2

JOYB3

POT BY

BUTTON B

+5V

GND

POT BX

MAX.

Note

MAX.

141

Cartridge Expansion Slot

Pin Type

12 BA

13 DMA

14 D7

15 D6

16 D5

17 D4

18 D3

19 D2

20 Dl

21 DO

22 GND

Pin Type

N A9

P A8

R A7

S A6

T AS

U A4

V A3

W A2

X Al

Y AO

Z GND

2221 201918 1716151413121110 9 8 7 6 5 4 3 2 1

= ----ate

Z V X W V U T S R P N M L K J H F E D C B A

Audio/Video

Pin Type Note
1 LUMINANCE

2 GND

3 AUDIO OUT
4 VIDEO OUT

5 AUDIO IN

Serial I/O
Pin Type

2
SERIAL SRQIN

GND

3 SERIAL ATN IN/OUT

4 SERIAL CLK IN/OUT

5 SERIAL DATA IN/OUT

RESET

Pin Type

1 GND

2 +5V

3 +5V

4 IRQ

5 R/W

6 Dot Clock

7 1/0 1

8 GAME

9 EXROM

10 1/02

11 ROML

Pin Type

GND

ROMH

RESET

NMI

S 02

A15

A14

A13

A12

All

A10

142

Cassette

Pin Type
A-1 GND
B-2 +5V

C-3 CASSETTE MOTOR
D-4 CASSETTE READ

E-5 CASSETTE WRITE

F-6 CASSETTE SENSE

User I/O

Pin Type Note
1 GND

2 +5V MAX. 100 mA

3 RESET

4 CNT1

5 SP1

6 CNT2
7 SP2

8 PC2

9 SER. ATN IN

10 9 VAC MAX. 100 mA

11 9 VAC MAX. 100 mA

12 GND

Pin Type Note
A GND

B FLAG2

C PBO

D PBl

E PB2

F PB3

H PB4

J PB5

K PB6

L PB7

M PA2

N GND

1 2 3 4 5 6 7 8 9 10 11 12

A B C D E F H J K L M N

1 2 3 4 5 6

A B C D E F

143

I

APPENDIX J

PROGRAMS TO TRY

We've included a number of useful programs for you to try with your

Commodore 64. These programs will prove both entertaining and

useful.

e

0
E

144

100 print"Ojotto jim butterfield"
120 input"Owant instructions";z$:ifasc(zf)=78goto250
130 print"Otry to guess the mystery 5-letter word"
140 print"Oyou must guess only legal 5-letter"
150 print"words, too...
160 print"you will be told the number of matches"
170 print"(or 'jots') of your guess."
180 print"Ohint: the trick is to vary slightly"
190 print " from one guess to the next; so that"
200 print" if you guess 'batch' and get 2 jots"
210 print" you might try 'botch' or 'chart"'
220 print" for the next guess..."
250 data bxbsf,ipccz,dbdif,esfbe,pggbm
260 data hpshf,ibudi,d,jwjm,kprnmz,lbzbl
270 data sbkbi,mfwfm,njnjd,boofy,gjgfs
280 data rvftu,s.jwfs,gsftt,puufs,fwfou
290 data xfbwf,fyupm,nvtiz,afcsb,gjaaz
300 data ui,jdl.esvol,gmppe,ujhfs,gblfs
310 data cppui,mzjoh,trvbu,hbvaf,pxjoh
320 data uisff,tjhiu.bymft,hsvnq,bsfob
330 data rvbsu,dsffq,cfmdi,gsftt,tgbsl
340 data sbebs , svsbm,tnfmm , gsp>:o,es,jgu
400 n=50
410 dim n$(n),z(5),y(5)
420 for j=lton:readnf(j):nextj
430 t=ti
440 t=t/1000:ift=lthengoto440
450 z=rnd(-t)
500 g=0:n$=nS (rnd(1)*n+1)
510 print "Oi have a five letter word:":ifr;>0goto560
520 print "guess (with legal words)"
530 print "and i'll tell you how many"
540 print "'jots', or matching letters,"
550 print "you have...
560 g=g+l:input "your word";z$
570 if len(z$)<%5thenprint "you must guess a

5-letter word!":goto560
580 v=O:h=O:rn=O
590 forj=lto5
600 z=asc(midf(z$,j,1)):y=asc (midf(n$,j,1))-1:ify=64theny=90
610 ifz<65orz-90thenprint"that's not a word!":goto560
620 ifz=65orz=69orz=73orz=79orz=85orz=89thenv=v+1
630 ifz=ythenm=m+1
640 z(j)=z:y(j)=y:nextj
650 ifm=5goto800
660 ifv=0orv=5thenprint"come on-what kind of

a word is that?":goto560
670 for j=1to5:y=y(j)
680 for k=1to5:ify=z(k)thenh=h+l:z(k)=0:goto700
690 next k
700 next j
710 print" ODDDDDDDODDDDDDDDDDD ";H;"JOTS"
720 ifg<:30goto560
730 print"i'd_better tell you.. word was
740 for,j=lto5:printchr$(y(,j));:nextj
750 print"'':goto810
800 print"you got it in only";g;"guesses."
810 input"Oenother word";zf
820 r=1:ifasc(z$)< 78gotoSOO

145

1 rein seouence
2 rein
3 rent' e** from pet user group
4 rem *** software exchange
5 rem ***. po box 371
6 rem e*m montgomeryville , pa 18936

7 rem
50 dim a$(26)
100 z$="at,cdefohijklmnopgrstuvwxuz"
110 z1$="12345678901234567890123456"
200 print" enter length of string to be sequence,10"
220 input "m8x i inum lengthy is 26 "; s%
230 if s%,:1 or s7.:26 then 200
240 s=s7
300 for i=1 to s

310 a$(i)=mid$(z$,i,l
320 next i

400 rem randomize strin0
420 for i=1 to s
430 k=int(rnd(1)*s+1)
440 t$=a$(i)
450 a$(i)=a$(k)
460 a$(k)=t$
470 next i
480 oosub 950
595 t=0
600 rem reverse substrino
605 t=t+1
610 input. "how many to reverse ";rX

620 if rZ=0 goto 900

630 if rY-O and rZ(::=s ooto 650
640 print "must be between 1 and ";s: goto 610
650 r=int(rX/2)
660 for i=1 to r
670 t$=a$(i)
680 a$(i)=a$(r%-i+1)
690 a$(r%-i+1)=t.$
700 next i
750 oosub 950
800 c=1: for i=2 to s
810 if a$(i):>a$(i-1) goto 830

820 c=0

830 next i
840 if c=0 aoto 600
850 print "puou did it in :t;" tries"

900 rem check for another game

910 input "Owant to play again ";y$
920 if left$(ya$,1)="u" or u$="ok" or 1a$="1" aoto 200

930 end

950 print
960 print left$(z1$,s)
970 for i=1 to s: print a$(i);:ne>:t i

980 print "0"

990 return

This program courtesy of Gene Deals

a

146

90 REM F,lANA KEYBOARD
10:1 FRINT" a 01 NI I hJ I'ii i?!I I PB uJl I i!N IAN "
110 PRINT" ,J M @J I iJ IN FAN i IJ I+J 1 M Of
120 PRIIIT" ;N L'JI IN 1 111 1111 Jl I IN Fl 1 I! '.
1 _:Ci PRINT" ;N I I I I I I I I I 11 1
140 PRINT" :}! I l • 1 I E I I T I Y 1 1 1 I I I O I I ' - I@ 1'+ l t
150 FRINT",N' ,PR:=E' FOR SOLO CIR POLYPHONIC"

150 PRINT"J'F1.F:-:.FS 177' OCTR'•:'E ' ELECTICIN"
F'F'It1T" 'F2 .F4.F15.F3' IJR'•r'EFORM)"170

1:?C1 FRINT"HRNO OH, _;ETTINU_ UP FR'ECIUEIICY THE:LE... "

1911 S=1 :2:41395+1C-124:D IMF-:2G - :DIM}. 255)

511 FORI=0TO2!3:FI 1 E'-;+ 1 C+:NE T
210 F1='3413 :FOR I=1TCr2E:F:.-'-I?=F1+=. 3+313:F1=F1:2 :1r''12:NE::T
.2 --,'C' K2bJ::!ER5T5'.''UI9nf1F'I=+--+IT"
:2 10 FORI=1TOLEII 81:- R'=.C 1-11D#-F:tI =I:NE:T

240 FIR IHT"^

250 RT=O:DE=O; _:CI=15:F:E=9U+16+RE:R'-r=RT+15+DE
tJ'v'=15 : bi=13 :11=1 : OC=•-1 :H E! =.. 55

250 FORE=C+TO2:F'OF::E'=;+.F,+I+'.AT+1 +DE:POF:E=:+.+I47._LI l ,.,-FE
2713 PORE'=•+ +I+ 4Cn:0 IEi235:Ff'LE + +I+ .4^:u_u_i:'254:HE:;T
2 o3 Pf'KE'=+24.15:REM+15+ :4:FIJKE5= 23.
301+ -;ETR:t:IFR^=""THEtl:a_u:i
310 FR=F.K:A51_. H_t;: i,D1:T='•:'+7:CF:=:=+T+4:IFFR=7THEH50_+

2c_+ P'F::E'-:+e•+T.--:REli FIHIOH DEC,•5LIS
5 FCIFE'S-,- +T. :REM FIl•II'=H RTT,'REL

3^=^ F'OK:ECF, ::F'iik:ECF..0:FEti FI„ CUFF
330 FOF:ES+T,FE-HE::+INT::FR:'HC :FEM SET LO
2,5:1 Pl-jlt+.ES+I+T,FF-.'.'HE:.F,Er-I '--;ET HI

5.0 POKE:+e.+T,S',':F:EP1 SET DEC.''3!I3
=:65 Pi Ik:E'=+S+T..R'•J :F:EM '=:ET RTT.'F:EL
270 POF:ECP.1J•.'+1 :Fi'RI=ITC 150+RT :HE:;T
:75 POF::E':.P 14;':FEti F'iILSE
.:-'.Cl IFP=ITHEFI'v' r1:IF':'=::THEN'•?=0

411_1 00TCi3517i
51313 IFA+T="fi"THEIIM=1:Cu_=4:131ITC -_:00

510 iFR3="!!"THENM=2

520 IFR3="111"THENM=4:OC=2 of CITOS:1113
5311 IFR$="111"THEHt•1 :cif =1 :OflTl:13f1_1
540 IFRB="`11" THENN=Ci l1'=1 e• :GOTC ra:+0
5513 IFR:t="i THENN=1 :Ii'•r'=_r2:i 11TC1-:iu=1
5551 IFR3="U"THEIIH=2e.•4 : 1 C , 0 C'
5'0 IFR£=" IITHEHL4= 138 :OCT:I;0cl

5013 IFFI =" "THEHF'=I-P:GiiT1iOI:10
590 IFR3 =" O"THE_N20C1

: 5113 PF'IHT"HIT R F:EY"
_:li=+ i3ETH<t:.CFHSE=""THI=11:=1! :b.IRIT FOP I=i FEY

='•20 F'P I HTRB :RETURN

NOTES:
Line 100 uses (SHIFT CLRIHOME),
(CTRL 9),(CTRL]),(SHIFT B).
Line 150 uses (CRSR DOWN)
Line 240 uses (CRSR UP)
Line 500 uses (f1)
Line 510 uses (f3)
Line 520 uses (f5)

Line 530 uses (f7)
Line 540 uses (f2)
Line 550 uses (f4)
Line 560 uses (f6)
Line 570 uses (f8)
Line 590 uses (SHIFT CLRIHOME)

147

APPENDIX K

w

CONVERTING STANDARD
BASIC PROGRAMS TO
COMMODORE 64 BASIC

If you have programs written in a BASIC other than Commodore

BASIC, some minor adjustments may be necessary before running them
on the Commodore-64. We've included some hints to make the conver-
sion easier.

String Dimensions

Delete all statements that are used to declare the length of strings. A

statement such as DIM A$(I,J), which dimensions a string array for J

elements of length I, should be converted to the Commodore BASIC
statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation.

Each of these must be changed to a plus sign, which is the Commodore

BASIC operator for string concatenation.

In Commodore-64 BASIC, the MID$, RIGHT$, and LEFT$ functions are

used to take substrings of strings. Forms such as A$(I) to access the Ith

character in A$, or A$(I,J) to take a substring of A$ from position I to J,

must be changed as follows:

Other BASIC Commodore 64 BASIC
A$(I) = X$ A$ = LEFT$(A$,I-1)+X$+MID$(A$,I+1)

A$(I,J) = X$ A$ = LEFT$(A$,I-1)+X$+MID$(A$,J+1)

Multiple Assignments
To set B and C equal to zero, some BASICs allow statements of the

form:

10 LET B=C=O

1 48

Commodore 64 BASIC would interpret the second equal sign as a

logical operator and set B = -1 if C = 0. Instead, convert this state-

ment to:

10 C=0 : B=O

Multiple Statements
Some BASICs use a backslash (\) to separate multiple statements on

a line. With Commodore 64 BASIC, separate all statements by a colon

(:)•
MAT Functions

Programs using the MAT functions available on some BASICs must be

rewritten using FOR. . . NEXT loops to execute properly.

149

APPENDIX L

ERROR MESSAGES

This appendix contains a complete list of the error messages gener-

ated by the Commodore-64, with a description of causes.

BAD DATA String data was received from an open file, but the pro-
gram was expecting numeric data.
BAD SUBSCRIPT The program was trying to reference an element of

an array whose number is outside of the range specified in the DIM

statement.

CAN'T CONTINUE The CONT command will not work, either because

the program was never RUN, there has been an error, or a line has

been edited.

DEVICE NOT PRESENT The required I/O device was not available for

an OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.

DIVISION BY ZERO Division by zero is a mathematical oddity and not

allowed.

EXTRA IGNORED Too many items of data were typed in response to

an INPUT statement. Only the first few items were accepted.

FILE NOT FOUND If you were looking for a file on tape, and END-OF-

TAPE marker was found. If you were looking on disk, no file with that

name exists.

FILE NOT OPEN The file specified in a CLOSE, CMD, PRINT#, INPUT#,

or GET#, must first be OPENed.

FILE OPEN An attempt was made to open a file using the number of

an already open file.

FORMULA TOO COMPLEX The string expression being evaluated

should be split into at least two parts for the system to work with, or a

formula has too many parentheses.

ILLEGAL DIRECT The INPUT statement can only oe used within a pro-

gram, and not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a function or

statement is out of the allowable range.

150

r

s

LOAD There is a problem with the program on tape.

NEXT WITHOUT FOR This is caused by either incorrectly nesting loops

or having a variable name in a NEXT statement that doesn't correspond

with one in a FOR statement.

NOT INPUT FILE An attempt was made to INPUT or GET data from a

file which was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a file which

was specified as input only.

OUT OF DATA A READ statement was executed but there is no data

left unREAD in a DATA statement.

OUT OF MEMORY There is no more RAM available for program or

variables. This may also occur when too many FOR loops have been

nested, or when there are too many GOSUBs in effect.

OVERFLOW The result of a computation is larger than the largest

number allowed, which is 1.70141884E+38.

REDIM ' D ARRAY An array may only be DiMensioned once. If an array

variable is used before that array is DIM'd, an automatic DIM operation

is performed on that array setting the number of elements to ten, and

any subsequent DIMS will cause this error.

REDO FROM START Character data was typed in during an INPUT

statement when numeric data was expected. Just re-type the entry so

that it is correct, and the program will continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was encountered,

and no GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.

?SYNTAX ERROR A statement is unrecognizable by the Commodore

64. A missing or extra parenthesis, misspelled keywords, etc.

TYPE MISMATCH This error occurs when a number is used in place of a

string, or vice-versa.

UNDEF 'D FUNCTION A user defined function was referenced, but it

has never been defined using the DEF FN statement.

UNDEF 'D STATEMENT An attempt was made to GOTO or GOSUB or

RUN a line number that doesn't exist.

VERIFY The program on tape or disk does not match the program cur-

rently in memory.

151

APPENDIX M

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the

values to be POKEd into the HI FREQ and LOW FREQ registers of the

sound chip to produce the indicated note.

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

0 C-0 268 1 12
1 C#-0 284 1 28

2 D-0 301 1 45
3 D#-0 318 1 62
4 E-0 337 1 81

5 F-0 358 1 102

6 F#-0 379 1 123
7 G-0 401 1 145

8 G#-0 425 1 169

9 A-0 451 1 195

10 A#-0 477 1 221

11 B-0 506 1 250
16 C-1 536 2 24

17 C#-1 568 2 56

18 D-1 602 2 90
19 D#-1 637 2 125

20 E-1 675 2 163

21 F-1 716 2 204

22 F#-1 758 2 246

23 G-1 803 3 35
24 G#-1 851 3 83

25 A-1 902 3 134

26 A#-1 955 3 187

27 B-1 1012 3 244

32 C-2 1072 4 48

152

0

s

S

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW

33 C#-2 1136 4 112
34 D-2 1204 4 180
35 D#-2 1275 4 251
36 E-2 1351 5 71
37 F-2 1432 5 152

38 F#-2 1517 5 237
39 G-2 1607 6 71

40 G#-2 1703 6 167
41 A-2 1804 7 12
42 A#-2 1911 7 119
43 B-2 2025 7 233
48 C-3 2145 8 97
49 C#-3 2273 8 225
50 D-3 2408 9 104
51 D#-3 2551 9 247
52 E-3 2703 10 143

53 F-3 2864 11 48
54 F#-3 3034 11 218
55 G-3 3215 12 143
56 G#-3 3406 13 78
57 A-3 3608 14 24
58 A#-3 3823 14 239
59 B-3 4050 15 210
64 C-4 4291 16 195
65 C#-4 4547 17 195
66 D-4 4817 18 209
67 D#-4 5103 19 239
68 E-4 5407 21 31

69 F-4 5728 22 96

70 F#-4 6069 23 181
71 G-4 6430 25 30
72 G#-4 6812 26 156
73 A-4 7217 28 49
74 A#-4 7647 29 223
75 B-4 8101 31 165
80 C-5 8583 33 135
81 C#-5 9094 35 134

153

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW
82 C-0 9634 37 162
83 C#-0 10207 39 223
84 D-0 10814 42 62
85 F-5 11457 44 193
86 F#-5 12139 47 107

87 G-5 12860 50 60
88 G#-5 13625 53 57
89 A-5 14435 56 99
90 A#-5 15294 59 190
91 B-5 16203 63 75
96 C-6 17167 67 15
97 C#-6 18188 71 12
98 D-6 19269 75 69
99 D#-6 20415 79 191

100 E-6 21629 84 125
101 F-6 22915 89 131
102 F#-6 24278 94 214

103 G-6 25721 100 121
104 G#-6 27251 106 115
105 A-6 28871 112 199
106 A#-6 30588 119 124
107 B-6 32407 126 151

112 C-7 34334 134 30
113 C#-7 36376 142 24
114 D-7 38539 150 139
115 D#-7 40830 159 126
116 E-7 43258 168 250
117 F-7 45830 179 6
118 F#-7 48556 189 172
119 G-7 51443 200 243
120 G#-7 54502 212 230
121 A-7 57743 225 143
122 A#-7 61176 238 248
123 B-7 64814 253 46

0

O
s

Alk

154

FILTER SETTINGS

Location Contents

54293 Low cutoff frequency (0-7)

54294 High cutoff frequency (0-255)

54295 Resonance (bits 4-7)

Filter voice 3 (bit 2)

Filter voice 2 (bit 1)

Filter voice 1 (bit 0)

54296 High pass (bit 6)

Bandpass (bit 5)

Low pass (bit 4)

Volume (bits 0-3)

155

APPENDIX N

BIBLIOGRAPHY

Addison-Wesley "BASIC and the Personal Computer", Dwyer
and Critchfield

Compute "Compute's First Book of PET/CBM"

Cowboy Computing "Feed Me, I'm Your PET Computer ", Carol Al-

exander

"Looking Good with Your PET", Carol Alexan-

der

"Teacher ' s PET- Plans , Quizzes , and An-

swers"

Creative Computing "Getting Acquainted With Your VIC 20",

T. Hartnell

Dilithium Press "BASIC Basic-English Dictionary for the PET",

Larry Noonan

"PET BASIC" , Tom Rugg and Phil Feldman

Faulk Baker Associates "MOS Programming Manual ", MOS Technol-

ogy

Hayden Book Co. "BASIC From the Ground Up", David E. Simon

"I Speak BASIC to My PET", Aubrey Jones, Jr.

"Library of PET Subroutines", Nick Hampshire

"PET Graphics", Nick Hampshire

"BASIC Conversions Handbook , Apple, TRS-

80, and PET", David A. Brain, Phillip R.

Oviatt, Paul J. Paquin , and Chandler P. Stone

Alk

0

s
A

156

Howard W. Sams "The Howard W. Sams Crash Course in Mi-
crocomputers", Louis E. Frenzel, Jr.

"Mostly BASIC: Applications for Your PET",

Howard Berenbon

"PET Interfacing", James M. Downey and Ste-

ven M. Rogers

"VIC 20 Programmer's Reference Guide", A.

Finkel, P. Higginbottom, N. Harris, and M.

Tomczyk

Little, Brown & Co. "Computer Games for Businesses, Schools,

and Homes", J. Victor Nagigian, and William

S. Hodges

"The Computer Tutor: Learning Activities for

Homes and Schools", Gary W. Orwig, Univer-

sity of Central Florida, and William S. Hodges

McGraw-Hill "Hands-On BASIC With a PET", Herbert D.

Peckman

"Home and Office Use of VisiCalc", D.

Castlewitz, and L. Chisauki

Osborne/McGraw-Hill "PET/CBM Personal Computer Guide", Carroll
S. Donahue

"PET Fun and Games", R. Jeffries and G.

Fisher

" PET and the IEEE ", A. Osborne and C.

Donahue

"Some Common BASIC Programs for the PET",

L. Poole, M. Borchers, and C. Donahue

"Osborne CP/M User Guide", Thom Hogan

"CBM Professional Computer Guide"

"The PET Personal Guide"

"The 8086 Book", Russell Rector and George

Alexy

P. C. Publications " Beginning Self-Teaching Computer Lessons"

157

Prentice-Hall "The PET Personal Computer for Beginners",

S. Dunn and V. Morgan

Reston Publishing Co. "PET and the IEEE 488 Bus (GPIB)", Eugene

Fisher and C. W. Jensen

"PET BASIC-Training Your PET Computer",

Ramon Zamora , Wm. F. Carrie, and B.

Allbrecht

" PET Games and Recreation ", M. Ogelsby, L.

Lindsey, and D . Kunkin

"PET BASIC", Richard Huskell

"VIC Games and Recreation"

Telmas Courseware "BASIC and the Personal Computer", T. A.
Ratings Dwyer , and M. Critchfield

Total Information Ser- "Understanding Your PET/CBM, Vol. 1, BASIC

vices Programming"

"Understanding Your VIC", David Schultz

Commodore Magazines provide you with the most up-to-date infor-

mation for your Commodore 64. Two of the most popular publications

that you should seriously consider subscribing to are:

COMMODORE -The Microcomputer Magazine is published bi-monthly

and is available by subscription ($15.00 per year, U.S., and $25.00 per

year, worldwide).

POWER/PLAY-The Home Computer Magazine is published quarterly

and is available by subscription ($10.00 per year, U.S., and $15.00 per

year worldwide).

158

S

0

0

w

0

APPENDIX 0

SPRITE REGISTER MAP

Register #
Dec Hex DB7 D86 DB5 DB4 DB3 DB2 DB1 DBO

0 0 SOX7 SOXO SPRITE 0 X

Component

1 1 SOY7 SOYO SPRITE 0 Y

Component

2 2 S1X7 S1XO SPRITE 1 X

3 3 SIY7 S1YO SPRITE 1 Y

4 4 52X7 S2XO SPRITE 2 X

5 5 52Y7 S2YO SPRITE 2 Y

6 6 S3X7 S3XO SPRITE 3 X

7 7 S3Y7 S3YO SPRITE 3 Y

8 8 S4X7 S4XO SPRITE 4 X

9 9 S4Y7 S4YO SPRITE 4 Y

10 A S5X7 S5XO SPRITE 5 X

11 B S5Y7 S5YO SPRITE 5 Y

12 C S6X7 S6X0 SPRITE 6 X

13 D S6Y7 S6YO SPRITE 6 Y

14 E S7X7 S7X0 SPRITE 7 X

Component

15 F S7Y7 S7YO SPRITE 7 Y

Component

16 10 S7X8 S6X8 S5X8 S4X8 S3X8 S2X8 S1X8 SOXB MSB of X

COORD.

17 11 RC8 ECM BMM BLNK RSEL YSCL2 YSCL1 YSCLO Y SCROLL
MODE

18 12 RC7 RC6 RC5 RC4 RC3 RC2 RC1 RCO RASTER

19 13 PX7 LPXO LIGHT PEN X

20 14 PY7 LPYO LIGHT PEN Y

159

Register #
Dec Hex DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO

21 15 SE7 SEO SPRITE

ENABLE

(ON/OFF)

22 16 N.C. N.C. RST MCM CSEL XSCL2 XSCL1 XSCLO
X SCROLL
MODE

23 17 SEXY7 SEXYO SPRITE

EXPAND Y

24 18 VS13 VS12 VS11 VS10 CB13 CB12 CB1I N.C. SCREEN

Character

Memory

25 19 IRQ N. C, N. C. N. C. LPIRQ ISSC ISBC RIRQ Interupt

Request's

26 IA N.C. N.C. N.C. N. C. MLPI MISSC MISBCj MRIRQ Interupt

Request

MASKS

27 lB BSP7 BSPO Background-

Sprite

PRIORITY

28 1C SCM7 SCMO MULTICOLOR
SPRITE

SELECT

29 1 D SEXX7 SEXXO SPRITE

EXPAND X

30 1E SSC7 SSCO Sprite-Sprite

COLLISION

3 1 1 F SBC7 SBCO Sprite-
Background

COLLISION

0
0
O
•

0
AEk

0

1
160

I

COLOR CODES DEC HEX COLOR
32 20 0 0 BLACK EXT 1 EXTERIOR COL

33 21 1 1 WHITE BKGDO

34 22 2 2 RED BKGD1

35 23 3 3 CYAN BKGD2

36 24 4 4 PURPLE BKGD3

37 25 5 5 GREEN SMC 0 SPRITE
MULTICOLOR 0

38 26 6 6 BLUE SMC 1 1

39 27 7 7 YELLOW SOCOL SPRITE 0 COLOR

40 28 8 8 ORANGE S1COL 1

41 29 9 9 BROWN S2COL 2

42 2A 10 A LT RED S3COL 3

43 2B 11 B GRAY 1 S4COL 4

44 2C 12 C GRAY 2 S5COL 5

45 2D 13 D LT GREEN S6COL 6

46 2E 14 E LT BLUE S7COL 7

L
15 F GRAY 3

LEGEND:

ONLY COLORS 0-7 MAY BE USED IN MULTICOLOR CHARACTER MODE

161

APPENDIX P

w

COMMODORE 64 SOUND CONTROL
SETTINGS

This handy table gives you the key numbers you need to use in your

sound programs, according to which of the Commodore 64's 3 voices

you want to use. To set or adjust a sound control in your BASIC pro-

gram, just POKE the number from the second column, followed by a
comma (,) and a number from the chart . . . like this: POKE 54276,17
(Selects a Triangle Waveform for VOICE 1).

Remember that you must set the VOLUME before you can generate

sound. POKE54296 followed by a number from 0 to 15 sets the volume

for all 3 voices.

It takes 2 separate POKEs to generate each musical note . . for

example POKE54273,34:POKE54272,75 designates low C in the sample

scale below.

Also . . . you aren't limited to the numbers shown in the tables. If 34

doesn't sound "right" for a low C, try 35. To provide a higher SUSTAIN

or ATTACK rate than those shown, add two or more SUSTAIN numbers

together. (Examples: POKE54277,96 combines two attack rates (32 and

64) for a combined higher attack rate . . . but . . . POKE54277,20

provides a low attack rate (16) and a medium decay rate (4).

0

162

SETTING VOLUME- SAME FOR ALL 3 VOICES

VOLUME CONTROL POKE5429 Settings range from 0 (off) to 15 (loudest)

NTROL POKE THIS FOLLOWED BY ONE OF THESE NUMBERS

THIS SETTING: (NUMBER: (0 to 15 . .. or . .. 0 to 255 depending on range)

TO PLAY A NOTE
I

C C# D D E F F# G G# A A# B C C#

HIGH FREQUENC 54273 34 36 38 40 43 45 8 51 54 57 61 64 68 72

LOW FREQUENCY 54272 75 85 126 200 52 198 127 97 111 172 126 188 149 169

WAVEFORM PO TRI G LE SAWTOOTH PU S E NOI E

76

AN G

33 5

S

12

PULSE RATE (Pulse Waveform)

HI PULSE 54275 A value of 0 to 15 (for Pulse waveform only)

LO PULSE 54274 A value of 0 to 255 (for Pulse waveform only)

ATTACK/DECAY POKE ATK4 ATK3 ATK2 ATK1 DEC4 DEC3 DEC2 DEC1

54277 128 64 32 16 8 4 2 1

SUSTAIN/RELEASE POKE SUS4 SUS3 SUS2 SUS1 REL4 REL3 REL2 REL1

54278 128 64 32 16 8 4 2 1

TO PLAY A NOTE C C# D D# E F F# G G# A A# B C C#

HIGH FREQUENCY 54280 34 36 38 40 43 45 48 51 54 57 61 64 68 72

LOW FREQUENCY 54279 75 85 126 200 52 198 127 97 111 172 126 188 149 169

WAVEFORM POKE TRIANGLEjSAWTOOTH PULSE __ NOISE

54283

^

17 t 33 65 129

PULSE RATE

HI PULSE 54282 A value of 0 to 15 (for Puke waveform only)

LO PULSE 54281 A value of 0 to 255 (for Pulse waveform only)

ATTACK/DECAY POKE ATK4 i ATK3 ATK2 ATK1 DEC4 DEC3 DEC2 DEC1

54284 128 64 32 16 8 4 2 1

SUSTAIN RELEASE POKE SUS4 SUS3 SUS2 SUS1 REL4 REL3 REL2 REL1

54285 128 64 32 16 8 4 2 1

163

^^.h.a rteljG' !
3^ -

tti k 'U S

TO PLAYA NOTE C C# D D E F F# G G# A A# B C C#

HIGH FREQUENCY 54287 34 36 38 40 43 45 48 51 54 57 61 64 68 72

LOW FREQUENCY 54286 75 85 126 200 52 198 127 97 111 172 126 188 149 169

WAVEFORM POKE TRIANGLE SAWTOOTH PULSE NOISE

54290 17 33 65 129

PULSE RATE

HI PULSE 54289 A value of 0 to 15 (for Pulse waveform only)

LO PULSE 54288 A value of 0 to 255 (for Pulse waveform only)

ATTACK/DECAY POKE ATK4 ATK3 ATK2 ATK1 DECO DEC3 DEC2 DECI

54291 128 64 32 16 8 4 2 1

SUSTAIN /RELEASE POKE SUS4 SUS3 SUS2 SUS1 REL4 REL3 REL2 REL1

54292 128 64 32 16 8 4 2 1

TRY THESE SETTINGS TO SIMULATE DIFFERENT INSTRUMENTS

Instrument Waveform I Attack/Decay I Sustain /Release Pulse Rate

Piano Pulse 9 0 Hi-0, Lo-255

Flute Triange 96 0 Not applicable

Harpsichord Sawtooth 9 0 Not applicable

Xylophone Triangle 9 0 Not applicable

Organ Triangle 0 240 Not applicable

Calliope Triangle 0 240 Not applicable

Accordion Triangle 102 0 Not applicable

Trumpet Sawtooth 96 0 Not applicable

MEANINGS OF SOUND TERMS

ADSR-Attovk Decay Sustain Release

Attack-rate sound rises to peak volume

Decoy-rote sound falls from peak volume to Sustain level

Sustain-prolong note at certain volume

Release -rate at which volume falls from Sustain level

Waveform-"shape" of sound wave

Pulse-tone quality of Pulse Waveform

NOTE : Attack/Decay and Sustain/Release settings should always be POKEd in your program

BEFORE the Waveform is POKEd.

164

INDEX Commands, BASIC , 114-117
Commodore key, (see graphics keys)

A Connections

Abbreviations , BASIC commands, 130, optional, 6-7

131 rear, 2-3

Accessories , viii, 106-108 side panel, 2

Addition, 23, 26-27, 113 TV/Monitor, 3-5

AND operator, 114 CONT command, 114

Animation , 43-44, 65-66 , 69-75, 132, ConTRL key, 11, 16

138-139 COSine function, 126

Arithmetic , Operators, 23, 26-27, CuRSoR keys, 10, 15

113-114 Correcting errors, 34

Arithmetic , Formulas , 23, 26-27, 113, Cursor, 10

120, 140 D
Arrays, 95-103
ASC function, 128, 135-137 DATASSETTE recorder, (see cassette

ASCII character codes , 135-137 tape recorder)
and savin (disk) 18-21Data loadin

B
g ,, g

Data , loading and saving (tape),
BASIC 18-21

abbreviations , 130-131 DATA statement , 92-94, 118
commands , 114-117
numeric functions , 125-127
operators , 113-114
other functions, 129
statements , 117-125
string functions, 128
variables , 112-113

Bibliography , 156- 158
Binary arithmetic, 75-77
Bit, 75-76
Business aids, 108
Byte, 76

C

Calculations, 22-29
Cassette tape recorder (audio), viii, 3,

18-20, 21
Cassette tape recorder (video), 7
Cassette, port 3
CHR$ function , 36-37 , 46-47, 53,

58-60 , 113, 128, 135 - 137, 148
CLR statement, 117
CLR/HOME key, 15
Clock, 113
CLOSE statement, 117
Color

adjustment, 11-12
CHR$ codes, 58
keys, 56-57
memory mop , 64, 139
PEEKS and POKES, 60-61
screen and border, 60-63, 138

DEFine statement, 118
Delay loop, 61, 65
DELete key, 15
DIMension statement , 118-119
Division , 23, 26, 27, 113
Duration , (see For . . . Next)

E

Editing programs, 15, 34
END statement, 119
Equal, not-equal -to, signs , 23, 26-27,

114
Equations, 114
Error messages , 22-23, 150-151
Expansion port, 141-142
EXPonent function, 126
Exponentiation , 25-27, 113

F

Files, (DATASSETTE), 21, 110-111
Files, (disk), 21, 110-111
FOR statement, 119
FRE function, 129
Functions , 125-129

G

Game controls and ports , 2-3, 141
GET statement , 47-48, 119-120
GET# statement, 120
Getting started, 13-29
GOSUB statement, 120
GOTO (GO TO) statement , 32-34, 120

165

Graphic keys, 17, 56-57, 61, 132-137
Graphic symbols, (see graphic keys)
Greater than, 114

H
Hyperbolic functions, 140

I

IEEE-488 Interface , 2-3, 141
IF . . . THEN statement , 37-39, 120-

121
INPUT statement, 45-47, 121
INPUT#, 121
INSert key, 15
INTeger function, 126
Integer variable, 112
I/O pinouts, 141-143
I/O ports, 2-7, 141-143

J

Joysticks, 2-3, 141

K

Keyboard, 14-17

L

LEFT$ function, 128
LENgth function, 128
Less than, 114
LET statement, 121
LIST command, 33-34, 115
LOAD command, 115
LOADing programs on tape, 18-20
LOGarithm function, 126
Loops, 39-40, 43-45
Lower case characters, 14-17

M

Mathematics
formulas, 23-27
function table, 140
symbols, 24-27, 38, 114

Memory expansion , 2-4, 142
Memory maps, 62-65
MID$ function, 128
Modulator, RF, 4-7
Multiplication, 24, 113
Music, 79-90

N

Names
program, 18-21
variable, 34-37

NEW command, 115
NEXT statement, 121-122

NOT operator, 114
Numeric variables, 36-37

0

ON statement, 122
OPEN statement, 122
Operators

arithmetic, 113
logical, 114
relational, 114

P

Parentheses, 28
PEEK function, 60-62
Peripherals, viii, 2-8, 107-109
POKE statement, 60-61
Ports , I/O, 2-3, 141-143
POS function, 129
PRINT statement, 23-29 , 123-124
PRINT#, 124
Programs

editing, 15, 34
line numbering, 32-33
loading /saving (DATASSETTE), 18-21
loading /saving (disk), 18-21

Prompt, 45

Q
Quotation marks, 22

R

RaNDom function , 48-53, 126
Random numbers, 48-53
READ statement, 124
REMark statement, 124
Reserved words , (see Command state-

ments)
Restore key, 15, 18
RESTORE statement, 124
Return key, 15, 18
RETURN statement, 124
RIGHT$ function, 128
RUN command, 116
RUN/STOP key, 16-17

S

SAVE command, 21, 116
Saving programs (DATASSETTE), 21
Saving programs (disk), 21
Screen memory maps, 62-63, 138
SGN, function, 127
Shift key, 14-15, 17
SINe function, 127
Sound effects, 89-90
SPC function, 129

166

SPRITE EDITOR, vii, 69-76
SPRITE graphics , vii, 69-76
SQuaRe function, 127
STOP command, 125
STOP key, 16-17
String variables, 36-37, 112-113
STR$ function, 128
Subscripted variables, 95-98, 112-113
Subtraction , 24, 113
Syntax error, 22
SYS statement, 125

T

TAB function, 129
TAN function, 127
TI variable, 113
TI$ variable, 113
Time clock, 113
TV connections, 3-7

U

Upper/Lower Case mode, 14

USR function, 127
User defined function, (see DEF)

V

VALue function, 128
Variables

array, 95-103, 113
dimensions, 98-103, 113
floating point, 95-103, 113
integer , 95-103, 112
numeric, 95-103, 112
string ($), 95-103, 112

VERIFY command, 117
Voice, 80-90, 162-164

W

WAIT command, 125
Writing to tape, 110

z
Z-80, vii, 108

167

0
0

0

0

0
0

w

Commodore hopes you've enjoyed the COMMODORE 64

USER'S GUIDE. Although this manual contains some pro-

gramming information and tips, it is NOT intended to be a

Programmer's Reference Manual. For those of you who are

advanced programmers and computer hobbyists Commo-

dore suggests that you consider purchasing the COMMO-

DORE 64 PROGRAMMER'S REFERENCE GUIDE available

through your local Commodore dealer.

0

0
•
0
•
0
0

In addition updates and corrections as well as programming hints and tips are available in

the COMMODORE and POWER PLAY magazines, on the COMMODORE database of the

COMPUSERVE INFORMATION NETWORK, accessed through a VICMODEM.

COMMODORE 64 QUICK REFERENCE CARD
SIMPLE VARIABLES

Type Name Range

Real XV 21.70141183E+38

22.93873588E-39

Integer XY% 232767

String XYS 0 to 255 characters

X is a letter IA-Z), Y is a letter or number (0-9). Variable names

can be more than 2 characters, but only the first two are recog-

zed.

ARRAY WRIABLES
Type Name

Single Dimension XY(5)

>wo-Dimension XY(5,5)
Three - Dimension XY(5,5,5)

Arrays of up to eleven elements (subscripts 0-10) can be used

where needed. Arrays with more than eleven elements need to

be DIMensioned.

ALGEBRAIC OPERATORS

Assigns value to variable

- Negation

T Multiplicationon

Divi . n

Addition

Subtract,,

RELATIONAL AND LOGICAL OPERATORS

Equal

C> Not Equal To

C Less Than

> Greater Than

<= Less Than or Equal To

>= Greater Than or Equal To

NOT Logical "Not"

AND Logical "And"

OR Logical "Or"

Expression equals I if true , 0 if false.

SYSTEM COMMANDS

LOAD "NAME" Loads a program from tape

SAVE "NAME" Saves a program on tape

LOAD "NAME", 8 Loads a program from disk

SAVE "NAME", 8 Saves a program to disk

VERIFY "NAME" Verhes that program was SAVEd

without errors

RUN Executes a program

RUN xxx Executes program starting at line

STOP Halts execution

END Ends execution

CONT Continues program execution from

line where program was halted

PEEK (X) Returns contents of memory

location X

POKE X,V Changes contents of location X

to value V

SYS xxxxx Jumps to execute a machine language

program , starting at xxxxx

WAIT X,Y,Z Program waits until contents of

location X , when EORed with Z and

ANDed with Y, is ,zero.

USR(X) Passes value of X to a machine

language subroutine

EDITING AND FORMATTING COMMANDS

LIST Lists entire program

LIST A-B Lists from line A to line 8

REM Message Comment message an be listed but

is ignored during program cation

TAB(X) Used in PRINT statements . Spaces X

positions on screen

SPC(X) PRINTs X blanks an line

POS(X) Returns current -co, position

CLR/HOME Positions cursor to left corner of

SHIFT CLRIHOME Clears screen and places cursor in

"Home" Position

SHIFT INST/DEL Inserts space at current cursor

position

INST/DEL Deletes character at current cursor

CTRL When used with n umeric color key,Pos ition

selects text color. May be used in

PRINT statement.

CRSR Keys Moves cursor up, down, left, right

Commodore Key Whenr used with SHIFT selects

between upper/ lower case and

graphic display mode.

When used with numer i c color key,

selects optional text color

ARRAYS AND STRINGS

DIM AIX , Y, Z) Sets m-mu m subscripts far A;

reserves space far '(Z+ 1)

elements starting at A(0,0,0)

LEN XS) Returns number of characters in X$

STRS (X) Returns numeric value of X,

averted to a string

VAL(XS) Returns num e ric value of AS, up to

firs n r. character

CHRS(X) Return, ASCII character whose code

is X

ASC(XS) Returns ASCII code far first

character of XS

LEFT$ (A$,X) Returns leftmost X characters of AS

RIGHTS (AE,X) Returns rightmost X characters

of AS
MIDS(AS , X,V) Returns V characters of AS

starting at character X

INPUT/OUTPUT COMMANDS

INPUT AS OR A PRINTs '?' on screen and w, it, for

r enter a string or value
INPUT "ABC";A PRINTS m sage and w its for user

to enter value Can also INPUT AS

GET AS or A V*cts for us r to type one-

character value; no RETURN needed

DATA A," B",C Initializes a set of values thbr

can be used by READ statement

READ A$ or A Assigns next DATA value to AS or A

RESTORE Resets data pointer to start

READing the DATA list again
PRINT "A= ";A PRINTs string ' A= ' and value of A

suppresses spaces - ,' tabs data

to next field.

PROGRAM FLOW

GOTO X Branches to line X

IF A=3 THEN 10 IF assertion is true THEN execute

following port of statement. IF

false , x cure next line number
FOR A= 1 TO 10 Executes all statements between FOR
STEP 2 : NEXT and corresponding NEXT, with A

going from I to 10 by 2. Step size

is I unless specified

NEXT A Defines end of loop . A is optional
GOSUB 2000 Branches to subroutine starting at

line 2000

RETURN Marks and of subroutine . Returns to

statement following most recent

GOSUB

ON X GOTO A, B Branches to Xth line number on

list. If X = I branches to A, etc.

ON X GOSUS A,B Branches to subroutine at Xth line

number in list

n n > zq 0 n
w

D 3 - Q 3
o0 3

N

^ CD m
a N

3
a T

0 0
3 -

3O (D
a3
O

O

c
(n r+

7;

0

N

wm y qq q Ky

p w 7 y W w n -_.
c ao 3 m 0n = 3

a°w o a < o- !J^

m 03
n 0w m 7

C_ C-<
0

7 a
n Ln

LP

>
(D n to

Z

Z
n

3os-o a

c J ^ 3 3m° o m
FTn^Jc

O-S 7 J J

3 r^^ cc
3 a
C 3 c; C °; O
c- 3 cc 3 o o 3
a v C J

m m -O C
C- C,

T m J C ^.
as s<a^mN c m 3 m
c^ r F _ 3m 3 a m

C ate
s 3 c m
O 3 - S C

m o^^ 3 T^

^,sm o 3.o s

J 3 G C T d

T 3 z J O
'D c o J r 3

c G C X
O 3 m n O

c 3

c o Q^ o
3 - o
0vo n O_ v

3
3

rD

A

CK commodore
COMPUTERS

Commodore Business Machines, Inc.-Computer Systems Division,
1200 Wilson Drive, West Chester, PA 19380

3370 Pharmacy Avenue, Agincourt, Ontario, M1 W 2K4 Canada

$12.95/22010

Printed in U.S.A.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	book.pdf
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176

