

WORKBENCH™ AMIGADOS™ EDITORS • UTILITIES

•r
Using

The System Software

-

C* Commodore d

AMIGA

COPYRIGHT

© 1990, 1991, Commodore-Amiga, Inc. All Rights Reserved. This document may not, in whole or in part, be

copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form,

without prior consent, in writing, from Commodore-Amiga, Inc.

The material set forth in Chapters 7, 8, and 9 is adapted from The AmigaDOS Manual, 2nd Edition, Copy
right © 1987 by Commodore-Amiga, Inc. used by permission of Bantam Books. All Rights Reserved.

The Times Roman, Helvetica Medium, and Courier fonts included in the Fonts directory of the Extras2.0
disk are Copyright © 1985, 1987 Adobe Systems, Inc.

The BRU program is Copyright © 1988, Engineering Software Tools. The HDBackup program is Copyright
© 1989, 1990 Enhancer Software Technologies, Inc.

If this product is being acquired for or on behalf of the United States of America, its agencies and/or
instrumentalities, it is provided with RESTRICTED RIGHTS, and all use, duplication, or disclosure with
respect to the included software and documentation is subject to the restrictions set forth in subdivision ib]

(3) (ii) of The Rights in Technical Data and Computer Software clause at 252.227-7013 of the DOD FAR.
Unless otherwise indicated, the manufacturer/integrator is Commodore Business Machines, Inc., 1200
Wilson Drive, West Chester, PA 19380.

DISCLAIMER

This information is provided "as is" without representation or warranty of any kind, either express or
implied, including without limitation, any representations or endorsements regarding the use of, the results

of, or performance of the information, its appropriateness, accuracy, reliability, or currentness, the entire
risk as to the use of this information is assumed by the user.

In no event will Commodore, its affiliated companies, nor its employees, be liable for any damages, direct,

indirect, incidental or consequential, resulting from any defect in the information, even if Commodore has

been advised of the possibility of such damages.

This disclaimer shall supersede any verbal or written statement to the contrary.

TRADEMARKS

Amiga is a registered trademark of Commodore-Amiga, Inc.; The Amiga check mark, Amiga 500, Amiga

2000, A3000, AmigaDOS, Amiga Workbench and Amiga Kickstart are trademarks of Commodore-Amiga,

Inc.; Commodore, the Commodore logo and CBM are registered trademarks of Commodore Electronics Ltd.

BRU is a trademark of Engineering Software Tools.

ColorMaster is a trademark of CalComp.; Diablo and Xerox are registered trademarks of Xerox Corporation;

Epson is a registered trademark of Epson America, Inc.; IBM and Proprinter XL are registered trademarks of

International Business Machines Corp.; Imagewriter is a trademark of Apple Computer, Inc.; LaserJet,

LaserJet PLUS, and PaintJet are trademarks of Hewlett-Packard Company; Microsoft and MS-DOS are

registered trademarks of Microsoft Corp.; NEC and Pin writer are registered trademarks of NEC Information

Systems; Okidata is a registered trademark of Okidata, a division of Oki America, Inc.; Okimate 20 is a

trademark of Okidata, a division of Oki America, Inc.; Tektronix is a registered trademark of Tektronix, Inc.;

UNIX is a registered trademark of AT&T; VT100 is a registered trademark of Digital Equipment Corp.

This document may also contain references to other trademarks which are believed to belong to the sources

associated therewith.

Part no. 363313-05 Rev. 1, First Printing September 1991.

About

Your Documentation
Three standard documents are included with your Amiga:

1. Quick Connect — How to Set Up the Amiga

This booklet, which folds out into a large poster, shows you how to connect

your Amiga equipment and any peripherals, such as a monitor or printer.

You can hang this poster in a convenient spot while you follow the set up

instructions.

2. Introducing the Amiga

This manual describes the major components and features of your Amiga,

and tells you what to expect when you first turn on the computer. The

manual also introduces you to the Workbench, which is the software

interface that lets you interact with your computer through graphic

symbols appearing on the screen. The expansion capabilities of the Amiga

are also covered.

3. Using the System Software

This manual, which explains how to use the software packaged with your

Amiga, is divided into three main parts: Workbench 2.0, AmigaDOS, and

AREXX Programming Language. The manual begins with a tutorial aimed

at the first-time user. Subsequent chapters build on this base and cover the

Workbench and AmigaDOS in detail. A comprehensive guide to AREXX

completes the manual.

Here's what's in each chapter and appendix:

Chapter 1, Tutorial, takes you step-by-step through the elementary tasks

^. involved in using your Amiga.

Chapter 2, Basic Operations, expands on the tutorial to provide a more

detailed explanation of how the Amiga works.

Chapter 3, Preferences, tells you how to properly set your Amiga to work

with monitors, printers, and other peripheral devices and how to

customize your Workbench screen (e.g., by changing colors and type

fonts).

Chapter 4, The Workbench Programs, explains all the programs on the

Workbench disk, like Say, which lets you enter text for the Amiga to

speak.

Chapter 5, The Extras Programs, explains all the programs on the Extras

disk, like GraphicDump, which lets you print out screen images.

Chapter 6, Using a Hard Disk, explains how to use the Amiga's hard disk

to store and retrieve files and programs. The chapter also provides step-

by-step instructions for backing up the hard disk and adding new hard

disks to the system.

Chapter 7, Using AmigaDOS, introduces you to the terms and concepts

behind AmigaDOS. The discussion includes a description of the Shell, a

keyboard-based interface that lets you run programs and perform basic

operations through typed commands, and explanations of some of the

most basic AmigaDOS commands.

Chapter 8, AmigaDOS Reference, lists and describes all the AmigaDOS

commands and error messages.

Chapter 9, Editors, explains the three text editors included with the

Amiga: ED, EDIT, and MEMACS.

Chapter 10, AREXX, fully describes a new and powerful programming

language.

Appendix A, Troubleshooting, contains a list of possible problems and

suggested solutions.

Appendix B, Printers, lists many of the printers that can be used with the

Amiga, as well as the standard printer escape sequences.

Appendix C, Backing Up Your Hard Disk with BRU, describes BRU, a

sophisticated backup-and-restore program for Shell users. The appendix

also tells you how to customize BRU's defaults, discusses BRU's help

screen, gives individual explanations of BRU commands, and lists sample

commands to create archives and restore files.

The Glossary defines important terms used throughout the manual.

- How To Use This

Documentation

~

If you have never used an Amiga before, read Quick Connect and Introducing

the Amiga. Then read Chapters 1 through 3 in this manual. Finally, as you

need or want more detailed information on the Amiga's operations and specific

features, read the remaining chapters.

If you have used an Amiga before, you should first read Quick Connect and

Introducing the Amiga. In Using the System Software, you may want to skip

the tutorial, but you should read the other chapters as needed to learn what's

new about Workbench and AmigaDOS.

A Word About

Graphic Symbols

The following graphic symbols appear in the margins:

This symbol draws attention to instructions that

must be read carefully in order to avoid damage to

your system.

This hard disk symbol directs you to information

important to hard disk users.

A Word About

Keys

All references to alphabetical keys are shown in uppercase letters. Unless

otherwise specified, do not press Shift. If the instructions read "Press Q,"

simply press the Q key. If an uppercase letter must be used, it will be specified

in the instructions.

Non-alphanumeric keys are shown as they appear on the keycap (Ctrl, Esc,

Del, Alt, Help).

The Amiga keys are referenced by their position: left Amiga (A) and right

Amiga (A). Several keys on the keyboard have arrows on the keycaps. The
list below shows the keycap and the name used for that key:

•* —1

0

Return

Shift

Backspace

Tab

The group of arrow keys to the left of the numeric keypad are the cursor keys.

The keys are referenced by the direction of their arrow: up cursor, down cursor,

left cursor, and right cursor.

At times, you need to press a sequence of keys. In these instances, the keys are

separated by a hyphen and shown in the order they should be pressed, such as

Ctrl-O. This means you must press, and hold, the Ctrl key, then press the 0.

A Word About

Type Styles

Bold words Words that appear in bold are defined in the glossary.

Screen Output Words that appear in this style can be one of two things:

input you must type at the keyboard or output that is shown

on the Amiga screen. This style is especially prevalent in the

AmigaDOS section of the manual.

~

~

Contents

^ Workbench 2.0

1. Tutorial

Getting Started 1-2

Using the Mouse 1-6

The Selection Button 1-7

The Menu Button 1-9

Using Menus 1-11

Ghosted Menu Items 1-13

Working with Wmdows 1-14

The Title Bar 1-16

The Depth Gadget 1-17

The Zoom Gadget 1-19

The Sizing Gadget 1-20

The Scroll Gadgets 1-21

The Close Gadget 1-25

Making Backup Copies of Disks 1-27

Using One Disk Drive 1-29

Using Two Disk Drives 1-33

Renaming Your Backup Disks 1-38

Rebooting the Amiga 1-40

Using Application Software 1-42

Formatting a Disk 1-44

Organizing Information on a Disk 1-47

Paths 1-51

Naming Files 1-54

2. Basic Operations

^_ The Workbench System 2-2

Mouse Techniques 2-5

The Selection Button 2-8

Selecting 2-8

Selecting Multiple Icons 2-9

Double-Clicking 2-11

Contents

Dragging 2-11

Dragging an Icon 2-11

Dragging a Window 2-12

Dragging a Screen 2-13

The Menu Button 2-15

Using Menus 2-15

Cancelling 2-19

Requesters 2-20

Action Requester 2-21

Text Requester 2-22

File Requester 2-24

The Workbench Screen 2-26

Title Bar 2-26

Workbench Window 2-27

Moving the Workbench Screen 2-27

Windows 2-28

Title Bar 2-30

Zoom Gadget 2-31

Depth Gadget 2-31

Scroll Gadgets 2-33

Sizing Gadget 2-35

Close Gadget 2-37

Additional Gadgets 2-38

Action Gadgets 2-39

Check Box 2-40

Cycle Gadget 2-41

Radio Button 2-42

Scroll Gadget 2-43

Selection Gadget 2-45

Slider Gadget 2-46

Text Gadget 2-47

Icons 2-49

Contents

~

~

°

The Workbench Menu 2-50

Backdrop 2-51

Execute Command 2-52

Redraw All 2-54

Update All 2-54

Last Message 2-55

Version 2-55

Quit 2-56

The Window Menu 2-58

New Drawer 2-59

Open Parent 2-60

Close 2-61

Update 2-61

Select Contents 2-62

Clean Up 2-63

Snapshot 2-63

Show 2-64

View By 2-65

The Icons Menu 2-67

Open 2-67

Copy 2-68

Copying by Dragging 2-73

Rename 2-75

Information 2-76

Snapshot 2-79

Unsnapshot 2-80

Leave Out 2-80

Put Away 2-81

Delete 2-81

Format Disk 2-82

Empty Trash 2-86

The Tools Menu 2-87

Contents

3. Preferences

The Prefs Drawer 3-2

Action Gadgets 3-4

The Time Editor 3-5

Save/Use/Cancel 3-6

The Input Editor 3-7

Mouse Speed 3-8

Acceleration 3-9

Double-Click 3-9

Key Repeat Delay 3-10

Key Repeat Rate 3-11

Key Repeat Test 3-11

Save/Use/Cancel 3-11

The Palette Editor 3-12

Save/Use/Cancel 3-14

The Workbench Pattern Editor 3-15

Color Selection Gadget 3-19

Magnified View Box 3-20

Actual Size Box 3-20

Presets Gadget 3-20

Pattern 3-20

Test 3-21

Clear 3-21

Undo 3-21

Save/Use/Cancel 3-22

The Pointer Editor 3-22

Test 3-24

Clear 3-25

Set Point 3-25

Reset Color 3-25

Save/Use/Cancel 3-25

The Font Editor 3-26

Text Radio Buttons 3-27

Contents

~

~

Font Gadget 3-28

Text/Field 3-29

Save/Use/Cancel 3-30

Types of Displays 3-30

Hires 3-33

SuperHires 3-34

Productivity 3-35

A2024 3-36

The Screen Mode Editor 3-37

Choose Display Mode 3-37

Properties of the Selected Mode 3-38

Screen Sizes 3-39

Width 3-40

Height 3-40

Colors 3-41

AutoScroll 3-41

Save/Use/Cancel 3-41

The Overscan Editor 3-42

Edit Text Overscan 3-44

Edit Standard Overscan 3-46

Screen Sizes 3-47

Save/Use/Cancel 3-48

The Printer Editor 3-49

Paper Length 3-52

Left Margin 3-52

Right Margin 3-53

Printer Port 3-53

Paper Type 3-53

Paper Size 3-54

Print Pitch 3-55

Print Spacing 3-55

Print Quality 3-56

Save/Use/Cancel 3-56

Contents

The Printer Graphics Editor 3-57

Color Correct 3-57

Smoothing 3-59

Left Offset/No. Inches 3-60

Center Picture 3-60

Dithering 3-60

Scaling 3-63

Image 3-64

Aspect 3-64

Shade 3-65

Threshold 3-65

Limits/Type 3-66

Width 3-69

Height 3-69

Density 3-69

Save/Use/Cancel 3-69

The Serial Editor 3-70

Baud Rate 3-70

Input Buffer Size 3-71

Handshaking 3-71

Parity 3-72

Bits/Char 3-73

Stop Bits 3-73

Save/Use/Cancel 3-73

The IControl Editor 3-74

Verify Timeout 3-74

Command Keys 3-75

Mouse Screen Drag 3-75

Coercion 3-76

Screen Menu Snap 3-77

Text Gadget Filter 3-77

Save/Use/Cancel 3-78

The Workbench Configuration Editor 3-79

Save/Use/Cancel 3-80

Contents

~

~

"

The Editor Menus and Presets Drawer 3-80

The Project Menu 3-81

The Edit Menu 3-82

The Options Menu 3-82

Using the Presets Drawer 3-83

4. The Workbench Programs

Tool Types 4-2

Adding a Tool Type 4-2

Deleting a Tool Type 4-4

Changing a Tool Type 4-4

The System Drawer 4-5

AddMonitor 4-7

BindMonitor 4-10

DiskCopy 4-11

FixFonts 4-11

Format 4-12

NoFastMem 4-12

SetMap 4-13

Adding a Tool Type 4-16

The Utilities Drawer 4-18

Clock 4-19

The Type Menu 4-20

The Mode Menu 4-20

The Seconds Menu 4-20

The Date Menu 4-21

The Alarm Menu 4-21

Tool Types 4-23

Display 4-23

Tool Types 4-25

Exchange 4-27

More 4-29

Say 4-32

Tool Types 4-34

The WBStartup Drawer 4-35

Tool Types 4-36

Contents

5. The Extras Programs

The MonitorStore Drawer 5-2

The Tools Drawer 5-3

Calculator 5-4

CMD 5-7

Colors 5-8

Using Colors 5-10

GraphicDump 5-12

IconEdit 5-13

Color Selection Gadget 5-14

Magnified View Box 5-14

Freehand Gadget 5-14

Continuous Freehand Gadget 5-15

Circle Gadget 5-15

Box Gadget 5-16

Line Gadget 5-16

Fill Gadget 5-17

Undo 5-17

Clear 5-17

Normal/Selected Radio Buttons 5-17

Arrows 5-18

IconEdit Menus 5-19

Project 5-19

Type 5-20

Highlight 5-21

Images 5-22

Misc 5-23

InitPrinter 5-24

KeyShow 5-24

PrintFiles 5-26

Tool Types 5-27

The Commodities Drawer 5-27

AutoPoint 5-30

Contents

Blanker 5-30

Tool Types 5-31

FKey 5-32

Tool Types 5-34

IHelp 5-34

Tool Types 5-35

NoCapsLock 5-36

6. Using a Hard Disk

About Your Hard Disk 6-1

Hard Disk Partitions 6-3

Copying Software to Your Hard Disk 6-4

Troubleshooting 6-7

Adding an ASSIGN Statement to your

O User-Startup File 6-8

Example ASSIGN Statement 6-11

Backing Up Your Hard Disk 6-14

HDBackup 6-15

Using HDBackup for the First Time 6-15

Creating a Full Backup 6-16

Creating an Incremental Backup 6-27

Selected Files and Selected Size Display 6-29

Include and Exclude Gadgets 6-29

File Selection Gadgets 6-30

Smaller Log File Option 6-35

File Compression Option 6-36

Checking Differences 6-38

Inspecting a Backup 6-40

Restoring Files 6-42

Tool Types 6-45

10 Contents

HDToolBox 6-49

The Hard Drive Preparation, Partitioning

and Formatting Screen 6-50

Partitioning 6-53

Adjusting the Size of a Partition 6-56

Sliding a Partition within the

Partitioning Bar 6-56

Adding a New Partition 6-57

Renaming a Partition 6-57

Deleting a Partition 6-58

Using HDToolbox's Default Setup for

the Drive 6-58

Saving and Formatting Your New

Partitions 6-59

Advanced Options with Partitioning 6-60

Preparing a New Hard Disk 6-63

Low Level Formatting 6-72

Locating Bad Blocks 6-75

Adding a Bad Block to the Bad Block List 6-78

Changing the Drive Type 6-80

Editing a Drive Type or Defining a

New Drive Type 6-82

Modifying File Systems 6-86

File System Maintenance 6-89

To Add a New File System 6-91

To Delete a File System 6-92

To Update an Existing File System 6-93

AmigaDOS

7. Using AmigaDOS

Introduction to AmigaDOS 7-1

The File System 7-2

Devices 7-3

Peripheral Devices 7-4

Directories 7-5

Contents 11

~

"

'

Files 7-6

.info Files 7-7

Paths 7-8

Naming Files and Directories 7-9

Basic AmigaDOS Commands 7-11

Types of AmigaDOS Commands 7-11

The Shell 7-13

Getting Information About Disks 7-15

Creating a New Directory 7-18

Changing the Current Directory 7-19

Changing the Search Path 7-22

Working with Files 7-23

Working with Disks 7-25

Setting the Clock 7-27

Opening/Closing Shell Windows 7-28

Special AmigaDOS Characters 7-29

Command Line Characters 7-29

Pattern Matching 7-31

Redirection 7-33

Features of the Shell 7-34

Editing 7-35

Copying and Pasting 7-37

Customizing the Window 7-38

Closing the Shell 7-41

The Shell-startup File 7-41

Using Aliases 7-41

Changing the Prompt 7-43

Using Escape Sequences 7-43

Running Programs 7-46

Scripts 7-49

Condition Flags 7-51

Environment Variables 7-52

The Startup-Sequence 7-55

Editing the Startup-Sequence 7-62

Common Additions to the Startup Files 7-64

To automatically open a Shell window: 7-65

12 Contents

To set up additional paths and

logical device names: 7-65

To make additional commands resident: 7-65

For Single Floppy Disk Systems 7-66

Making Commands Resident 7-67

Using Assign's PATH Option 7-68

Making Room on Your Workbench Disk 7-69

The Ram Disk 7-72

Advantages for Floppy Disk Systems 7-72

The Recoverable Ram Disk 7-74

For a 1MB Amiga 7-75

For Amigas with more than 2MB 7-77

Other Workbench Directories 7-78

The S: Directory 7-78

ED-Startup 7-79

HDBackup.Config 7-79

SPat,DPat 7-79

PCD 7-80

The DEVS: Directory 7-80

MountList 7-81

Keymaps 7-84

Printers 7-85

The L: Directory 7-85

Aux-Handler 7-86

Pipe-Handler 7-86

Port-Handler 7-87

Speak-Handler 7-87

The FONTS: Directory 7-89

The LIBS: Directory 7-90

8. AmigaDOS Reference

Command Conventions 8-1

Format 8-3

Template 8-4

Command Specifications 8-7

Error Messages 8-131

Contents 13

9. Editors

ED 9-1

New Features of ED 9-2

Starting ED 9-3

Using ED 9-5

Immediate Commands 9-6

Moving the Cursor 9-7

Inserting Text 9-8

Deleting Text 9-9

Changing Case 9-9

Extended Commands 9-10

Program Control 9-11

Cursor Control 9-14

Altering Text 9-15

Block Control 9-16

Searching and Exchanging 9-18

Repeating Commands 9-20

Customizing ED 9-21

AREXX Support 9-25

MEmacs 9-28

Starting MEmacs 9-28

Using MEmacs 9-29

Menu Commands 9-32

The Project Menu 9-33

The Edit Menu 9-38

The Window Menu 9-44

The Move Menu 9-46

The Line Menu 9-48

The Word Menu 9-50

The Search Menu 9-52

The Extras Menu 9-54

Commands Not In Menus 9-59

Customizing MEmacs 9-61

14 Contents

EDIT 9-63

Starting EDIT 9-64

Using EDIT 9-65

The Current Line 9-65

Prompts 9-66

Output Processing 9-67

Commands 9-68

Arguments 9-69

Multiple Commands 9-72

EDIT Commands 9-73

Selecting the Current Line 9-73

Editing the Current Line 9-75

Inserting and Deleting Lines 9-77

Splitting and Joining Lines 9-82

Renumbering Lines 9-83

Verifying Lines 9-84

Inspecting the Source File 9-85

Making Global Changes 9-86

Changing Command, Input and

Output Files 9-87

Ending EDIT 9-91

AREXX

10. AREXX Programming Language

Introduction 10-1

Who is AREXX For? 10-2

What Do You Have to Know to Use AREXX?.... 10-3

Chapter Organization 10-3

AREXX on the Amiga 10-4

Multitasking 10-5

Interprocess Communication 10-5

Interprocess Communication and Ports 10-5

Multitasking and Interprocess

Communication Together 10-6

What is AREXX? 10-7

Contents 15

~

Starting AREXX on the Amiga 10-7

Automatically 10-8

Manually 10-8

Setting AREXX to Start Automatically 10-9

Displaying Output 10-13

Naming AREXX Programs 10-13

Where Do AREXX Programs Go? 10-14

AREXX System Files 10-14

SYS:LIBS Directory 10-14

SYSTEM: Directory 10-14

SYS:Rexxc Directory 10-15

SYS:Rexx (An Assign Designated to

Store AREXX Programs) 10-15

Language Features 10-15

Program Examples 10-15

Instructions 10-18

Review and Additional Notes 10-24

Elements of AREXX 10-26

Format 10-27

Tokens 10-27

Clauses 10-31

Clause Classification 10-34

Clause Continuation 10-34

Expressions 10-35

Symbol Resolution 10-36

Order of Evaluation 10-36

Numbers and Numeric Precision 10-37

Boolean Values 10-38

Numeric Precision 10-38

Operators 10-39

Stems and Compound Symbols 10-44

The Execution Environment 10-46

The External Environment 10-47

The Internal Environment 10-47

Input and Output 10-49

Resource Tracking 10-49

Instructions 10-50

16 Contents

Commands 10-74

Command Clauses 10-74

The Host Address 10-75

The Command Interface 10-78

Using Commands in Macro Programs 10-79

Using AREXX with Command Shells 10-81

Command Inhibition 10-82

Functions 10-82

The Library List 10-83

Syntax and Search Order 10-84

Search Order 10-85

The Clip List 10-89

The Built-in Function Library 10-90

Built-in Functions 10-91

RexxSupport.Library Functions 10-129

Tracing and Interrupts 10-134

Tracing Options 10-135

Display Formatting 10-136

The Global Tracing Console 10-137

Tracing Output 10-138

Command Inhibition 10-139

Interactive Tracing 10-140

Error Processing 10-141

Failure Level for Commands 10-142

The External Tracing Flags 10-142

Interrupts 10-143

Parsing and Templates 10-146

Template Structure 10-146

Template Objects 10-148

The Scanning Process 10-149

Templates in Action 10-150

Pattern Parsing 10-151

Positional Markers 10-152

Multiple Templates 10-153

Additional Notes 10-154

REXXC Directory 10-154

Error Messages 10-157

Contents 17

~

~

Appendices

A. Troubleshooting

B. Printers

Printer Drivers B-1

Escape Sequences B-22

C. Backing Up Your Hard Disk with BRU

Brutab C-2

The Components of the Brutab File C-3

Setting Environment Variables for BRU C-6

BRU Command Lines C-7

Interrupting BRU While it is Operating C-9

Using BRU — ATutorial C-10

Estimating the Size and Creating a

Backup of the Current Directory C-10

Backing Up Your Entire Hard Disk C-12

Backing Up Only a Few Files or Directories C-13

Combining Modes C-14

Adding Control and Selection Options C-14

Restoring Files to Your Hard Disk C-17

BRU Argument Reference Section C-20

Modes C-20

Creating an Archive C-20

Differences in Size C-20

Estimating the Size C-21

Give Information on Archive Header C-22

Print the BRU Help Screen C-23

Inspecting the Archive C-23

Listing the Table of Contents C-24

Extraction C-25

Control Options C-26

Amiga Specific Flags C-26

Set Archive Buffer Size C-26

Telling BRU to Run Without User

Intervention C-26

18 Contents

Use Path as the Archive File C-27

Fast Mode C-28

Interaction Option C-28

Labeling an Archive C-29

Use nbits for Compression C-29

Pass Over Archive Files by Reading C-29

Pathname Handling and Expansion C-30

Exclude Remotely Mounted Files C-30

Specify the Size of Archive Media C-30

Turn on Sparse File Options C-31

Settting the Verbosity Level C-31

Asking BRU to Wait for Confirmation C-32

Use LZW File Compression C-33

File Selection Options C-33

Selecting Files by Date C-33

Unconditoinal File Type Extraction C-35

BRU with UNIX C-36

Control Options C-36

Control String C-36

Do Not Reset Access Time C-36

Change the Owner of Extracted File C-36

Double Buffer C-37

Interaction Option C-37

Ignore Unresolved Links C-37

Limit Directory Expansions to Same

Mounted Filesystem C-38

Select Files Owned by User C-38

Selection Options C-39

Unconditional File Type Extraction C-39

BRU Error Messages C-39

Messages Starting with Filename C-40

Messages Starting with Warning C-46

Other Messages C-50

Chapter 1. Tutorial

This chapter introduces you to the Amiga"" system and the

Workbench"' software by telling you how to:

• turn on your machine

• use the mouse

• choose options from menus

• make backup copies of your floppy disks

• prepare floppy disks for data storage

• organize your files on a disk

When you finish this tutorial you will know enough about

your Amiga to begin running application software, such as

spreadsheets, word processors, desktop publishing or graphics

programs.

Don't worry if it seems that some ideas arc not explained in

^> full detail. Chapter 2, "Basic Operations," provides more

complete explanations.

~

1-2 Tutorial

Getting Started

Turn on the power to your Amiga as shown in your Introducing

the Amiga manual. The power light on the front of your

machine signals that the power is on. You must also turn on

the power to your monitor. Consult the documentation that

came with your monitor for instructions.

If you have a floppy disk system, an animated screen appears

showing a floppy disk being inserted into a disk drive. This is

your signal to insert the Workbench2.0 disk into the disk drive.

2.8 Rons (36.xxx)

Copyright @ 1998 Connodore-Rrtiga, Inc.

Rll Rights Reserved

* HD1
If you have an autobooting hard disk in your Amiga, you will

not see the animated screen. The system software is already

installed on your hard disk, so you do not need to insert the

Workbench2.0 disk into the disk drive. If you do see the

animated screen, you have a problem with your hard disk and

should consult your dealer or authorized Commodore service

center.

Tutorial 1-3

"

~

1. Insert the Workbench2.0 disk into the disk drive,

metal end first, with the labeled side facing up .

The process of turning on your computer and loading

information from a disk containing the Amiga operating

system is known as booting your computer—from the old

expression "pulling yourself up by your bootstraps," It refers to

the process of reading the information needed to start the

system from a storage device, such as a floppy or hard disk, into

the computer's memory.

The disk drive light comes on as the Amiga starts

reading the information on the disk. Never remove

a floppy disk from the drive while the disk drive light

is on.

1-4 Tutorial

The first thing that you'll see on your monitor is some

introductory information, such as copyright notices and the

name and version numbers of the software. After a few

seconds, the introductory screen is replaced by the Workbench

screen. It is through this screen that you access the programs

on the Workbench2.0 disk.

icon

pointer

Workbench window

Workbench 2.9 929376 graphics nen 912952 other nen

I Workbench

f
Ran Disk

Uorkbench2.l

A window (an area on the screen that accepts and displays

information) fills most of the screen. This window, called the

Workbench window, contains two icons. Icons are images that

represent various items, such as disk or files.

If you have a hard disk system, you may have different or

additional icons in this window, but you can still follow this

tutorial. (Consult your Introducing the Amiga manual for an

accurate depiction of the screen.) When this manual refers to

the Workbench2.0 disk icon, just substitute the System2,0

hard disk icon. Some of the screens shown in this manual may

vary from what actually appears on your screen, but the

procedures remain the same.

Tutorial 1-5

~
The icon with the word Workbcnch2.0 underneath represents

the actual Workbench2.0 disk that is in your Amiga's disk

drive. Whenever you insert a disk into the drive; an icon

representing that disk appears in this window.

The icon labeled Ram Disk represents a section of the Amiga's

internal memory that is available for temporary data storage.

The Ram Disk acts like a floppy disk in that you can store

information in it and retrieve information from it. However,

the computer can access information on the Ram Disk much

faster than information on a floppy disk.

The contents of the Ram Disk are erased if the Amiga is

turned off.

There is also a pointer on the screen. The pointer is controlled

by the mouse. By positioning the pointer over objects on the

screen and pressing a mouse button, you can start programs,

exit programs, copy disks, rearrange your screen, and much

more.

RAM stands for Ran

dom Access Memory.

You can change the

shape and color of the

pointer with the

Pointer editor in the

Prefs drawer (ex

plained in Chapter 3).

~

1-6 Tutorial

Using the Mouse

The mouse controls the movement of the pointer. When you

move the mouse across your table or desk, the pointer will

move across the screen.

1. Hold the mouse with your thumb and little finger

resting on either side of the mouse. Put your index and

middle fingers over the mouse buttons.

2. Without pressing either button, slide the mouse across

your desk.

As you move the mouse, the pointer moves in the same

direction. If you run out of room before getting the

pointer where you want it, lift the mouse, put it down

where there is more room, and continue moving it.

Lifting the mouse does not move the pointer.

To work with an icon, you must first point to it. When pointing

to an icon, the tip of the pointer must be over the icon. The tip

is where the pointer's "hot spot" is located.

Tutorial 1-7

Once you have the pointer in the right spot, you use a mouse

button to send an instruction to the Amiga. There are two

buttons on the mouse:

selection

button

~ The left mouse button is the selection button; the right mouse

button is the menu button. How to use the mouse buttons is

explained in the following sections.

~

The Selection Button

The left mouse button is the selection button. You use this

button to select icons that you want to use.

Pressing and releasing a mouse button is known as clicking.

Clicking the selection button while pointing to an icon

is known as selecting an icon. When an icon is selected,

it becomes available for use and changes its appearance

in some way.

For instance, the Workbench2.0 icon, along with the other

icons in the Workbench window are enclosed in a box that

appears to be raised above the screen.

Throughout this chap

ter, you are reminded

that the selection but

ton is on the left, and

the menu button is on

the right. These re

minders only appear

in this chapter.

1-8 Tutorial

If you accidentally

click the mouse but

ton twice, a new win

dow will appear on

the screen. Don't wor

ry about this, fust

leave it there, and con

tinue on with the tuto

rial

unselected icon -

selected icon

1. Point to the Workbench2.0 disk icon, and press and

release the selection (left) button.

When the Workbench2.0 icon is selected, it appears to

sink into the screen. An icon will remain selected until

you click on another icon or an empty part of the screen.

Uorkbench 2.8 928376 graphics nen 912872 other nen

□I Workbench

Ran Disk

Workbench 2,8

2. While the Workbench2.0 disk icon is selected, point to

it, hold down the selection (left) button, and move the

mouse.

A copy of the icon will move across the screen. When

you release the mouse button, the icon will move to the

new location. This is known as dragging.

You can drag any icon by pointing to it, holding down the

selection button and moving the mouse. You can also drag

windows and screens. This is explained further in a later

section.

Tutorial 1-9

"

~

The Menu Button

The right mouse button is the menu button. When this button

is held down, a menu bar appears across the top of the screen.

The menu bar shows the headings of any menus that are

available to you. A menu is a list of options, known as menu

items, that is provided by the software you are using.

1. Hold down the menu (right) button.

The menu bar appears across the top of the screen. It

consists of four menu headings: Workbench, Window,

Icons, and Tools. Each of these menus is explained in

detail in Chapter 2.

Workbench Window Icons Tools
menu bar

o Workbench

Ran Disk

Horkbench2.B

\<\>\/]

~
The next section of this tutorial explains how to choose an

item from a menu.

1-10 Tutorial

Quick Review

Moving the mouse moves the pointer across the

screen.

The left mouse button is the selection button.

Pressing and releasing the selection button while

pointing at an icon makes that icon available for use.

This is known as selecting an icon.

Holding down the selection button while moving

the mouse drags the selected icon to a new location

on the screen.

The right mouse button is the menu button. Holding

down the menu button causes the menu bar to

appear.

Tutorial Ml

^

~

~

Most programs allow you to interact with the Amiga through

menus. For instance, you can rename an icon or copy a file by

choosing menu items from the various Workbench menus.

While menus may vary from program to program, the steps

involved in choosing an item from a menu are the same for all

Amiga software.

The following example shows you how to choose a menu item

from the Icons menu.

1. Point to the Workbench2.0 icon on your screen, and

click the selection (left) button.

The icon will change color and will appear to sink into

the screen. This indicates that the icon is selected. (If

the icon is still selected from Step 3 of the "Using the

Mouse" section, it will already be highlighted. Selecting

it a second time has no effect.)

2. Hold down the menu (right) button, and point to the

Icons heading in the menu bar.

A list of options, known as menu items, will appear.

Workbench Window

□ Workbench

Ran Disk

n

Wl

Horkbench2.8

Icons

Open

Copy
Renane...

Infornation...

Snapshot
UnSnapshot

Leave Out
Put fiuay

Delete...

Fornat Disk,..
Enpty Trash

Using Menus

El 5

<\>U

Icons menu

1-12 Tutorial

Open menu item

3. Without releasing the menu (right) button, move the

pointer down to the Open menu item.

Notice that when you point to Open, it is highlighted.

Workbench Hindou Iconsl

HorKPench"

m
Ran Disk

m

Horkbench2.l

Copy *n

Renane,..

Infornation.,,
Snapshot

UnSnapshot
Leave Out

Put flway

Delete...

Fornat Disk...
Enpty Trash

4. While Open is highlighted, release the mouse button.

The Workbench!.0 disk window will appear on the

screen.

Mouse shortcut: Another way to open an icon is to point to the

icon and double-click [quickly click twice) the selection (left)

button,

Keyboard shortcut: You don't always need to use the mouse to

choose a menu item. You can often get the same result by

pressing two keys on the keyboard — right Amiga and a

corresponding letter. Keyboard shortcuts are shown to the right

of the menu item.

For instance, to choose Open from the Icons menu, you can

press right Amiga-O. (Press right Amiga, keep holding it down,

press 0, then release both keys.)

Tutorial 1-13

^

~

Ghosted Menu Items

At certain times some menu items are not available for use.

The unavailable items arc displayed less distinctly than the

others. These items are ghosted and will not be highlighted

when the pointer passes over them.

Workbench

ghosted menu items

~

Usually menu items are ghosted because something on the

screen must be selected before the menu can be used. For

instance, if you haven't selected an icon, you cannot choose

any of the menu items in the Icons menu.

Quick Review

Before choosing a menu item, the icon, window, or

screen that you want to work with must be selected.

To choose the menu item, hold down the menu

(right] button, highlight the menu item by pointing

to it, and release the menu button.

1-14 Tutorial

Working with Windows

When you open a disk or drawer icon, a window appears. A

window is a rectangular area on the screen that displays

information, such as graphic images and text, and allows you

to work with that information. If you were following the steps

explaining how to use the menus, you should have two

windows on your screen: the Workbench window and the

Workbench2.0 disk window.

The Workbench window contains icons for the Ram Disk, for

floppy disks that have been inserted into a disk drive, and for

any hard disks that are installed in the system. (You can also

add other types of icons to the window. This is explained in the

"Icons Menu" section of Chapter 2.)

disk icon

drawer icon

Workbench 2.8 941792 graphics nen 995888 other nen

d| Workbench Ena

Horkbench2.B

p| Horkbench2.8 %% full, 39K free, 83% in

Shell
Expansion System Monitors

WBStartup Utilities

Prefs

Trashcan

The WorkbenchLO disk window contains several drawer icons.

Drawers are subdivisions of a disk that are used to organize the

information on that disk.

Tutorial 1-15

^

~

close gadget

If you have a hard disk system, the System2.0 disk window

contains drawers for both the Workbench2.0 and Extras2.0

disks. While your window contents may look slightly different

than the windows shown in this manual, you can still follow

this tutorial.

The Amiga is a multitasking computer. This means that it is

possible to have more than one program running at a time.

For instance, you could have a calculator, a word processing

program, and a spreadsheet all open and running at the same

time. This usually results in several windows open at once,

with the windows overlapping each other.

However, only one window at a time can be active (capable of

accepting information). The frame of the active window is a

different color from the other windows on the screen.

Take a look at the border of the Workbench2.0 disk window. It

contains several boxes, known as gadgets, that let you control

the window in many ways, including moving the window,

changing the size of the window, scrolling (moving) the

contents of the window, and closing the window.

Workbench 2.B 941792 graphics nen 995908 other nen

orkbench

Ran~DTslc o| Horkbeneh2.B 96* fuU, 39K free, 839K in use

Horkbench2.B
Expansion Systen Honitors

<\>\A

zoom gadget

depth gadget

scroll gadget

sizing gadget

1-16 Tutorial

These are some of the most common gadgets found in

windows on the Amiga. Depending on the software you are

using, windows can contain any combination of these gadgets.

Some windows have gadgets particular to their software. For

instance, a window in a paint program may have gadgets that

let you choose colors, brushes, magnifications, or other

specialized functions.

The gadgets in the Workbench window are briefly explained in

the following sections. Complete information on standard

system gadgets is available in Chapter 2.

The Title Bar

The title bar identifies each window. The title bar of the

Workbench2.0 disk window contains the name of the window

and information as to the amount of data contained on the

Workbench2.0 disk. When a drawer icon is opened, the title bar

of the drawer window displays the name of the drawer.

You can also use the title bar to drag a window across the

screen.

1. Point to the title bar of the Workbench2.0 disk

window.

2. Hold down the selection (left) button, and move the

mouse.

An outline of the window will appear and will move in

the same direction as the mouse.

Tutorial 1-17

""

~

Workbench 2,9 941792 graphics nen 995888 other nen

ol Workbench

Ran Disk

Horkbench2,8

a I Horkbench2.8 96K full, 39K free, 833K in useEJlQ

Expansion Systen Monitors

title bar

3. Release the mouse button.

The window will move to its new location.

^

The Depth Gadget

The depth gadget lets you move a window to the front of the

sereen or push it behind any other open windows. This is

useful when you have several windows open and the one you

need is not at the front of the screen.

If you've been following this tutorial, there should be two

windows open on your screen: the Workbench window and the

Workbcnchl.O disk window.

-

1-18 Tutorial

depth gadget

1. Point to the depth gadget on the Workbench window,

and click the selection (left) button.

The Workbench window moves to the front of the

screen. The Workbench2.0 disk window has not been

closed. It is just hidden behind the larger Workbench

window.

Workbench 2.8 941792 graphics neti 995888 other nen

2. Point to the depth gadget on the Workbench window,

and click the selection (left) button again.

The Workbench window will be pushed to the back of

the display, and you will be able to see the

Workbench^.0 disk window again.

The action of the depth gadget depends upon the window's

location. If the window is behind another window, selecting

the depth gadget brings it to the front of the screen. If the

window is at the front of the screen, selecting the depth gadget

sends it to the back. You can also send a window to the back of

the screen, regardless of its current position, by holding down

Shift and selecting the depth gadget.

Tutorial 1-19

The Zoom Gadget

~

*

The zoom gadget changes the size of a window. This is helpful

when you have several windows open on the screen. You can

move unneedcd windows out of the way by making them

smaller with the zoom gadget.

Selecting the zoom gadget on the Workbench2.0 disk window

reduces the size of the window.

1. Point to the zoom gadget in the Workbench2.0 disk

window, and click the selection (left) mouse button.

The Workbench2.0 disk window becomes smaller.

Workbench 2,8 949344 graphics nen 1B39128 other nen

Q Workbench

Ran Disk

Horkbench2.9

2. Click on the zoom gadget again.

The Workbench window returns to its previous size and

position.

In general, if a window is small when it is opened, selecting the

zoom gadget will make it large. If a window is large when it is

opened, selecting the zoom gadget usually makes it smaller. If

you change the size or position of a window, the window will

use that new size or position when the zoom gadget is selected.

zoom gadget

1-20 Tutorial

sizing gadget

The Sizing Gadget

Another way to change the size of a window is by using the

sizing gadget. This is an easy way to change a window's size so

that you can see other information on the screen.

1, Point to the sizing gadget in the lower right corner of

the Workbench window.

2. Hold down the selection (left) button, and move the

pointer up and to the left.

The window becomes smaller as you move the mouse.

Workbench 2.8 949344 graphics Men 1939128 other ntn

d| Workbench

RanTisk o[Norkbench2.il 9

Workbench;.8

<\>U

3. Release the mouse button.

The window stays the smaller size.

You can enlarge the window by pointing to the sizing gadget

and dragging the window down and/or to the right.

Tutorial 1-21

The Scroll Gadgets

^

When a window is small, you cannot always sec all its icons.

You can tell whether all the icons arc visible by looking at the

scroll gadgets that run along the right side and bottom of the

window. The scroll gadgets are made up of scroll boxes, scroll

bars and scroll arrows.

Workbench 2.8 941792 graphics nen 995888 other nen

□ I Workbench

ai H«*btnth2.8 »< full, 3* free, 83* in

rj
Horkbench2.l "Shell

Expansion Systen Monitors

HBStartup Utilities

Prefs

Trashcan

scroll bar

scroll box

scroll arrows

The scroll bars are the highlighted areas inside the scroll boxes.

The bars change size depending on how much of the window's

contents are visible. When the scroll bar completely fills a

scroll box, all of the icons are visible.

^

1-22 Tutorial

scroll bar

scroll box

When some of the icons in the window are not visible, the

scroll bars shrink and only fill part of the scroll box.

.9 949344 graphics nen 1639128 other nen

□ I Workbench ElB

Ran Disk

Horkbench2.l

a I

By dragging the scroll bars, you can see the hidden icons

without changing the size of the window. If you were following

the steps on how to use the sizing gadget, your Workbench2.0

disk window should be small, as shown above. If not, use the

sizing gadget to make the window smaller.

1. Point to the scroll bar along the right side of the

window.

Tutorial 1-23

""
2. Hold down the selection (left) button, drag the scroll

bar down, and release the mouse button.

Drag the scroll bar into the empty space of the scroll

box. For instance, if the bottom of the scroll box is

empty, drag the scroll bar down so that the bottom of

the box is full and the top is empty. When you release

the mouse button, you will sec the icons from the

bottom of the window.

~

Workbench 2,8 949344 graphics nen 1839128 other nen

□ Workbench

Ran Disk

WorkbenchZ.B

bottom left

corner of

window is

visible

~

3. Point to the scroll bar in the bottom of the window.

4. Hold down the selection (left) button, and drag the

scroll bar to the right.

When you release the mouse button, you can see the

icons from the right side of the window.

1-24 Tutorial

The location of the scroll bar indicates what part of the

window is currently visible. For instance, if the scroll bar is in

the lower portion of the right scroll box, you arc looking at the

bottom of the window.

Another way to move the scroll bar is to point in the empty

area of the scroll box and click the selection (left) button. The

scroll bar will move to the empty area.

The scroll arrows also allow you to scroll through the viewing

area of the window. The direction of the arrow determines in

which direction the viewing area will move.

1. Point to one of the scroll arrows in the lower right

corner of the Workbench2.0 disk window.

2. Click the selection (left) button.

The viewing area will move in the direction of the

arrow.

If you hold down the selection (left) button, the viewing area

will move more quickly.

Tutorial 1-25

The Close Gadget

When you are finished working in a window, you can use the

close gadget to remove it from the screen.

1. Point to the close gadget in the Workbench2.0 disk

window.

~

~

Workbench 2.B 941792 graphics Hen 995880 other nen

□I Workbench

HI
Ran Disk

HI
Horkbench2,l

Horkbench2,8 96x full, 3* free, 83* in y«EJE

Expansion Systen Monitors

EIB

2. Click the selection (left) button.

The Workbench2.0 disk window disappears.

Be especially careful of the close gadget on the Workbench

window. When you select this gadget, a requester asks you if

you are sure you want to quit the Workbench. If you close that

window, you cannot access any of the Workbench programs.

Note: You do not want to close the Workbench at this time.

Cases in which you may want to do so are explained later in

this manual.

close gadget

A requester is a mes

sage from the system.

It is a box that ap

pears on the screen

and has gadgets that

let you select a course

of action.

1-26 Tutorial

Quick Review

The title bar displays the name of the window and

information about its contents. By pointing to the

title bar, holding down the selection (left) button and

moving the mouse, you can drag a window to

another area of the screen.

Selecting the depth gadget of the front-most window

moves that window behind any other open

windows. If a window is behind another window,

selecting its depth gadget brings it to the front of the

screen. Holding down Shift and selecting the depth

gadget sends a window to the back of the screen.

Selecting the zoom gadget changes the size of a

window. Selecting it again returns the window to its

previous size and position.

By dragging the sizing gadget, you can expand or

shrink the size of a window.

Dragging a scroll bar enables you to see the hidden

areas of a window. Another way to move a scroll bar

is by pointing to the empty area of the scroll box and

clicking the selection (left) button.

Selecting a scroll arrow scrolls the viewing area of

the window in the direction of the arrow. Pointing to

a scroll arrow and holding down the selection (left)

button moves the viewing area more quickly.

Selecting the close gadget removes a window from

the screen.

Tutorial 1-27

~ Making Backup Copies of Disks

~

~

One of the most important things for you to do is to make

backup copies of all your disks. A backup copy is simply a

duplicate of an original disk. It is important to use the backup

as your everyday working disk and to store the original disk in

a safe place. This way if the working disk is ever damaged, you

can make another copy from the original disk.

Most application software allows you to make a backup copy.

Generally when you purchase a program, it includes a licensing

agreement. Be sure to read the agreement to learn exactly how

many copies you are allowed to make. Making and distributing

unlicensed copies of disks is a copyright violation (also known

as software piracy) and is illegal.

To copy your Workbcnchl.O and Extras2.0 disks, you need two

blank 3.5 inch disks that are write-enabled (able to accept

information}. This means that the small plastic tab in the

corner of the disk must be covering the hole.

write-protected

write-enabled

1-28 Tutorial

When copying your disks, you'll notice that the Amiga often

instructs you to insert disks into specific disk drives. It refers

to these drives by their drive names. The drive names for the

various Amiga models are shown below.

Location of Drive

1st internal drive

2nd internal drive

1st external drive

2nd external drive

A500

DFO:

n/a

DF1:

DF2:

A2000/A3000

DFO:

DF1:

DF2:

DF3:

You can refer to a disk by its volume name, the name that is

under its icon, or you can refer to a specific disk drive by its

drive name. For instance, if you tell your Amiga to copy the

disk in DF1:, it will copy whatever disk is in drive DF1:.

(A colon must always follow the volume or drive name.) Be

careful when specifying a drive name when saving or copying

files. Make sure you know which disk is in which drive or you

could accidentally save or delete files on the wrong disk.

When copying your disks, you will review most of the basics

that you have just learned. If you only have one floppy drive,

please read the next section. If a second floppy drive has been

added to your Amiga, skip ahead to the section titled "Using

Two Disk Drives," on page 1-33.

Even if you have a hard disk system, you should still make

backup copies of your original disks just to be safe. This will

also give you practice in copying disks.

Tutorial 1-29

Using One Disk Drive

~

~

When you use only one disk drive to copy your disk, the

system reads information from the Workbench!.0 disk [the

source disk) into the Amiga's internal memory. Then, you have

to remove the Workbench2.0 disk from the disk drive and

insert a blank disk [the destination disk). The information is

then written to the blank disk. This is known as a disk swap.

You may have to swap disks several times before the copy is

completed. The steps involved arc outlined below.

1. The Workbench2.0 disk should be in the internal disk

drive, known as DFO:.

2. Point to the Workbench2.0 icon, and click the selection

(left) button.

The icon is now highlighted.

3. Hold down the menu (right) button.

The menu bar appears.

4. Point to the Icons menu, move the pointer down to the

Copy menu item, and release the menu button.

Workbench W indou Icons!

Ran Disk

r
\m

Horkbench2.B

Kena

lnfornat ion... ©I

Snapshot OS
UnSnapshot

Leave Out QL

Put flu ay CJP

Delete...

Fornat Disk.,,

Etipty Trash

Copy menu item

1-30 Tutorial

swap requester -

Continue gadget

A requester appears and shows how many times you

will have to swap the disks. The number of swaps

depends on the amount of memory available to the

Amiga. If you have enough memory in your system that

the disk copy will take fewer than 5 swaps, this

requester may not appear.

PiskCopy

Warning: This will take 5 suaps.

Fewer disk swaps are needed if

other tools are closed.

Horkbench2,B

fill
DFBlBUSY

5. Point to the Continue gadget, and click the selection (left)

button.

A second requester asks you to insert the source disk,

Workbench!.0, into drive DFO:, the internal disk drive.

Tutorial 1-31

"

~

~

Put SOURCE disk

(FROM disk) in drive 0F8:

Cont^jue t^ju

Workbench;.*

DFBIBUSY

6. Since the disk is already in the drive, simply point to the

Continue gadget in the requester, and click the selection

(left) button.

The text in the requester will show how many cylinders

have been read and how many are left.

After the Amiga has read as much information as it can

from the source disk, a third requester instructs you to

insert the destination disk into drive DFO:.

Make sure the disk drive light is out before removing

the Workbench2.0 disk from the drive.

Continue gadget

A cylinder is a phys

ical division of a disk.

The 3.5 inch disks

used with the Amiga

have 80 cylinders

numbered 0-79.

1-32 Tutorial

Continue gadget

DiskCopy iq

Put DESTINRTION disk

(TO disk) in drive DFB:

Continue j Cancel |

Horkbentb2.8

m
DFBlBUSY

i

V

7. Put your blank disk into the drive, then select the

Continue gadget.

Point to the Continue gadget in the requester, and click

the selection (left) button. The data that was read into

memory is copied to the blank disk.

To finish copying the disk, follow the requesters that

appear and switch back and forth between the

Workbenchl.O disk and the backup disk as many times

as requested by the system. (Be sure the drive light is

out before ejecting a disk from the disk drive.) When the

copy is finally finished, the message Disk Copy Finished

appears on the screen.

8. Remove the backup disk from the drive and put an

adhesive label on it.

Write the name of the disk on the label.

Tutorial 1-33

"

~

The procedure is the same for copying the Extras2.0 disk

except for one small detail. After you choose Copy from the

Icons menu, a requester asks you to insert the Workbench2.0

disk into any drive. The Amiga must load the DISKCOPY

program on the Workbench2.0 disk before it can begin copying

the Extras2.0 disk.

At this point, be sure to use your original Workbench2.0 disk.

A second requester asks for the Extras2.0 disk, and from there

the procedure follows the steps outlined above. Always be

sure to read the exact text in a requester and follow the

instructions.

Hard Disk users will not see the requester that asks for

Workbench2.0, since the Amiga can read the necessary

program from the hard disk,

The backup disks are named copy_of_Workbench2.0 and

copy_of_Extras2.0. You'll learn how to rename the disks on

page 1-38.

~

Using Two Disk Drives

When only one floppy drive is available, the system reads

information from the source disk (the disk that is being copied)

into the Amiga's internal memory. Then the source disk is

removed from the disk drive, and the destination disk (the

blank disk] is inserted. The information in memory is then

copied to the blank disk. This is known as a disk swap. The

disks may have to be swapped several times, depending on how

much memory is available.

1-34 Tutorial

When you have a second disk drive added to your Amiga, you

can save time by putting the Workbcnch2.0 disk (the source

disk) into one drive and the blank disk (the destination disk]

into the other. This way the Amiga can copy directly from one

disk to the other. This eliminates the need to swap disks and

allows the disk duplication to proceed much faster. The steps

involved are outlined below.

1. Insert the Workbench2.0 disk into the Amiga's original

internal drive, known as DFO:.

2. Insert the backup disk into your second drive.

A new disk icon appears on the screen. Since it is

a brand-new disk, the icon is labeled DF1:???? or

DF2:????, depending on which disk drive it is in. At this

point, there is no information on the disk. Therefore,

the computer sees it as an unknown disk.

Workbench 2.8 939168 graphics nen 987912 other nen

a I Workbench EllS

m
Ran Disk

Horkbench2.l

DF2:????

3. Point to the Workbench2.0 disk icon, and press the

selection (left) button.

Tutorial 1-35

"*

~

~

4. Continue to hold down the selection (left) button, and

drag the Workbench2.0 disk icon over the icon for the

blank disk.

Workbench 2.6 949488 graphics nen 997356 other nen

d Workbench Ej

Ran Disk

\\m
Norkbench2,i

0F2????:

dragging

Workbench2.0

disk icon

5. Release the mouse button.

A requester will ask you to insert Workbcnch2.0 into

drive DFO: and to insert the destination disk into your

second drive (DF1: or DF2:, depending on your system

configuration).

DiskCopy

Put Uorkbench2,e
(FROM disk) in drive DFB:

Put DESTINflTION disk
(TO disk) in drive DF2:

Horkbench2

DF2IBUSY

DF8:BUSY

Continue gadget

1-36 Tutorial

A cylinder is a phys

ical division of a disk.

The 3.5 inch disks

used with the Amiga

have 80 cylinders,

numbered 0 to 79.

6. Since the disks are already inserted, simply point to

the Continue gadget in the requester and click the

selection (left) button.

The Amiga will read the information on the

Workbench!.0 disk and copy it to the destination disk.

A requester shows the number of cylinders that have

been copied and the number of cylinders left to be read.

7. When the disk copy is finished, make sure that both

drive lights are out and remove the backup disk from

the drive.

8. Put an adhesive label on the new backup disk.

Write the name of the disk on the label.

The procedure is the same for copying the Extras2.0 disk

except for one small detail. After you drag the Extras2.0 disk

icon over the blank disk's icon, a requester asks you to insert

the Workbench2.0 disk into any drive. The Amiga needs to

load the DISKCOPY program from the Workbench2.0 disk

before it can begin copying the Extras2.0 disk. A second

requester asks you to replace the Extras2.0 disk, and from there

the procedure follows the steps outlined above.

Hard Disk users will not see the requester that asks for

Workbench2.0, since the Amiga can read the necessary

program from the hard disk.

The backup disks are named copy_of_Workbench2.0 and

copy_of_Extras2.0. You'll learn how to rename the disks in the

next section.

Tutorial 1-37

"

~

Quick Review

With one disk drive:

Select the icon for the disk to be copied. Choose Copy

from the Icons menu. You'll have to swap back and

forth between the source disk (the disk being copied]

and the destination disk. Follow the instructions in the

requesters that appear on the screen. When the Disk

Copy Finished message appears, wait for the disk drive

light to go out, then remove the disk from the drive.

With two disk drives:

Drag the icon for the disk to be copied over the icon of

the destination disk. A requester will appear

confirming that the disks are in the appropriate drives.

Select Continue, and the disks will be copied. Be sure

all disk drive lights are out before removing the disks

from the drives.

~

1-38 Tutorial

Renaming Your Backup Disks

Rename menu item

After copying your WorkbenchLO and ExtrasLO disks, you

should rename the backup disks, removing the words

copy_of_ from the names. To rename a disk:

1. Put the copy-of-Workbench2.0 disk in the disk drive.

2. Point to the copy-ofJWorkbench2.0 icon, and click the

selection (left) button.

3. Hold down the menu (right) button, point to the Icons

menu heading, then move the pointer down to the

Rename menu item.

Rename is highlighted.

Horkbench Uindou

a I Horkbench

Ran Disk

HI
HorkDench2.8

IT""
\\m

copy_of_Horkbench2.1

InfornaVron.,.

Snapshot
UnSnapshot

Leave Out

Put fluav

Delete...
Fornat Disk..,

Enpty Trash

Tutorial 1-39

^

~

4. Release the menu (right) button.

A requester will appear containing the words

copy_of_Workbench2.0.

Workbench Screen

□I Workbench ale

Ml
Ran Disk

Horkbench2.l

Enter a new nane for 'copv_of_Horkbench2.B'.

Neu Nane: |copy_of_Horkbench2.81

copy.of.Workbench?,0

text gadget

cursor

5. Delete copy_oL_.

Move the cursor to the beginning of the text gadget. To

do this you can use the left cursor key, press Shift-left

cursor, or click on the C in copy. Then use Del to erase

copy_of_. Each time you press Del, the character under

the cursor will be deleted.

cursor

keys

Be sure to erase the underscore before the W.

1-40 Tutorial

6. Press Return.

The requester disappears and the disk icon is now

named Workbcnch2.0.

Follow the same steps to rename copy_of_Extras2.0 to

Extrasl.O.

Rebooting the Amiga

* HD1

Now that you have a working copy of your WorkbenchZ.O disk,

you can reboot the computer with that disk. Reboot is the term

used to describe the process of resetting the Amiga without

turning the power off. Rebooting eliminates any data stored on

the Ram Disk and abruptly terminates any programs that are

running.

Hard disk users can reboot directly from the hard disk. If

the Workbench!.0 disk is in your floppy drive, remove it.

Otherwise, the Amiga will boot from the floppy disk instead of

the hard disk. Skip to step 2.

1. Insert your working copy of the Workbench2.0 disk

into the Amiga's disk drive.

If your Amiga has more than one floppy disk drive, it

does not matter which drive you use. The Amiga checks

each drive to sec which one contains a bootable disk. (A

bootable disk is one that contains the files the Amiga

needs to start operation.) However, if the Amiga does

Tutorial 1-41

"
not find a bootable disk in any drive, it displays the

animated screen.

At this point, a bootable disk must be inserted into

drive DFO: in order for the Amiga to boot. The Amiga

will not check any of the other drives after the initial

search.

2. Wait for the disk drive light to go out, then hold down

Ctrl (Control), left Amiga, and right Amiga.

All three keys must be held down at the same time.

left Amiga right Amiga

~

Just as you should never remove a disk from the drive

while the floppy drive light is on, you should also never

reboot or turn off the Amiga when a floppy disk or hard

disk drive light is on. Be sure to wait for all disk

activity to stop.

The Workbench screen will appear just as it did when you

booted with the original Workbench!.0 disk. Once you have

rebooted with your working copy of Workbench, store the

original disk in a safe place.

1-42 Tutorial

Using Application Software

Application software refers to the programs available for use

with your Amiga, such as databases, video and sound

programs, or CAD (computer-aided design) packages.

When you purchase application software, be sure to read the

documentation included with the software to learn how to use

the program.

Some application software is supplied on a bootable disk.

This means that you can insert the program disk into the

Amiga's disk drive, turn on (or reboot) the Amiga, and get

started. You usually do not need to use the Workbench!.0 disk.

Just as you made a backup of your Workbench!.0 disk, you

should always make a backup of your program disks. (Most

application software will allow you to do this, although some

programs may be copy-protected. Some programs may also

place restrictions on your right to make backups. Please

consult your license agreement packaged with the application.)

Store the original program disk in a safe place, and use the copy

as your working disk. This way if anything ever happens to

damage the disk, you can make another copy from the original.

Hard disk users should consult the program's documentation

(and Chapter 6 of this manual] to learn how to copy the

program to their hard disk. This allows you to run the program

directly from the hard disk instead of from the floppy disk,

increasing the speed of operation.

Tutorial 1-43

~

~

~

When you boot with a program disk, the program may

automatically start (this is common when loading games,

animated demonstrations, etc.), or you may be presented with

a Workbench screen. If a Workbench screen appears, you may

need to open the program disk icon, then another program icon

to get started. Again, this procedure varies, so be sure to read

the documentation packaged with the program.

No matter what type of application software you are using, you

will undoubtedly want to save your work. In general, it is a

good idea to save your work on disks other than the program

disks. You should also make a copy of your original program

disk(s), and use the copy as your working disk.

For instance, when using a word processing program, you will

want to keep your data files on a separate disk, or data disk.

Your data files contain the documents you create with your

word processor. One reason for using a separate disk is that

there may not be much extra room on the program disk.

Another reason is to safeguard your program disk against

accidental damage. If possible, you should keep the disk write-

protected. The small plastic tab in the corner of the disk should

not be covering the hole. This way you can't erase or write over

any files stored on the disk.

1-44 Tutorial

Formatting a Disk

Before you can use a disk for data storage, you must first format

the disk. The magnetic surface of a blank disk is one large

continuous area. When a disk is formatted, the Amiga's

operating system (AmigaDOS) divides that area into

manageable sections so that it can easily find stored

information. An easy way to do this is with the Format Disk

menu item in the Icons menu.

The following steps explain how to format a blank disk. You

may want to try this now so that you know how to do it in the

future. Or, you may want to come back to this section when

you need a formatted disk. It might be a good idea to format at

least one disk now, so that you have one readily available when

you need it.

1. Insert a blank disk into the disk drive.

The disk icon is labeled DFO:????, DF1:????, or DF2:????,

depending on which disk drive it is in. Make sure the

disk is write-enabled.

blank

disk icon

Norkbench 2.9 939168 graphics nen 987912 other nen

HI
Ran Disk

m
Horkbench2.8

Six
DFB:????

Tutorial 1-45

^
2. Point to the disk icon, and click the selection (left)

button.

The icon will be highlighted.

3. Hold down the menu (right) button, point to the Icons

menu, move the pointer down to Format Disk, and

release the menu (right) button.

Workbench Hmdou

~

~

m
Ran Disk

Workbench. 8

Icons!

Open GO

Copv ©(
Renane,,, QR

Infornat Ion... CJI

Snapshot ©S
UnSnapshot

Leaue Out CJL

Put fluay OP

Delete...

lira
DFB:????

SIB

4. A requester will ask you to insert the Workbench2.0

disk in any drive. Insert the Workbench2.0 disk, point

to the Continue gadget, and click the selection (left)

button.

The Amiga must load a program from the

Workbench2.0 disk before it can format the blank disk.

If you have a hard disk system, you will not see this requester.

Skip to step 5.

Format Disk

menu item

1-46 Tutorial

Continue gadget

5. A requester asks you to insert the disk to be formatted

into the disk drive. Insert the disk, point to the

Continue gadget and click the selection (left) button.

Systen Request

Please insert disk

to be formatted in

drive DFB:.

Continue

HorRFench2.e

j

DFB:????

Next, a requester asks you if it is OK to format the disk

in the disk drive. It also reminds you that any data on

the disk will be erased.

Continue gadget

Systen Request

OK to Fornat disk in

drive DFB:

(all data uill be erased) ?

Horkbench2.e

Tutorial 1-47

"
6. Point to the Continue gadget in the requester, and

click the selection (left) button.

Once the formatting process begins, you'll see text in the

requester showing the cylinder of the disk that is being

formatted and verified. When the disk is formatted, its disk

icon is labeled Empty. You can change this to any name you

like by using the Rename item in the Icons menu.

r\

Organizing Information on a Disk

To store information on a disk in a logical manner, disks are

generally divided into drawers. Think of a disk as a filing

cabinet. You wouldn't take all your papers and throw them into

the cabinet. You would put drawers in the cabinet. Then you

would organize the papers into folders and put the folders in

the drawers.

~

1-48 Tutorial

A formatted blank disk does not contain any drawers. If you

were to store all of your files on the formatted disk without

creating any drawers, it would be like throwing your papers

into the drawerless file cabinet. When you opened the disk

window, all the file icons would be in the disk window. If you

had many icons on the disk, you would have to scroll through

the window until you found the correct icon. This could be

quite tedious and time consuming. Instead you should create

some drawers, then put your files into them.

Let's assume that you have several business reports you want

to keep on disk. Perhaps for each month you produce several

reports pertaining to payroll, inventory, sales, office

expenditures/ etc. Here's how you might organize them:

First, you should give your disk an appropriate name. For this

example, we'll name it Reports. To name the disk, use the

Rename item in the Icons menu.

1. Insert the formatted disk into the disk drive.

The formatted disk is labeled Empty.

2. Select the Empty disk icon.

Point to the icon, then click the selection (left) button.

3. Hold down the menu (right) button, point to the Icons

menu heading, then move the pointer down to the

Rename menu item.

Rename is highlighted.

4. Release the menu button.

A requester containing the word Empty appears on the

screen. Use Backspace to erase the word Empty. Type

the name Reports.

5. Press Return.

The disk icon is now labeled Reports.

Tutorial 1-49

^

~

~

Next, you might create four drawers pertaining to the four

quarters of the year: Quarterly Quarter!, Quarter3, and

Quarter4. You can create drawers with the New Drawer menu

item in the Window menu.

1. Open the Reports disk window by double-clicking on

the disk icon.

The Reports disk window appears on the screen.

2. Select the Reports disk window, then choose New

Drawer from the Window menu.

A new drawer, labeled Unnamedl, appears in the

Reports disk window. A Rename requester also appears

to let you change the name of the drawer.

Workbench 2.8 956936 graphics nen 1842632 other nen

d! Workbench □IB

Renane

Ran Disk

HI
Uorkbench2.(

HI
Reports

Enter a new nane for JUnnanedi'.

New Nane! |Unn»ed1L

Unnanedi

Trashcan

Rename requester

New Drawer icon

1-50 Tutorial

Follow step 2 to create each additional drawer. Your window

would look like this:

Workbench 2.8 951896 graphics nen 1838896 other nen

d| Workbench

Ran Disk

kbench2.8

U

Reports

d| Reports 9% full, 877K free, 2K in use

Quarteri Quarter4

Quarter2

Quarter3 Trashcan

You can store files in any of these drawers, but you might

also want to create some drawers within those drawers

corresponding to the different months of the quarter.

For example, within the Quarterl drawer, you might want

drawers for January, February, and March. Again, you can use

the New Drawer menu item.

1. Open the Quarterl window by double-clicking on its

drawer icon.

2. Select New Drawer from the Window menu.

A drawer icon labeled Unnamed 1 will appear in the

Quarterl window. A Rename requester also appears so

you can change the name of the drawer. For this

example, name the drawer [anuary.

Tutorial 1-51

^

^

Create two additional drawers for February and March in the

same way. When you wanted to save the Sales report for

January, you would put it in the January drawer within the

Quarterl drawer.

Workbench 2.9 949169 graphics nen 18298% other nen

d Workbench

Ran Disk

Norkbench2.i

Reports

□IB

a| Reports 18X full, 792K free, 87K in use

Quarterl duarter4

□ Quarterl

Quarter?

Quarter3

DIQ

oj January

January

ana

Sales

Paths

When a program asks you for the name of a file, you must

specify the complete path to the file. The path specifies the

disk name, or location, and all of the drawers that lead to the

specified file.

The manner in which you refer to files varies from program to

program. Some programs may provide separate boxes (called

text gadgets] in which you can enter the disk name, any drawer

names, and the filename. However, sometimes you may need

to enter the complete path on one line. To correctly cite the

path, you must type:

1. The name of the disk followed by a colon. For instance,

Reports:

1-52 Tutorial

You can also substitute the disk's volume name with the disk

drive name — DFO:, DF1:, or DF2:. However, if you do this, be

sure the correct disk is in the drive that you specify.

1. To put a file in the disk window, not in a drawer, specify the

filename after the colon. For instance,

Reports: Sales

The icon for the Sales file would be in the Reports disk

window.

3. To put the file in a drawer, you must first specify the drawer

name, followed by a slash, then the filename:

Reports :Quarter 1 /Sales

The icon for the Sales file would be in the Quarterl window.

You would first have to open the Reports window, then the

Quarterl drawer.

4. However, in this example, there is another drawer —

January. To put a file in the January drawer, you must specify

each drawer, followed by a slash, then the filename:

Reports:Quarterl/January/Salcs

The icon for the Sales file would be in the January window.

You would first have to open the Reports window, the

Quarterl window, then the January drawer.

The chart on page 1-53 gives several examples of how to

determine path names.

Quick Review

To correctly specify a path, you must type:

1. The disk name or drive name followed by a colon,

such as Reports: or DFO:.

2. The complete sequence of drawer names. Each

drawer name must be followed by a slash.

3. The filename.

Tutorial 1-53

^ Sample Path Chart

~

Reports

Quarter!

1

=11

Vendors Quarter2

L_._''2 f>^ii*'MU'(3

January

5

Returns Income CashFlow April May

Sales Sales

Rent

~

The chart above illustrates a typical disk arrangement. If you were to open the Reports disk icon,

you would see the Quarterl and Quarter! drawers and the Vendors file in the Reports disk window.

If you were to open the Quarterl drawer, you would see the |anuary drawer and the Returns and

Income files in the Quarterl drawer window. Open the Quarter! drawer, and you would see the

April and May drawers and the CashFlow file, and so on.

It is possihle to have several files on one disk with the same name. For instance, in this example

there arc three files called Sales. However, each Sales file is in a different drawer. So long as the

correct path to the file is specified, you do not have to worry about replacing one Sales file with a

different Sales file.

The list below shows the correct path to each of the files in the chart:

Reports:Vendors

Reports:Quarter I/Returns

Reports:Quarterl/Income

Reports:Quarter2/CashFlow

Report s:Quarterl /January/Sales

Reports:Quarter2/April/Sales

Reports:Quarter2/May/Sales

Reports:Quarter2/April/Expenses/Rent

1-54 Tutorial

Naming Files

When choosing names for your files and drawers there are a few

rules you must adhere to:

• A filename can be up to 30 characters long.

• Colons (:) and slashes (/] are not allowed within the name.

They are reserved to separate disk names and drawer names

when specifying a path to a file.

• Beware of using spaces before or after filenames as they

are hard to discern on the screen and can cause a lot of

confusion.

• Uppercase and lowercase differences between file names

are not recognized. This is known as case-indifference.

However, the Amiga will use the case you specified when

displaying the filename.

• You cannot have two files with the same name within the

same drawer. If you already have a file named Sales within

the Quarterl drawer, you cannot create a second file also

named Sales. The Amiga will replace the original Sales file

with the new file of the same name.

• You can have two files with the same name in different

drawers. For instance, you could have files named Sales both

in the January drawer of Quarterl and the February drawer.

As long as the paths to the files are different, you will not

have a problem.

Chapter 2. Basic Operations

- In the previous chapter, you learned the basics about using

your Amiga, such as using the mouse to move the pointer,

using menus, and making backup copies of disks. This chapter

reviews what you learned in the tutorial and presents some

more detailed information explaining:

the theory behind the Workbench system

additional mouse techniques

how to respond to requesters

the features of the Workbench screen

special features of windows

standard gadgets used on the Amiga

the different types of icons

the four Workbench menus

^^ If you were following the steps outlined in the tutorial, you

should have rebooted your Amiga with the backup copy of

your Workbench2.0 disk. // you are a new Amiga user and

have not read Chapter 1, you should do so before starting this

chapter.

If you have a hard disk system, you do not need to boot with

your working disks. Reboot your Amiga by pressing Ctrl, left

Amiga, and right Amiga.

The information in this chapter is presented in independent,

easy-to-reference sections. Each section contains both

explanatory text and, in most cases, a step-by-step

demonstration. For instance, if you need to know about a

particular gadget in a window, you can look in the "Windows"

section where there is a subheading explaining that gadget.

When you have finished with this chapter, you will be ready to

use the programs included on the Workbench!.0 and Extras2.0

disks.

2-2 Basic Operations

The Workbench System

The Amiga works with a screen/window/icon/menu/mouse/

pointer system that is available to all applications. This system

is known as the Workbench. Below is a brief explanation of

each of these elements:

pointer-

icon

window

screen

lUorkben. h Hindog Icons Tools

Backdrop

Execute Connand... EJE

Redrau HI!
Update hii

Last Message

Version

D|Horkbench2.B %% full, 39K free, 839K |ElHa

Horkbench2.

Expansion Systen Monitors

screen An area of the display with the same video

attributes. This includes the number of pixels on

each line, the number of colors, and the color

palette. Screens are as big as the display area

(sometimes larger). Several screens can be open at

once, but only one screen at a time can accept

information.

Basic Operations 2-3

~

~

window A rectangular area on the screen that can accept or

display information. Several windows can be open

on a screen at once. Many programs are run in

windows. For instance, you can have a word

processing window and a spreadsheet window open

at the same time on the Workbench screen.

icon A small picture that represents disks, drawers, files

or programs stored on floppy disks, hard disks, or

on other storage devices.

menu A list of options from which you can choose a

specific operation, such as copying a file, renaming

an icon, or organizing the contents of a window.

mouse A small mechanical device used to communicate

with the Amiga. There are two buttons on the

mouse that allow you to select icons to work with

and choose options from menus.

pointer An image that you can move across the screen by

moving the mouse. When you move the pointer

over an icon or to certain areas of the screen, you

can then use the mouse buttons to send a message

to the Amiga.

All of these elements combine to provide the icon-based

environment that you use to interact with your Amiga. It is

this environment that is known as the Workbench.

You can compare the Amiga Workbench to a carpenter's

workbench. When a carpenter is building a cabinet, he spreads

his tools and his materials out upon his workbench and then

proceeds to build the cabinet upon that same surface.

In a similar way, the Amiga Workbench provides you with a

computerized work surface. Think of the pointer, menus and

windows as your tools and of the programs on the

Workbench2.0 disk, or any other application software, as your

2-4 Basic Operations

materials. You use your tools and materials on the Amiga

Workbench to build or create a file, whether it's a text file from

a word processing program, an animation file from a video

program, or a data file from a spreadsheet program.

The main visual component of the Workbench is the

Workbench screen. Even if you are using a commercial

application, chances are that the first screen you see will be

the Workbench screen. Sometimes an application will start

with a specialized screen, but the Workbench screen is usually

present somewhere in the background.

The floppy disk that contains the basic Amiga software is

called the Workbcnch2.0 disk, and when you open this disk the

window that appears is called Workbench2.0. This results in

several elements sharing the Workbench name, but they are all

parts of the Workbench environment.

If you have a hard disk, the Amiga software is on the partition

called System2.0. It contains the exact same software as the

Workbench2.0 and Extras2.0 floppy disks.

There is an alternative, keyboard-based method for

communicating with the Amiga. You can do this through

the Shell program, which is explained in full detail in the

AmigaDOS section of this manual. Many operations can be

performed both through the Workbench and through the Shell.

Basic Operations 2-5

** Mouse Techniques

~

~

The mouse lets you communicate with your Amiga by moving

and positioning a pointer then pressing one of the mouse

buttons. Even though there are only two buttons, there are

many operations that you can perform.

When an instruction tells you to click the mouse button, it

means to press and release the button. Holding down the

mouse button means to press the button until you are told to

release it.

To point to an icon, use the mouse to move the pointer so that

its tip is positioned over the item, as shown below:

Workbench 2.8 926376 graphics nen 912952 other rten

d Workbench

Ran Disk

Horkbench2.B

In Chapter 1, the word right or left was specified in

instructions telling you to press a mouse button. Throughout

the rest of the manual, however, the buttons will be referred to

by their correct names. The left button is the selection button,

and the right button is the menu button.

Click = press and

release

Hold down = press

continually

Point = move pointer

tip so that it is over an

object on the display

pointer

2-6 Basic Operations

I isinv ii

All mouse actions can be accomplished

H (VI 1 lll>lf 1

with the keyboard.

You can use the keyboard to move the pointer, select icons,

and choose menu terns. |A description

be found in your Introducing the Amiga

below outlines the

Operation

Moving the

pointer

Selecting an icon,

window or screen

Dragging

keyboard methods:

Mouse Method

Move the mouse.

Point to an icon,

window or screen.

Click the

selection button.

Point to an icon or

title bar.

Hold down the

selection button.

Move the mouse.

Release the

selection button.

of the keyboard can

manual.) The chart

Keyboard Method

Hold down an

Amiga key and

a cursor key.

(Hold down Shift

to move the

pointer faster.)

Point to an icon,

window, or

screen.

Hold down

left Amiga and

left Alt.

Point to an icon or

title bar.

Hold down

left Amiga and

left Alt.

Use the cursor

keys to move the

pointer.

Release all keys.

Basic Operations 2-7

^

~

Operation Mouse Method

Drag selection Hold down the

selection button.

Move the mouse

to draw a box

around the icons.

Release the

selection button.

Choosing a menu Hold down the

item menu button to

display menus.

Point to a

menu heading.

Point to a

menu item.

Release menu

button.

Cancelling Hold down menu

button while

selection button

is pressed.

The keyboard equivalent to clicking the

is to press left Amiga and left Alt.

The keyboard equivalent to clicking the

is to press right Amiga and right Alt.

Keyboard Method

Hold down left

Amiga and left

Alt.

Use the cursor

keys to move the

pointer to draw a

box around the

icons.

When the box is

drawn, release all

keys.

Hold down

right Amiga and

right Alt to

display menus.

Keep holding

down keys, and

use the cursor

keys to point to a

menu heading.

Keep holding

down keys, and

use the cursor

keys to point to a

menu item.

Release all keys.

Hold down right

Amiga and right

Alt while left

Amiga and left

Alt are pressed.

left mouse button

right mouse button

2-8 Basic Operations

The Selection Button

selected

selected

The left mouse button is the selection button. With this

button, you choose, or select, the icons, windows, or screens

that you want to use. You can also use the selection button to

move, or drag, items around the screen.

Selecting

You need to select an icon, window, or screen before you can

work with it. For instance, when an icon is selected, you can

make a copy of it, change its name, and even delete it.

All icons are surrounded by a box. When an icon is not

selected, the box appears raised above the screen or window

surface.

Workbench 2.8 948224 graphics nm 945458 other nen

a I Workbench

Ran Disk

li m

*\\m
Horkbench2.8

Korkbench2.B 96* full, 39K free, B39K in u

Expansion Systen Monitors

When you select an icon, the box appears to sink into the

screen or window surface. Some icons may change color or

shape when selected. Drawer icons may change from a closed

drawer to an open drawer.

Basic Operations 2-9

To select an icon:

1. Point to the icon.

Make sure the pointer tip is within the icon's box.

2. Click the selection button.

The icon will change to show that it is selected.

If you click the selection button while the pointer is elsewhere

on the screen or window, the icon will no longer be selected

and will return to its original appearance.

To select a screen or window:

1, Click the selection button while the pointer is inside

the screen or window, but not over an icon.

When a window is selected, the frame surrounding the window

changes color. When a Workbench window is selected, the

frame of that window is highlighted and the amounts of

available memory are displayed across the top of the screen.

Selecting Multiple Icons

At times you may want to select several icons at once. When

multiple icons are selected, you can treat them as a single

entity. You can delete, move, or copy the entire group in one

operation.

There are three ways to select multiple icons: drag selection,

extended selection, and the Select Contents menu item,

s~N explained on page 2-62.

2-10 Basic Operations

starting point

end point

Drag selection is a way to select several icons at once by using

the mouse to draw a box around them. To do this:

1, Move the pointer just outside of the outermost icon you

want to include in the box.

Do not let the pointer touch any icons.

2. Hold down the selection button, and move the mouse.

As you move the mouse, a dotted box will be drawn.

Norkbench 2.9 948273 graphics mm 99568B other nen

: Workbench

RaTlHsk g| Horkbench2.B 96% full, 39K free, 839K in

Shell ' Expansion Systen Monitors

3. When the box encloses the icons that you want to

select, release the mouse button.

All of the icons inside the dotted box will be selected.

Extended selection is useful when the icons you want to select

are not in a group that you can enclose in a box. To use

extended selection:

1. Select the first icon.

2. Hold down Shift.

3. Select the other icons.

While holding down Shift, point to each icon and click

the selection button.

4. Release Shift.

Each icon you have clicked on will be selected.

">
Double-clicking

Double-clicking means clicking the selection button twice in

rapid succession. When you point to an icon and double-click

the selection button, a window appears or a program is started.

Dragging

Dragging is the act of moving an icon, window, or screen.

Bask Operations 2-11

can adjust the

time allotted for a

double-click with the

Input Editor, ex

plained on page 3-7.

~

Dragging an Icon

You can move an icon into another window by dragging it out

of the original window and into a new window. You can also

copy and delete icons by dragging them to certain areas on

the screen or in a window. (This is explained in the "Icons"

section.)

2-12 Basic Operations

dragging the

Utilities drawer

To drag an icon:

1. Point to the icon.

2. Hold down the selection button, and move the mouse.

A copy of the icon will move with the pointer.

Horkbench 2.8 948224 graphics nen 1925128 other nen

d I Horkbench

RaTDisk 1 Horkbench2.fl %% full, 39K free, 8:

Uorkbench2.8 Shell Expansion Systen Monitors

HBStartup Utilities

Prefs

Trashcan

3. Release the selection button when the icon is

positioned where you want it.

If you have selected several icons, you can drag all of the icons

at once. Hold down Shift, point to one of the icons, hold down

the selection button, and move the mouse. All the selected

icons will move as you move the mouse.

Dragging a Window

When you have several open windows on the Workbench

screen, they may overlap each other. You can move the

windows around by dragging them. This helps you see the

information presented in all the windows.

Basic Operations 2-13

^

~

To drag a window:

1. Point to the top border of the window, but make sure

the pointer is not over any of the square gadgets at

either corner of the border.

This area is known as the window's title bar.

2. Hold down the selection button, and move the mouse.

An outline of the window appears and moves across the

screen.

Workbench 2.8 941792 graphics nen 995696 other nert

Workbench □is

o| Horkbench2.B %% full, 39K free, 839K in use Ell B

Workbench?,8
Expansion Systen Monitors

3. Drag the outline to where you want the window, then

release the selection button.

When you release the selection button, the window

appears in the new location.

Dragging a Screen

With the Amiga, it is possible to have more than one screen

open at a time. For instance, you can have your Workbench

screen, a terminal program screen that lets you communicate

with other computers, and a text editor open at the same time.

You can see parts of each screen by dragging them.

title bar

2-14 Basic Operations

title bar

To drag a screen:

1. Point to the screen's title bar.

This is the area across the top edge of the screen.

2. Hold down the selection button.

3. Move the mouse down.

flnigaTern VLB.3 Terminal OK

Horkbench2.B 96* full, 39K free, 839K in use E31Q

To expose a screen, you can only drag the front screen down,

not up. However, if a screen is larger than the monitor's display

area, you can drag it up or down or side-to-side so that you can

see all areas of the screen.

An alternative method for dragging a screen is to:

1. Place the pointer anywhere on the screen.

2. Hold down left Amiga.

3. Hold down the selection button and move the mouse up

or down.

Basic Operations 2-15

" The Menu Button

The right mouse button is the menu button and is used to

display menus and to choose items from them.

You can also use the menu button to cancel an operation that is

being performed with the selection button, such as drag

selection. Cancelling is described at the end of this section.

Using Menus

To see the available menus, hold down the menu button, and

menu headings will appear across the top of the screen. The

Workbench has four menus: Workbench, Window, Icons, and

Tools.

menu bar

Horkbench Hindou Icons Tools

m
Ran Disk

Horkbench2,l

To see the items in a menu, keep holding down the menu

button and point to the different menu headings. When the

pointer touches any part of the heading, the available items

will be listed beneath the heading.

2-16 Basic Operations

ghosted menu item

ghosted menu

Not all menu items are available at all times. The unavailable

items are ghosted (not displayed clearly) and will not be

highlighted when the pointer passes over them.

I Work bench Hindou Icons Tools

Backdrop EJB
Execute Cormand... EJE

Redraw HI I
Update fill

Last Mefisige-
Version
Quit... OQ

Horkbeiuh2.B

Sometimes menu items are ghosted because something on the

screen needs to be selected. For instance, all the items in the

Icons menu are ghosted if an icon on the screen is not selected.

Workbench Hindou Icons Tools

Open□| Workbench I an

Basic Operations 2-17

"•

~

~

To choose a menu item:

1. Continue to hold down the menu button.

2. Move the pointer down the menu.

As you point to each available menu item, it will be

highlighted.

Workbench Hindou Icons Tools

Backdrop QB

Execute (onnand... OE
M

Update fill

Version
Quit...

Workbench2.

highlighted

menu item

3. When the menu item you want to choose is highlighted,

release the menu button.

Some menu items may have submenus. Submenus are

additional options that appear to the right of the menu item. (If

a menu item has a submenu there will be a ^> after the item

name.) You must choose an option from the submenu list to

use the menu item.

2-18 Basic Operations

submenu

For instance, when you point to the Snapshot menu item in the

Windows menu, a submenu appears. You must choose either

Window or All in order to use Snapshot. (The two options are

explained in the "Snapshot" section on page 2-63.)

Window ■

Neu Drauer ©N
Open Parent
Close OK
Update

Select Contents Ofl
Clean Up

laie

2.8 96X full, 39K free, 839K in

Expansion Systen Monitors

To choose an option from a submenu:

1. Point to the main menu item.

The menu item will be highlighted, and the submenu

will appear to the right of the menu item.

2. Keep holding down the menu button, move the pointer

to the first item in the submenu, then move down the

list to the item you want to choose.

The submenu item will be highlighted.

3. Release the menu button.

Basic Operations 2-19

Cancelling

You can cancel an operation being performed with the

selection button by clicking the menu button while still

holding down the selection button. The following operations

can be cancelled: selecting, dragging, and drag selection. Some

examples of cancelling follow.

If you have several icons selected, and you want to cancel the

selection of all of them, click on an empty area of the screen.

To cancel the selection of one icon:

1, Point to the icon.

2. Hold down Shift and the selection button, then click

the menu button.

If you are dragging an icon or a window across the screen, and

you decide you want to leave it in its original location, click

the menu button before releasing the selection button. The

operation will be cancelled, and the icon or window will

remain in its original position.

You can cancel drag selection in the same way. If you are

selecting several icons, click the menu button without

releasing the selection button to cancel the operation. None of

the icons will be selected.

~

2-20 Basic Operations

Requesters

Before you begin to examine the individual aspects of the

Workbench system, take a few minutes to learn about

requesters.

A requester is a small window opened by a program, like

Workbench, when it needs a response from you. You will come

across requesters repeatedly as you start to use the various

parts of the Workbench, like menus, windows and icons. When

a requester window appears, it is immediately brought to the

front of the display and is automatically selected.

Requesters are often the result of a menu choice. Several of the

menu items are followed by three dots (, ..) to indicate that

they generate requesters.

A requester will always contain text explaining what you

must do. Be sure to read the text in the requester before

selecting a gadget or entering text.

Basic Operations 2-21

^

"

Action Requester

Some requesters ask you to choose between two options. For

instance, it may ask you if you are sure you want to proceed

with an operation or if you want to cancel the operation.

DiskCopy

Put SOURCE disk

< FROM disk) in drive DF8:

Horkbench2,

a
dfb:busy

action gadgets

These requesters contain two action gadgets. One gadget lets

you proceed with an operation. It is usually labeled OK,

Continue, or Retry. The other gadget is a Cancel gadget and

stops the operation without performing any action. To choose

one of the options, select the appropriate gadget.

Keyboard Shortcut: To select the gadget that lets you proceed

(OK, Continue, or Retry), press left Amiga-V. To select the

Cancel gadget, press left Amiga-B.

You can change these

keys with the ICon-

trol editor explained

in Chapter 3.

2-22 Basic Operations

text gadget

Text Requester

Another type of requester is one that asks you to enter text.

This type of requester contains a text gadget, a rectangular box

that allows you to enter text. For instance, the following

requester appears when you choose the Rename menu item.

Workbench Screen

d I Workbench EIB

m
Ran Disk

Renane

m
Horkbench2,l

Enter a new nane for 'copv_of_Horkbench2.8'.

flew Ha»eT-*kopv_t)fJlorkbench2.l

copy_of_Horkbench2,8

When the requester appears the text gadget is automatically

selected. When you type at the keyboard, the text appears to

the left of the cursor (the small, highlighted box inside of the

text gadget).

If you click the selection button while the pointer is

somewhere else on the screen, the requester may no longer be

selected. To enter your text, you will have to move the pointer

inside of the text gadget, and click the selection button.

Basic Operations 2-23

"

"

~

Sometimes text gadgets will contain information that needs to

be changed. For instance, when you choose the Rename menu

item, the text gadget may contain the current name of the icon.

Some shortcuts for editing text within a text gadget are listed

below:

Del

Backspace

right Amiga-X

right Amiga-Q

Shift-left cursor

Shift-right cursor

Shift-Del

Shift-Backspace

Erases the character highlighted by

the cursor.

Erases the character to the left of the

cursor.

Erases all the text in the gadget,

Retrieves what was in the gadget

before the text was changed.

Moves cursor to the beginning of the

line.

Moves cursor to the end of the line.

Erases the character highlighted by

the cursor and all characters to the

right of the cursor.

Erases all the characters to the left of

the cursor.

When the text in the gadget is correct, press Return. (With

some programs, you may also need to select an action gadget.)

The requester will disappear, and the action will be carried out.

2-24 Basic Operations

available

drives

scroll bar

scroll arrows

File Requester

Another type of requester is one that allows you to enter the

name of a file. These requesters usually appear so you can

specify a file from which to read or to save information.

For instance, the More program in the Utilities drawer allows

you to display the contents of text files. When you open More,

a file requester containing a list of the files on the Workbench

disk appears. To read through the list, drag the scroll bar up or

down or select the scroll arrows. If the file you want to use is in

a different drawer or on another disk, the gadgets in the

requester allow you to look for that file.

Select the Disks gadget, and a list of available floppy drives,

hard disk partitions and assigned volumes will be displayed.

(Assigned volumes are explained later in this manual.)

□ I More—Copyright (c) 1986,1998 CBH ID IB

31 Wane of Text File to View [BIB

DF2: Docwents
DF8: Uorkbench
RflM: Ran Disk:

To list the available files and drawers on a disk, point to the

disk's name and click the selection button. The display will

change to list the files and drawers on that disk.

Basic Operations 2-25

a| More — Copyright (c) 1986,1996 CBH

p| nienane of Text File to View BIB

art lists
;. ascii

f oms
index
schedules
snapshot

Drawer [PF2:asciil

File |

OK I Disks I Parent I Cancel

If the file is in a drawer, point to the name of the drawer, click

the selection button, and a list of files in the drawer appears.

When the correct filename is displayed, point to the filename

and click the selection button.

When you select a disk or drawer from the list, its name

appears in the Drawer text gadget. When you select a filename,

it appears in the File gadget. You can also type the correct disk

and drawer names directly into the text gadgets. Click inside

the text gadget, and a cursor will appear. You can then type the

proper names.

The Parent gadget returns you to the parent drawer of the

currently displayed list of files. The parent drawer is the drawer

that is one level above the currently shown drawer. For

instance, if you're looking at a list of files in the Utilities

drawer, selecting the Parent gadget will return you to the list of

drawers and files on the Workbench2.0 disk.

Once the correct filename is displayed, select the OK gadget. If

you change your mind and want to exit the requester, select the

Cancel gadget.

drawers on

the disk in

DF2:

2-26 Basic Operations

The Workbench Screen

The Workbench screen provides the background for your work.

Icons and windows appear on this screen.

title bar

depth gadget

Workbench window

Workbench 2.8 928376 graphics nen 912952 other nen

o| Workbench

Ban Disk

Horkbench2.8

J

Title Bar

The top border of the screen is known as the title bar. When a

Workbench window is selected, the title bar shows the name of

the screen, as well as how much memory is available. Graphics

mem refers to available Chip RAM. The amount of Chip RAM

in your system determines how much memory is available for

graphics and digitized sounds. Other mem refers to all other

available RAM including any expansion, or Fast, RAM used by

the system.

When you hold down the menu button, the menu bar is

displayed. The menu bar lists the menu headings. Available

menu headings arc shown clearly, while unavailable menu

headings are ghosted.

Bask Operations 2-27

Workbench Window

When you boot your Amiga, the Workbench window fills the

Workbench screen. This window contains icons for any hard

disks attached to your Amiga, floppy disks that are in any of

the drives, and the Ram Disk. Depending on your system's

configuration, it is possible that there may be other icons in

the window.

Although the Workbench window looks and acts like a

window, it is an essential part of the Workbench screen. When

the Workbench window is selected, the Workbench screen is

also selected.

Moving the Workbench Screen

Since the Amiga is multitasking, it is possible to have multiple

screens open at the same time. For instance, you can be

running a graphics program on the Workbench screen and a

terminal program connecting you to an electronic bulletin

board on another screen. In this case, you will have to move the

Workbench screen in order to see the other screen. There are

several ways to move the Workbench screen.

One way to drag the screen is by pointing to the title bar,

holding down the selection button, and moving the mouse.

Another way is to hold down left Amiga and the selection

button, point anywhere on the screen or Workbench window

and move the mouse up or down.

The small box in the upper right corner of the Workbench

screen is its depth gadget. You can click on this gadget to move

the Workbench behind or in front of other screens.

You can also move the Workbench screen with the keyboard.

Pressing left Amiga-N moves the Workbench screen in front of

all other screens. Left Amiga-M moves the front screen behind

all other screens.

You can customize

this action to a key of

your choice with the

IControl editor ex

plained in Chapter 3.

These keys can also be

changed with the

IControl editor.

2-28 Basic Operations

Windows

A window is an area of the screen that displays and accepts

information. There are many different types of windows.

You've already seen the Workbench window that appears when

you boot your Amiga. Double-click on the Workbench2.0 disk

icon, and a window appears displaying the contents of the

Workbcnch2.0 disk.

If you have a hard disk, double-click on the System2.0 icon.

Your disk window will have more drawers than are pictured

here since the System2.0 partition contains the drawers for

both the Workbench2.0 and Extras2.0 disks.

Workbench2.0-

disk window

Workbench 2.8 941792 graphics nen 995900 other nen

D Workbench

Ran Disk

m
Horkbench2.i

:l Horkbench2,B96S full, 39K free, B39K in

Expansion Systen Monitors

Prefs

<\>U

Many of the programs on the Workbench2.0 disk create

windows when their icons arc opened. You may find that much

of the commercial software you purchase also opens windows.

Bask Operations 2-29

^

~

New windows open on the front of the screen. While several

windows can display information simultaneously, only one

window at a time can accept information. This window is

known as the selected, or active, window. When a window is

selected its border, or frame, is a different color from the other

windows on the screen.

Workbench Screen

Cl ! I ■ ■ I ' ■ U C i I ■ 11 H

d| Blanker: HotKey=shift file

Ran Disk
□ Horkbench2.9 %% full, 39

Norkbench2.B

g| Clock |BIB

Prefs

Trashcan

2 <|>M

To select a window, point anywhere inside the window or its

title bar, and click the selection button. Clicking the selection

button while the pointer is outside of the window will

deactivate the window. It will no longer be selected.

When you have several windows open on one screen, it often

results in windows overlapping each other. When you want to

look at the contents of a particular window, you may need to

move other windows around so that you can see the one you

want. Most windows have gadgets to allow you to perform

these actions. Gadgets are the boxes and bars in a window's

border. Some of the most common gadgets are explained in the

following sections.

Often when a window

0s the screen, it is re

ferred to as a screen.

Technically, this is

incorrect. Although it

may fill the screen, it

is still a window.

active window

Different programs

may use different gad

gets. When a program

uses a unique gadget,

it is usually explained

in the program docu

mentation.

2-30 Basic Operations

Title Bar

Across the top of each window is a title bar that shows the

name of the window. For Workbench windows, the name will

be the same as the name of the icon that was opened to create

the window.

For instance, when you open the Workbench!.0 disk icon, the

window will have a title bar that looks something like this:

title bar

Workbench 2,8 949968 graphics nen 1826112 other nen

□I Horkbench □|B

Ran Disk I Workbench.8 (free, 839K in use

Workbench.1 Expansion Svsten Monitors

Prefs
Trashcan

\<\>\A

One kilobyte (K)

1,024 bytes

One megabyte (MB)

1,024 kilobytes

The information in this title bar identifies how much data is

on the disk. It states what percentage of the disk is full, how

many kilobytes are free (available for storage), and the number

of kilobytes that are in use for existing data. If you have a hard

disk system, these values may be expressed in megabytes.

When you open a drawer icon, the title bar only displays the

name of the drawer.

As explained earlier, you also use the title bar to drag a window.

~

Zoom Gadget E
Selecting the zoom gadget changes the size of a window. In

some cases, as with the Workbench 2.0 disk window, the

window becomes smaller.

Workbench 2.8 949344 graphics nen 1939128 other nen

d| Workbench

Ran Disk

Ml
Horkbench2.8

Selecting the zoom gadget a second time returns the window

to its previous size and position. If you change the size of a

window, the window will return to that new size and position

the next time it is zoomed in and back.

Basic Operations 2-31

zoom gadget

~

Depth Gadget

When you have several windows overlapping each other on the

screen, you can move them back and forth with the depth

gadget. If a window is front-most on the screen (not obscured

by other windows), selecting this gadget pushes that window

behind all the other windows.

2-32 Basic Operations

Selecting the depth gadget on any window other than the front-

most window, brings that window to the front. For instance, if

you have three windows open on the screen, selecting the

depth gadget of the middle window will bring it to the front of

the screen.

depth gadget

before selecting

depth gadget

after selecting

depth gadget

Workbench 2,8 945464 graphics nen 958952 other nen

-ni~Horiitenctr

a I Utilities

Ran Disk

m
Horkbench2.l

Clo

Disp

HorkbenchZ.B 96* full, 39K free, 639K in use|BIE

Svsten KBStartup Monitors

Prefs
Utilities Expansion

Trashcan ~

< >\

Workbench 2.9 945464 graphics nen 958952 other nen

d| Workbench

□I Utilities

Ran Disk

)
Uorkbench2.l

IBM

Clock

gjjl

More Exchange

Display "v

36K in use|B[ta

lonttors

Trashcan —

If you hold down Shift and select the depth gadget, the window

will move behind all the other windows.

Basic Operations 2-33

Scroll Gadgets

^

Sometimes a window is not large enough to show all of its

icons. You can see the window's contents without changing its

size by scrolling the window. Scrolling refers to moving the

viewing area of a window so that you can see unexposed icons.

Most windows have two scroll gadgets, one along the right

edge of the window and one along the bottom. The scroll

gadget is made up of a scroll box, a scroll bar, and scroll arrows.

Workbench 2.8 941792 graphics nen 995998 other fieri

c| Workbench hip

m
Ran Disk

m
Workbench2.B

o| Horkbench2.B 96x ful

j ^ i

"shell Expansion

V HBStartup

Prefs

1, 39K free,

ns—i

Systen

Utilities

839K in useEDie

ns—i

lion i tors

m
Trashcan

:

1 .:" ■: i .-

scroll bar

The scroll bar is the highlighted rectangular area inside of the

scroll box. The size of the scroll bar indicates how much of the

window is visible. If the entire window is visible, the scroll bar

fills the entire scroll box. However, if the scroll bar only fills

half of the scroll box, only half of the window is visible. By

dragging the scroll bar to the empty area of the scroll box, you

can see the obscured icons.

The position of the scroll bar reflects which portion of the

window is visible. For instance, if the scroll bar is in the upper

half of the vertical scroll box, you can see the icons in the top

of the window.

2-34 Basic Operations

To drag a scroll bar:

1. Point at the scroll bar.

2. Hold down the selection button.

scroll bar

scroll box

Workbench 2.8 949344 graphics nen 1839128 other nen

d Workbench

Ran Disk

3
Workbench2.8

la
Die

p| Horkbench2.8 9

3. Use the mouse to drag the scroll bar to an empty area of

the scroll box.

The viewing area of the window will move in the same

direction as the scroll bar.

Another way to move the scroll bar is to point to an empty area

of the scroll box and click the selection button. The scroll bar

will move to the area where you have pointed.

You can also use the scroll arrows to scroll the viewing area of

a window whether or not all the icons are visible. This can

expose empty areas of the window into which icons can

be moved.

Basic Operations 2-35

To use a scroll arrow:

1. Point to a scroll arrow.

2. Click the selection button.

The viewing area of the window will shift in the

direction of the arrow.

To move the contents more quickly, hold down the selection

button while pointing to a scroll arrow.

~

Sizing Gadget

As its name implies, the sizing gadget lets you change the size

of the window — making it larger or smaller as needed.

To change the size of a window:

1. Point to the sizing gadget.

2. Hold down the selection button, and move the pointer

towards the upper left corner of the screen.

The window will become smaller.

Workbench 2.8 949344 graphics nen 1839128 other fieri [5

o Workbench El-z

k

Horkbench2.B

D

1>
| | a=j i y

shell Expansion ^

•<

■

sizing gadget

2-36 Basic Operations

sizing gadget

3. Point to the gadget again, hold down the selection

button, and move the pointer towards the lower right

comer of the screen.

The window will become larger.

Workbench 2.8 919184 graphics nen 1041512 other lien

:| Workbench

m
Ran Disk

:| Horkbench2.8 %% full, 39K free, 839K in use

Shell
Expansion Systen Monitors

NBStartup Utilities

Prefs

Trashcan

E3I5

When you have sized the window, release the selection

button.

You can cancel the sizing operation by pressing the menu

button before releasing the selection button.

Basic Operations 2-37

Close Gadget

Selecting the close gadget closes the window. When you are

through working in a window, select the close gadget, and the

window will disappear.

Workbench 2.8 949184 graphics nen 995689 other nen

a Horkbench BIB

Ran Disk

Workbench2.l

Horkbench2.6 963 full, 39K free, B39K in use Dig

Expansion Systen Monitors

close gadget

If you select the close gadget on the Workbench window, a

requester will ask you if you really want to quit the

Workbench. If you select OK, all Workbench functions will be

closed, including any Shell windows started from an icon. You

cannot dose the Workbench if you have any programs

running.

~

2-38 Basic Operations

In order to leave a Shell window open, you must start one with

the NEWSHELL command. There are two ways to do this:

1. Open a Shell from the icon, then type NEWSHELL at

the prompt

2. Use the Execute Command menu item in the

Workbench menu.

Type NEWSHELL in the text gadget.

To get the Workbench back, type LOADWB (load Workbench) at

the Shell prompt and press Return.

Additional Gadgets

In the "Windows" section, you learned about the various

gadgets that appear in the borders of Workbench windows.

However, there are several other types of standard gadgets used

by Amiga programs. You will encounter these gadgets as you

proceed through this manual and learn about the programs on

the Workbench2.0 disk. This section briefly describes these

gadgets and how to use them. When a gadget is used in a

program window, the documentation explaining that program

will also explain the exact function of the gadget.

NOTE: Many of the examples used in this section refer to

editors in the Prefs drawer. Don't worry if you do not

understand the concept behind an editor; they are further

explained in Chapter 3, "Preferences". Right now you should

only be concerned with learning how to use the different types

of gadgets.

Basic Operations 2-39

Action Gadgets

Action gadgets allow you to make a choice between two or

more alternatives. Selecting an action gadget carries out your

decision and closes the window. You have already seen action

gadgets in the requesters that appear when you copy or format

a disk. These gadgets are labeled Continue and Cancel.

Put SOURCE disk

(FROM disk) in drive DF8:

Continue| x Cancel

—\mnm ^r

Horkbench2.8 \.

Ml ^Ml
DFBlBUSY

V

1 <\>\~

Many programs use action gadgets to allow you to Save or Use

changes, confirm that information is OK, or Continue with a

procedure. You will also be presented with a Cancel or Quit

gadget that lets you exit the operation safely.

To select an action gadget:

1. Point to the action gadget.

2. Click the selection button.

action gadgets

2-40 Basic Operations

check box

Check Box

Check boxes let you turn an option on or off. For instance, the

Input editor uses a check box to allow you to turn on the

Acceleration option.

Workbench Screen

Input Preferences Jfllfi
House

House Speed: 1

ftffeleration:

Double-Click: 1.58 sec

Show I |~~ Test

Keyboard

Key Repeat Delay: 6,66 sec

Key Repeat Rate: 8.858 sec |_

Key Repeat Test: |

Save I Use I

isis

>

When the option is on, the box contains a check mark. If the

option is off, the box is empty.

To change the setting:

1. Point to the check box.

2. Click the selection button.

Basic Operations 2-41

~

~

Cycle Gadget

A cycle gadget lets you select one option from a list of options.

The displayed option is the selected option. For instance, the

Printe editor contains cycle gadgets that let you select your

printer specifications.

Workbench Screen

Preferences

Printer Driver

CalConp_CotorMaster
CalConp ColorKaster2
CBH_MPS1B8B

Diablo_638
EpsonQ

generic

Printer Port:

Paper Type:

Paper Size; 0

Parallel

Fanfold

Narrow Tractor

Paper Length

Left Margin

Right Margin

Print Pitch: 01

'rint Spacing: Q|

Print Quality: G|

(Lines):

(Chars):

(Chars):

£6

5

75

IWica

6 Ip

Draft

cycle gadgets

To see the available options:

1. Point to the cycle gadget and click the selection button.

The next option in the list will be displayed.

2. Keep clicking the selection button until you return to

the first option that was displayed.

When you return to the first option, you will know that

you have read through all the available choices.

To select an option:

1. Click on the cycle gadget until the option you want to

select is displayed.

2-42 Basic Operations

selected radio

button

Radio Button ®

A radio button also allows you to select one option from a list.

However, in this case, the entire list is visible and each option

has a radio button next to it. For instance, the Serial editor uses

radio buttons to let you select the appropriate settings for

sending information through the serial port (fully explained in

Chapter 3).

Workbench Screen

DIP

BflUD Rate:

Input Buffer Size;

9608

512

Handshaking

RTS/CTS J

None J

Parity

None (•

Even J

Odd J

Hark J

Space J

Bits / Char

7 J

Stop Bits

1 (I

2 J

<\>U

The radio button next to the selected option will be

highlighted, and it will appear that the button has been pushed

into the screen. The other buttons in the list will remain one

color and will appear to be raised above the screen.

To select a radio button:

1. Point to the radio button next to the option of your

choice.

2. Click the selection button.

~

Bask Operations 2-43

Scroll Gadget

Scroll gadgets used within windows are very similar to the

scroll gadgets contained in the border of the Workbench

windows.

Workbench Screen

Printer Preferences

Printer Driver

CalConp_ColorHaster \
CalCwp_ColorHaster2/
cbh npsTeee
Diablo_638
EpsonQ

generic

Paper Length (Lines):

Left Margin (Chars)!

Right Margin (Chars): 75

fr| Parallel

&| Fanfold

Printer Port:

Paper Tvpe:

Paper Size: &|Narroy Tractor

Save I I

Print Pitch:

'rint Spacing:

Print Quality:

B[

Bl
Bl

IB-Pica

6 (pi

Draft

IBIS

scroll bar

scrolling list

display box text

gadget

However, this type of scroll gadget allows you to select from

options displayed in the scrolling list. It may also have a

display box or text gadget underneath the scrolling list that

shows the selected option.

The scroll gadget shown above is from the Printer editor. This

gadget allows you to choose the type of printer you have

attached to your Amiga.

~

2-44 Basic Operations

A scroll gadget can only show a limited number of options

at a time, but there may be many more from which you can

choose. The available choices will be shown in the scrolling

list. You can tell if all the options are shown by looking at the

scroll bar. If all the options are visible, the scroll bar fills the

entire scroll box. If the scroll bar only fills part of the scroll box,

not all of the options are visible.

To scroll through the options:

1. Point to the scroll bar.

2. Hold down the selection button.

3. Move the mouse so that you drag the scroll bar through

the scroll box.

To choose an option:

1. Scroll through the list until the option you want to

choose is displayed.

2. Point to your choice.

3. Click the selection button.

Your choice will be highlighted. When you release the

button it will appear in the display box or text gadget

underneath the scroll area.

A display box is a rectangular box, similar in appearance to a

text gadget, but you cannot enter information in it. A display

box only reflects the choice you made with the scroll gadget.

When a text gadget is underneath the scroll gadget, you can

sometimes enter a choice not displayed in the scrolling list,

such as a new filename for saving information.

Whether or not the scroll gadget uses a display box or text

gadget depends on the individual program.

~

Basic Operations 2-45

Selection Gadget

A selection gadget lets you select from several displayed

options. The Palette editor uses a selection gadget to let you

select a color to change.

selection gadget

Workbench Screen

Palette Preferences f E3I6

<\>U

display box

In this case, you simply point to the color you want to use, and

click the selection button. The selected option will appear in

the display box to the left of the selection button.

~

2-46 Basic Operations

Slider Gadget

slider value

slider bar

slider box

Slider gadgets allow you to select a value within a given range.

They are similar to scroll gadgets in that you drag a slider bar

through a slider box to select a specific value.

Workbench Screen

Palette Preferences

The sliders shown above allow you to change the colors of the

Workbench.

The slider value is shown to the left of the slider. This is the

value associated with the current position of the slider bar.

To change the value:

1. Point to the slider bar.

2. Hold down the selection button and move the mouse to

the right or left.

The slider value will change as the bar moves through

the box.

3. When the desired value is shown, release the selection

button.

Basic Operations 2-47

~

~

Text Gadget

A text gadget allows you to enter text that will be used by a

program. You've already seen a text gadget in the requester that

appears when you choose the Rename menu item.

Workbench Screen

d Workbench □is
Renane

Ran Disk

Horkbench2,e

Enter a new narte for 'copy_of_Horkbench2,8',

Neu Nane: |copy_of_Horkbench2.B|,

copy_of_Horkbench2.8

text gadget

To enter text in a text gadget:

1. Select the gadget.

Point to the gadget, and click the selection button.

2. A cursor will appear in the gadget.

A cursor is a small box that indicates where the next

typed action will occur. When you type, the text appears

to the left of the cursor.

2-48 Basic Operations

3. If there is already text in the gadget, delete it using

Backspace.

Some other keys you can use to edit the text in the

gadget include:

Del Erases the character highlighted

by the cursor.

right Amiga-X Erases all the text in the gadget.

right Amiga-Q Retrieves what was in the gadget

before the text was changed.

Shift-left cursor

Shift-right cursor

Shift-Del

Shift-Backspace

Moves cursor to the beginning of

the line.

Moves cursor to the end of the

line.

Erases the character highlighted

by the cursor and all characters

to the right of the cursor.

Erases all the characters to the

left of the cursor.

4. To enter new text, simply type on the keyboard.

The characters you type will appear in the text gadget.

5. When the text gadget reflects the correct information,

press Return.

Basic Operations 2-49

^ Icons

^

Icons are pictures on the screen that represent disks, drawers,

and files. Icons provide quick access to information stored on a

disk. The Workbench uses several types of icons:

A disk icon represents any disk that

is available or accessible by the

Workbench, such as a floppy disk,

hard disk, or Ram Disk. Disk icons

are located in the Workbench

window. When you open a disk icon,

a window appears on the screen.

A drawer icon represents a

subdivision of the disk storage area.

When you open a drawer icon, a

window appears.

A tool icon represents a specific

program. For example, the Clock

icon in the Utilities drawer is a tool.

When you open a tool icon, the

program is started.

A project icon represents a file

where information created or

used by a tool is stored. The

Mode_Names icon in the

WBStartup drawer is an example of a

project. When you open a project

icon, the associated tool, if any, is

also opened. The tool will then

begin to operate on the project.

The Trashcan represents a place on

the disk that is used to store

unwanted items until you choose to

remove them from the disk.

1 1
li

linn

™

'"■

1

illl

2-50 Basic Operations

Every icon on your screen, whether it's a disk, drawer, project,

tool, or trashcan, has a corresponding file that contains the

information that produces the icon's image. These files are

called .info files.

For instance, the Clock icon, in the Utilities drawer, represents

the Clock program. There are two files in the Utilities drawer:

Clock, which contains the data to run the program, and

Clock.info, which contains the data that creates the Clock

icon.

The Workbench Menu

Workbench menu-

The Workbench menu pertains to the Amiga's general

operations as well as to all open windows on the Workbench

screen. You can use the Workbench menu to update the screen

display or see which version of the software you are using. You

can even use it to execute AmigaDOS commands. (See Chapter

7, "Using AmigaDOS," for more information.)

lUorkbench Window Icons Tools

Backdrop ©8
Execute Connand.,. ©E
Redraw ill i

Update flit

Last Message
flbout

Quit... £JQ

Horkbench2,l

3il>L

Many of the menu items have keyboard shortcuts which are

shown to the right of the item. The shortcuts are an alternative

to using the mouse. To choose the menu item with the

keyboard, hold down right Amiga, then press the specified

letter key. In this manual, the keyboard shortcuts are shown

along the right margin.

Basic Operations 2-51

^

Backdrop

When you choose Backdrop, the Workbench window

disappears and the disk icons appear on the Workbench screen.

The disk icons are no longer in a window. This is useful when

you have several windows open, and you need to move through

them frequently. It eliminates the need to keep moving the

Workbench window out of the way.

~

Workbench 2,0 960776 graphics nm 971816 other nen

Ran Disk

Horkbench2.8 backdrop

When Backdrop has been chosen, a check mark appears to the

left of the menu item. To return to the Workbench window,

choose the Backdrop menu item a second time.

2-52 Basic Operations

If you choose Backdrop, then turn off or reboot your computer,

the Workbench window will reappear. To save your Backdrop

selection, use the Snapshot menu item in the Windows menu

(explained on page 2-63),

requester

text gadget

Execute Command...

This menu item allows you to execute (start) an AmigaDOS

command without opening a Shell window. When you choose

Execute Command, a requester prompts you to enter the

command and its arguments. (The AmigaDOS commands are

fully explained in Chapter 8, "AmigaDOS Reference.")

Workbench Screen

a Workbench

Execute a File

Ran Disk

Horkbench2.B

Enter Connand and its Rrgunents;

Connand: ||

When you type the command, it appears in the requester's text

gadget. After you've entered the command, select the OK

gadget (or press Return) to execute it. If you select the Cancel

gadget, the requester will disappear without executing the

command.

Basic Operations 2-53

~

->

^

In cases where the command results in output, the Workbench

Output Window is automatically opened on the front of the

screen.

Workbench Screen

D Workbench

a Workbench Output Htndou w

.xpanston (dir)
.its (dir)
JBStartup (dir)
>refs (dir)
onts (dir)

: (dir)
'evs (dir)
J (dir)
. (dir)
It t Lit Les (dir)
iysteti (dir)

.info
Expansion,info
Shell,info
Trashcan.info
HBStartup.info

disk,info
Prefs,info
Systen,info
Utilities.info

1 r

IHie
If, •

IE-'

A

V

I <|>| A

The window will remain on the screen until you select its

close gadget.

II you choose Execute Command a second time, the text gadget

will display the previously entered command. You must delete

the old command before entering a new eommand. The output

will be shown in a new Workbench Output Window, even if

another output window is already open on the screen.

Here's an example of its use:

1. Choose Execute Command from the Workbench menu,

A requester with a text gadget will appear on the screen.

2. Type:

DIR Workbench2.0:

If you have a hard disk, type DIR System2.0:.

DIR is an AmigaDOS command which lists the contents

of a disk or drawer.

Workbench Output

Window

2-54 Basic Operations

3. Press Return.

A list of the Workbench2.0 disk's contents will be

generated in the Workbench Output Window.

4. Close the Workbench Output Window by selecting its

close gadget.

Redraw All

Redraw All redraws all open windows on the Workbench

screen in case of a disturbance to the Workbench. On rare

occasions a program may cause part, or all, of the screen to be

disrupted. If this occurs, choosing Redraw All may help to

restore the windows to their proper appearance.

Update All

Update All redraws each open window, updating its appearance

to reflect the current state of the window. If you arc only

communicating with the Amiga through the Workbench, you

probably will not use this menu item too often. However, if

you are using both the Shell and the Workbench, you will find

this option quite helpful.

If you have several windows open and have been using the

Shell to make changes to the contents of the disk, the changes

will not be immediately reflected in the windows. For

instance, if you were using the Shell to delete files and their

icons, the icons would remain in the windows until you closed

the windows and re-opened them, or chose Update All from the

Workbench menu.

Bask Operations 2-55

Last Message

Sometimes you will see a message flash across the title bar;

this may be either an information or error message. Some

examples of common error messages are: object not found

(the file you are looking for is not on the disk), disks are

incompatible types (appears if you try to drag a floppy disk icon

over the Ram Disk icon or hard disk icon), the Trashcan cannot

be moved (appears if you try to drag the Trashcan out of its

window).

Some messages flash briefly, others remain until you press the

selection button. In order to see the last message, select the

Workbench window and choose Last Message from the

^^ Workbench menu. The message will be shown in the title bar.

AmigaDOS error messages are explained in Chapter 8,

"AmigaDOS Reference."

About

The About menu item opens a requester which shows the

internal version number of the Workbench and Kickstart

software as well as copyright information. Select the OK

gadget to close the requester.

2-56 Basic Operations

Quit... AQ

This operation is not recommended unless you are an

experienced Shell user.

Quit allows you to close all Workbench operations. However,

if you have any Workbench programs running when you

choose the Quit menu item, an error message will flash in the

title bar of the screen. The message will state that the system

cannot quit as there are Workbench programs launched. It will

also state the number of launched programs.

If you still want to Quit, you must shut down all programs.

Disk and drawer windows can remain open.

Once all programs are terminated, you can choose the Quit

menu item. This time, a requester will ask if you want to quit

the Workbench.

Quit requester

luit Workbench Request

Do you really want
to quit workbench?

IBIB

HDrkbench2,8

Basic Operations 2-57

If you select OK, all Workbench windows and icons will

disappear, and you will not be able to access any of the

Workbench menus. The only way you will be able to

communicate with the Amiga is through a Shell window that

was opened with Execute Command or through another Shell.

A Shell window opened from the Shell icon is considered a

Workbench program, and you cannot use Quit if the window is

open.

To Quit the Workbench and leave a Shell window open, use

the Execute Command menu item:

1. Choose the Execute Command menu item.

A requester will appear on the screen.

2. Type NEWSHELL in the requester, and press Return.

A Shell window will open.

Since this new Shell window was started from a typed

command, instead of from an icon, this window will remain

open when the Quit menu item is chosen. To get the

Workbench back, type LOADWB (load Workbench) at the Shell

prompt, then press Return.

If you do not leave a Shell window open, you have to reboot the

Amiga to return to the Workbench system.

~

•*

2-58 Basic Operations

The Window Menu

Window menu

The Window menu is only available when a window on the

screen is selected. The options in the Window menu pertain to

the currently selected window. For instance, you can use the

window menu to organize the contents of a window or to

change the way the information is displayed.

Horkfaem

Ran Disk

Workbench

Neu DCfter ON
Open Parent
Close OK
Update

Select Contents OH
Clean Up

Snapshot »
Shou »

Vieu By »

mm

Some of the menu items have keyboard shortcuts which are

shown to the right of the item. To choose a menu item with the

shortcut, press right Amiga and the specified letter key.

_

Basic Operations 2-59

New Drawer

New Drawer allows you to create a new drawer in a window.

The drawer, which is labeled Unnamedl, is created in the

currently selected window. This is a convenient way to create

drawers for file storage.

To create a New Drawer:

1. Select the window in which you want to create the

drawer.

2. Choose New Drawer from the Window menu.

A new drawer icon, labeled Unnamedl, will appear in

the window.

you cannot create a

new drawer in the

Workbench window.

~
Workbench Screen

□ Workbench

Renane

Ran Disk

Horkbench2,8

Data

Enter a neu nane for 'Unnanedi'.

Neu Nane! [Unnanedil

Data U full, 875K free, 3K in use E

Unnanedi

Trashcan

1<\>\4

new drawer

3. A Rename requester also appears to allow you to

change the name of the drawer.

Delete the existing name, type in the new name, and

press Return.

2-60 Basic Operations

Open Parent

Except for the Workbench window, every window has a parent

window. The parent window is the window that contains the

icon that was opened to create the current window.

For instance, the Workbench window is the parent of all the

disk windows. The Workbench window contains the disk

icons that must be opened in order for the disk windows to

appear.

Disk windows often contain drawers. When you open a drawer

icon, a window appears. Therefore, the disk window is the

parent of the drawer window.

For example, the Workbench2.0 disk window contains the

Utilities drawer. When you double-click on the Utilities

drawer icon, the Utilities window is opened. The

Workbench2.0 disk window is the parent of the Utilities

window.

Choosing Open Parent brings the selected window's parent to

the front of the display. If the parent window is closed, it is

automatically opened.

For instance, if the Utilities window is selected and you choose

Open Parent, the Workbench2.0 disk window will be

automatically opened (if it was closed) and brought to the front

of the display. If the Workbench^.0 disk window is selected and

you choose Open Parent, the Workbench window will be

brought to the front of the display.

To open the parent of a window:

1. Select the window.

2. Choose Open Parent from the Window menu.

Basic Operations 2-61

Close AK

To remove a window from the screen, choose Close.

1. Select the window.

2. Choose Close from the Window menu.

The window will disappear.

Mouse Shortcut: A shortcut for closing windows is to select

the close gadget in the upper left corner of the window.

Update

If you make changes to a window through the Shell or the

Execute Command menu item, those changes will not be

reflected in the window until you either close and re-open the

window or choose the Update menu item. Update redraws the

selected window so that it accurately reflects the contents of

the window.

(This is very similar to the Update All menu item in the

Workbench menu, except that Update only affects the

currently selected window.)

In the following example you will delete a drawer from the

Workbench window using the Execute Command menu item.

Then, you will use Update to correct the contents of the

window. However, you will need a drawer to delete, so create

an extra drawer with the New Drawer menu item.

1. Open the Ram Disk window.

2. Choose New Drawer from the Window menu.

A new drawer named Unnamed 1 is created in the Ram

Disk window. You have created a new drawer,

2-62 Basic Operations

Unnamed 1, and a new file, Unnamedl.info, on your

Ram Disk. The Unnamedl.info file contains the data

needed to create, or draw, the Unnamedl drawer icon.

3. When the Rename requester appears, just press Return.

4. Choose Execute Command from the Workbench menu.

When the requester appears, type:

Delete RAM:Unnamed1 .info

Then press Return. The Workbench Output Window

will display a message stating that the Unnamedl.info

file has been deleted. However, the icon will still remain

in the Ram Disk window.

5. Select Update from the Window menu.

This redraws the window so that its contents accurately

reflect the current state of the disk. The Unnamedl icon

will be removed from the Ram Disk window.

However, you will still have a drawer called Unnamedl on the

Ram Disk. To delete it, choose Execute Command again, type

Delete RAM:Unnamed1 in the requester, then press Return.

Select Contents A\

When you choose Select Contents, all of the icons in the active

window are selected. This is an alternative to drag selection or

extended selection.

Basic Operations 2-63

Clean Up

Clean Up rearranges the icons in a window in an orderly

fashion. When icons are copied or created, they sometimes

appear on top of another icon or in a separate area of the

window. Clean Up automatically places all the icons in the

selected window in a neat arrangement, so that you do not

have to arrange each icon individually.

Clean Up does not save the arrangement to disk. If you only

clean up a window, but don't save it with the Snapshot menu

item (explained below), the arrangement will be lost the next

time you open the window.

To Clean Up a window:

1. Select the window you want to rearrange.

2. Choose Clean Up from the Window menu.

Snapshot »

Snapshot lets you save the arrangement and position of a

window. It is commonly used after Clean Up. When you point

to the Snapshot menu item, two submenu items appear:

Window and All.

Snapshot Window lets you save the position and size of the

selected window as well as the Show and View By modes

(explained in the following sections). However, it does not save

the position of the icons in the window.

To save the placement of a window:

1. Select the window.

2, Choose Snapshot Window from the Window menu.

Snapshot All lets you save the positions of all the icons as well

as the position and size of the selected window. Whenever you

open the window, it will be arranged in the same way.

2-64 Basic Operations

To save the placement and the arrangement of a window:

1, Select the window.

2. Choose Snapshot AH from the Window menu.

Pseudo-icons do not

have .info files.

after choosing

Show All Files

Show

Not every file on a disk or in a directory has a corresponding

icon. The Show menu item allows you to sec all the files on a

disk, whether or not they have icons. Show has two submenu

items: Only Icons and All Files.

Choosing Show All Files displays a pseudo-icon for each file or

drawer in the selected window. (A pseudo-icon is a temporary

icon supplied by the Workbench for files that do not have their

own icons.) You can treat these pseudo-icons just like any other

icon and use the menu items in the Icons menu to manipulate

the icon.

To display icons for all the files in a window:

1. Select the window.

2. Choose Show All Files from the Window menu.

Workbench 2.8 948744 graphics nen 951524 other rten

□I Workbench

p| Workbench,B 96?! full, 39K fret, B39K in use |EJ]i£

Ran Disk

Horkbench2,8

tionitors Libs

Basic Operations 2-65

^

~

Show Only Icons displays only those files and drawers which

have icons (.info files). All pseudo-icons will be removed from

the window.

To display only the real icons:

1. Select the window.

2. Choose Show Only Icons from the Window menu.

Only the window's real icons will be displayed.

Workbench 2.8 987648 graphics lien 952324 other neti

a I Workbench

o| Horkbench2.B %% full, 39K free, 839K in use

Ran Disk

Norkbench2.8

Shell HBStartup

Trastican

Svsten

Prefs

Utilities

Expansion

Monitors

after choosing

Show Only Icons

n

View By

The View By menu item allows you to change how the

information in a window is displayed. View By has four

submenu items: Icons, Name, Date, and Size.

When you choose View By Icons, the window appears in its

default state.

Choosing View By Name changes the window display. The

window will contain an alphabetical list of the icons. This list

includes the size of the file, its attributes |whethcr it can be

Default is a term used

to describe the stan

dard setting decided

by the system if the

user does not specify

an alternative.

2-66 Basic Operations

after choosing

View By Name

read, deleted, executed, or written), and the date it was created.

(See the explanation of the Information menu item, page 2-76,

for details on attributes.)

Workbench 2.8 982928 graphics Men 985044 other nen

ol Workbench MB

M
a! Horkbench2,8 96* full, 3JK free, 839K in use

--rue 2i-HaHHb;4^:U—
Ran Disk

Uorkbench2.l

Expansion
Monitors
Prefs

Shell
Systen
Trashcan

Utilities

HBStartup

Drawer
Drauer

Drawer
I

Drauer

Drawer

Drauer

Drauer

—rued 21-Hay-98 15:89:86

—rued 21-Hay98 17:47:57
81-Jan-7B 88:88:88

—rwed 21-May-9B 17:47:53

—rued 21-May96 17:46:21
—rued 21-Hay-98 17:47:51

—rued 21-Hay-98 17:47:49

You can select files and drawers from the window just as you

would select an icon. Simply point to the file or drawer name,

and click the selection button. The name will be highlighted to

show that it is selected. You could then use menu items in the

Icons menu to manipulate the file or drawer. To open a file or

drawer, point to the name, and double-click the selection

button.

View By Date sorts the list in chronological order, with the

most recently created file listed first. This is helpful if you have

two different versions of a file and are looking for the one with

the most current information.

View By Size sorts the list by size, with the smallest file listed

first. If you find that you are running out of room on your disk,

you can use this option to see which files take up the most

space. You can then choose which files to delete or to move to

another disk.

Basic Operations 2-67

The Icons Menu

^

The Icons menu lets you work with the icons on the screen.

Among other things, you can copy, rename, and open icons

with this menu. You can also delete icons, and the

corresponding files or drawers, from the disk. An icon must be

selected before you can choose items from this menu.

Workbench Uindcu

oj Korkbench

Ran Disk

m

m
Horkbench2.8

Icons1

Open ^ E!0

Copy dt
Hninno... EJR
Infomation... GJI

Snapshot OS
UnSnapshot OU
Leave Out ©L

Put fluav CJP

Delete...
Fornat Disk...
Enpty Trash

Icons menu

^

Open AO

To open an icon is to make the items represented by the icon

available for use. When you open a disk or drawer icon, a

window appears on the screen displaying the icons contained

on that disk or in that drawer. When you open an individual

project or tool, you actually start the corresponding program.

To open an icon:

1. Select the icon.

2. Choose Open from the Icons menu.

2-68 Basic Operations

Mouse Shortcut: A shortcut for opening icons is to point to the

icon and double-click the selection button. This is faster than

using the menu.

Copy AC

When you copy a disk

using the Copy menu

item, the Amiga only

uses one disk drive

even if you have a sec

ond drive connected

to your Amiga.

Copy allows you to copy disks, drawers, programs, or files. A

copy of a drawer, tool, or project is made in the same window as

the original. (To copy a drawer, tool, or project to another disk,

sec the "Copying by Dragging" section, page 2-73.)

An important use of Copy is for making backup copies of your

disks. If your Amiga only has one disk drive, this is the most

common way to copy disks using the Workbench.

To copy a disk:

The disk that is being copied is known as the source disk

(FROM disk). You should always write-protect your source disk

so that you cannot accidentally erase any of its contents. (The

write-protect tab should be pushed towards the top of the disk

so that the small hole is uncovered.)

The disk that you are copying to is known as the destination

disk (TO disk). This can be a blank disk or a previously used

disk whose contents you no longer need. This disk must be

write-enabled in order to accept the information from the

source disk. (The write-protect tab should be covering the

small hole in the corner of the disk.)

When you use the Copy menu item, the system will read a

certain amount of information from the source disk into the

Amiga's internal memory. Then you will have to take the

source disk out of the disk drive and insert the destination

disk. (This is known as swapping disks.) The Amiga will then

copy the information to the destination disk.

Basic Operations 2-69

1. Put the disk you want to copy, the source disk, into the

Amiga's internal disk drive, known as DFO:.

Make sure the write-protect tab is in the protected

position. The small hole in the corner of the disk should

be open.

2. Select the source disk's icon.

Point to the disk icon, and click the selection button.

3. Choose Copy from the Icons menu.

A requester will ask you to insert the Workbench2.0 disk

in any drive. The system needs to read a program from

the Workbcnehl.O disk before it can begin the copy

procedure.

If you have a hard disk, you will not sec this requester

since the system can read the program off the hard disk.

Skip ahead to step 5,

4. Insert the Workbench disk.

If the disk copy is going to require several swaps (5 or

more), a requester will tell you how many times you will

have to swap the disks.

DiskCopy (=3

Naming! This will take 5 suaps,

Feuer disk suaps are needed if

other toots are closed.

u"S|jj.uti . ?-1 .1

Horkbench2.8

Ml
DFBiBUSY

1

m

/

^

1 OL

Continue gadget

2-70 Basic Operations

Continue gadget

Closing any unnecessary windows or stopping any

unneeded processes will help to reduce the number of

swaps.

If the disk copy requires fewer than 5 swaps, you will not

see a requester.

5. Select the Continue gadget in the swap requester.

A requester tells you to insert the source disk into drive

DFO:, the internal drive.

DiskCopy

Put SOURCE

(FRON disk

Cont^juje j

Horkbench2.8

Ml
dfb:busy

disk

) in

B

drive DF8;

Cancel |

A

V

6. Put the disk you want to copy in the drive, then select

the Continue gadget

Text in the requester will reflect how many cylinders the

system has read and how many are left to read. (A

cylinder is a division of a disk. The 3.5 inch disks used

with the Amiga have 80 cylinders numbered 0-79.)

Basic Operations 1-7\

~ A requester will instruct you when to insert the

destination disk into drive DFO:.

Make sure the disk drive light is out before removing the

source disk from the drive.

DiskCopv

^

Put DESTINflTION disk

C TO disk) in drive DFB;

Continue U-

Horkbench2.8

DFB;BUSY

■Continue gadget

~

7. Put your destination disk into the drive, and select the

Continue gadget.

The data from the source disk will be copied to the

destination disk.

You will have to follow the requesters and switch back

and forth between the source disk and the destination

disk as many times as stated in the first requester. (Be

sure the drive light is out before ejecting a disk from the

disk drive.) When the copy is finally finished, the

message Disk Copy Finished appears in the requester.

// at some point

you want to stop

the copying pro

cess, wait for a

swap requester

to appear and se

lect the Cancel

gadget.

2-72 Basic Operations

You cannot

copy the

Trashcan.

8. Remove the destination disk from the drive and put a

label on it.

The destination disk's icon will now have the source

disk's name with a copy of prefix. For instance, if

the source disk was called DataDisk the destination disk

will be called copy of DataDisk.

To copy a drawer:

1, Select the drawer icon.

2. Choose Copy from the Icons menu.

The copy of the drawer, and any icons contained in the

drawer, will be made in the same window as the original

drawer.

To make a copy of the drawer on another disk, see the

"Copying by Dragging" section.

To copy a project or tool:

1. Select the icon.

2. Choose Copy from the Icons menu.

A copy of the icon will be made in the window.

Basic Operations 2-73

Copying by Dragging

^

You can copy a disk by dragging the source disk's icon over the

destination disk's icon.

Workbench 2.8 949480 graphics Hen 997856 other nen

d| Workbench

Ran Disk

to

Horkbench2,l

DF2:????

copying

Workbench2.0

disk

You can copy a drawer, project or tool to another disk by

dragging the icon over the other disk icon or into the other

disk's window. The original icon will stay on the original disk,

and a copy will be created in the destination disk's window.

Workbench 2.8 929168 graphics nen 1915888 other nen

□ I Workbench

m
Ran Disk

Horkbench2.l

c| Horkbench2,8 96* full, 39K free, 839K in use El 5

Data

Shell Expansion Systert Monitors

Trashcan

Files

copying Files drawer

to Data disk

2-74 Basic Operations

copying drawers

to New Disk

You cannot make a copy of an icon on the same disk with this

method. For instance, if you were to drag an icon from the

Utilities window into the System window, it would not be

copied. The icon would simply change drawers. It would move

from the Utilities drawer to the System drawer.

You can copy several icons at once by using drag selection or

extended selection. When the icons you want to copy are

selected:

1. Hold down Shift,

2. Point to one of the selected icons, then drag it over the

other disk's icon or into the other disk's window.

As you drag one icon, the rest will follow.

Workbench 2.8 942416 graphics nen 1819792 other nen

a I Workbench
ol Horkbench2.B %% fuU, 39K free, 839K in u EHB

Ran Disk

Ml
Horkbench2.t

Shell
Expansion Systen Monitors

NewDisk 21% full, 638K free, 241K in use SIB

If you have a hard disk, you can copy floppy disks into your

hard disk partitions by opening the hard disk window

(System2.0 or Work), and dragging the floppy disk icon into the

window. When the copy is finished, a drawer for the floppy disk

will be in your hard disk window. For more information, see

Chapter 6, "Using a Hard Disk."

Rename... AR

You can change the name of an icon with the Rename menu

item. A common reason for using Rename is to remove the

copy_oL_ prefix from a newly created icon. You may also

want to change the names of your disks and files as you create

more files. For instance, if you originally created a disk called

Reports and it is starting to get full, you may want to change its

name to Reports 1990. You could then start a new disk named

Reports 1991.

Basic Operations 2-75

~

—

To rename an icon:

1. Select the icon.

2. Choose Rename from the Icons menu.

A requester with a text gadget will appear and show the

current name of the icon.

workbench Screen

a I Workbench EjQ

Renane

Ran Disk

JJ

Horkbench2.8

Enter a neu nane for 'copy_of_Morkbench2,8'

Neu Nane: |copy_of_korkbench2.B|^

OK I

lira
copy_of_Horkbench2,0

Rename requester

2-76 Basic Operations

3. Enter the correct name.

You will have to delete the old name (use Backspace) and

enter the new name. Be sure to delete any spaces before

or after the new name.

You can also press right Amiga-X to erase everything in

the text gadget.

4. Press Return.

The requester will close, and the new name will appear

under the icon.

When renaming icons be careful not to leave any spaces before

or after the new name. These will be impossible to discern on

the screen and will cause confusion if you ever need to type the

icon's name.

disk information

window

Information...

Choosing Information results in a window displaying

information about the selected icon.

A\

Workbench Screen

a! Information

Workbench2,B <Volune)

Blocks: 1758

Used: 1679

Free: 79

Block size: 512

Uolune is

Read/Write

Created: 18-fipr-9B 16:58:53

Default Tool: |SYS:Systen/DiskCopy

Saue I

□IB

Basic Operations 2-77

^

~

Workbench Screen

□ i Information

Clock (Tool)

Blocks; 27

Bytes: 13128

Stack: [4696

Last Changed: 2B-Jun-9B 17:21:42

Script

flrchtved

Readable ^

Writable _£

Executable _v£

Deletable V

(onnent!

Tool Types: !

JHil

This information includes the icon's:

name

image

S12C

stack

last changed date

status

This is followed by the icon's type in

parentheses. The permissible types

of icon are disk (or volume), drawer,

project, trashcan or tool.

A picture of the icon is displayed in

the center of the window.

This is only given for a disk, project,

or tool and is shown in blocks and

bytes.

This is the amount of memory

reserved as temporary storage for a

specific tool. (This does not apply to

disk or drawer icons.)

This indicates when the item

represented by the icon was created

or the last time it was changed.

For a disk, the status is either

Read/Write (you can both read

information from the disk and save

tool Information

window

If your Amiga does not

have a battery

backed-up clock, you

must first set the cor

rect time with the

Time Prefs editor, ex

plained in Chapter 3.

2-78 Basic Operations

new information to it) or Read Only

(you can only read information from

the disk).

For a drawer, project, or tool, there arc six independent

attributes that you can select. When an attribute is selected,

there will be a check mark in the box to its right. To select, or

deselect, an attribute, point to its check box and click the

selection button. Each attribute is explained below:

Script If this attribute is selected and the

program is executed through the

Shell, it will be run as a script (a text

file of AmigaDOS commands).

Archived This attribute is set by some backup

programs to let you know that a file

or directory has been saved, or

archived.

Readable

Writable

Executable

Deletable

If this attribute is selected, you can

read, or access, the information in a

file.

If this attribute is selected, you can

write information to the file. If it is

not selected, you cannot make

changes to the file. For instance, if a

file is readable but not writable, you

will be able to read its contents, but

you will not be able to change them.

If this attribute is selected, you can

execute, or run, the project or tool.

If this attribute is selected, you can

erase the drawer, project, or tool

from the disk. If it is not selected,

the object is protected from deletion.

Basic Operations 2-79

If the icon is a project, there may be a Default Tool. This

specifies the path to the tool that created the project. When the

project icon is opened, the default tool is also opened so that it

can work on the project.

If there is a Comments box, you can include a short note, up to

79 characters, in the information window. For instance, if you

have an icon representing a text file you created, you may want

to add a note to remind yourself of the file's contents. To do

this, select the text gadget next to Comments, and type the

note. Press Return when you are finished.

The Tool Types box allows you to specify different parameters

for some programs or files. How to use Tool Types is covered in

Chapter 4, "The Workbench Programs". If a program supports

Tool Types, the permissible Tool Types will be explained when

""** that program is explained.

To save any changes you make to the Information window, you

must select the Save gadget in the lower left corner. If you

make changes but decide not to save them, select the Cancel

gadget or the window's close gadget.

Snapshot AS

Snapshot saves the positions of all the currently selected icons

on disk. Every time you open the window, any icons that you

snapshot will appear in their saved positions. You can save the

position of multiple icons by using drag selection or extended

"""^ selection.

To snapshot the position of an icon:

1. Select the icon(s) you want to snapshot.

2. Choose Snapshot from the Icons menu.

The next time you open the window, the icon(s) will be

in this position.

2-80 Basic Operations

Unsnapshot

Unsnapshot allows you to cancel the snapshot position of an

icon.

To unsnapshot the position of an icon:

1. Select the icon.

2. Choose Unsnapshot from the Icons menu.

The next time you open the window, Workbench is free

to place the icon anywhere it wants to within the

window.

You cannot use this

menu item with the

Trashcan.

Leave Out Al

Leave Out allows you to move an icon out of its original

window and into the Workbench window. (The file represented

by the icon remains in its original drawer on the disk, only the

icon is moved.) The icon remains in the Workbench window,

even if you reboot the machine.

For instance, you may have a file that you use every day, but

you have to open a disk icon and two other drawers to get to it.

For faster access, you can use Leave Out to move the icon into

the Workbench window.

To use Leave Out:

1. Select the icon.

2. Choose Leave Out from the Icons menu.

The icon will move into the Workbench window.

Put Away AP

After using Leave Out, you can return the icon to its original

drawer by choosing Put Away.

To use Put Away:

1. Select the icon in the Workbench window.

2. Choose Put Away from the Icons menu.

The icon will move back into its original window.

Basic Operations 2-81

~

~

Delete...

The Delete menu item lets you erase files, and their icons,

from the disk. Use Delete with caution. Once you delete an

icon, you cannot retrieve its information.

To delete an icon:

1. Select the icon.

You can use drag selection or extended selection to

choose more than one icon to be deleted.

2. Choose Delete from the Icons menu.

A requester warns you that you cannot get back what

you delete and shows the number of items to be deleted.

This is to safeguard against deleting items that may still

be selected from a previous operation.

You cannot delete a

disk icon or the Trash-

am icon.

2-82 Basic Operations

Workbench

deleting the

Copy of Expansion drawer

Naming: you cannot get back
uhat you delete! Ok to delete:

0 file(s) and
1 drauer(s) (and their contents)?

39K free, 839K in use EDIB

Systen Monitors

Prefs
HBStartup Utilities

copy_of_Expansion
Trastuan

3. Select the OK gadget to delete the icon.

The icon will leave the screen and all data associated

with that icon will be erased from the disk. If you do not

want to delete the icon, select the Cancel gadget.

Be careful when deleting drawer icons. The requester will show

the number of drawers being deleted, but you are also erasing

everything contained in those drawers.

In some application

software manuals,

you may see the word

Initialize used as a

synonym for Format.

Format Disk...

When you insert a blank 3.5 inch disk into the Amiga's disk

drive, the disk icon is labeled DFO:????, DF1:????, or DF2:????,

depending on which disk drive it is in. At this point, the Amiga

does not recognize the disk as an AmigaDOS disk. In order to

use the disk, it must first be formatted for AmigaDOS.

Basic Operations 2-83

-

~

~

To format a disk:

1. Put the disk into the disk drive.

You can put the disk into any disk drive — internal or

external. Make sure the disk is write-enabled (the plastic

tab should be covering the hole).

2. Select its disk icon.

If it is a blank disk, the icon will be labeled according to

which disk drive it is in (DFO:????, DF1:????, etc.).

Workbench 2,9 929376 graphics nen 987912 other nen

a | Horttbench □IB

Ran Disk

Horkbench2,8

DF2:????

blank disk Icon

3. Choose Format from the Icons menu.

If you are formatting a blank disk, a requester will ask you

to insert the disk to be formatted into the disk drive. Even

if the disk is already in the drive, the requester appears to

allow you to switch disks or to cancel the operation. Select

Continue to proceed.

2-84 Basic Operations

Continue gadget-

Systen Request

Please insert disk

to be fornatted in

drive DF2:,

Horkbench2.B

I m

DF2:????

A second requester will ask if it is OK to format the disk in

the disk drive and remind you that all the data will be

erased. Select Continue to proceed or Cancel to abort the

procedure.

Continue gadget

Systen Request

OK to Fornat disk in

drive DFZ:

(all data will be erased) ?

Basic Operations 2-85

~

"*

If you are formatting a disk that contains data, a requester

will ask if it is OK to format the disk, it will state the disk's

name, and remind you that all the data will be erased.

Fornat

DK to Fornat volune

eopy_of_Horkbench2.B
(all data will be erased) ?

OK OK-QUICK■

El

copy.of_Horkbench2.8

This requester presents you with a third option: OK-Quick. If

you select OK-Quick, just the root block track of the disk is

formatted. The root block contains the information that

identifies the disk and where all the files are stored. Erasing the

root block essentially erases the entire disk as the system will

no longer be able to find any of the files on the disk. This is

much quicker than a regular format.

However, if your disk has any type of read/write error, you

should perform a regular format by selecting the OK gadget.

Each cylinder of the disk will be reformatted.

Once the formatting process begins, text in the requester

shows the cylinder of the disk that is being formatted and

verified. After a disk has been formatted, its disk icon will be

labeled Empty. You can change the name by using the Rename

item in the Icons menu.

2-86 Basic Operations

Empty Trash

As explained in the "Icons" section, the Trashcan is a place

where you store unneeded files. To delete an icon using the

Trashcan, drag the icon you want to "throw away" over the

Trashcan icon. The icon is then stored in the Trashcan drawer

until you decide to delete it. To actually remove the file(s)

stored in the Trashcan, you must choose Empty Trash.

To delete an icon with Empty Trash:

1. Drag the icon over the Trashcan, and release the

selection button.

If you open the Trashcan, the icon will be in the

Trashcan window.

throwing away

the Copy_of_Expansion

drawer

Workbench 2.8 939288 graphics nen 1852489 other nen

□I Workbench

m
Ran Disk

Horkbench2.8 %% full, 39K free, 839K in use

Expansion Systen Monitors

2. Make sure the Trashcan icon is selected (the lid will be

open), then choose Empty Trash from the Icons menu.

If you open the Trashcan window, the icon will be gone.

~

Basic Operations 2-87

When you put an icon in the Trashcan, it will stay in the

Trashcan until you choose Empty Trash from the Icons menu.

As long as you have not selected Empty Trash, you can retrieve

an icon from the Trashcan. To retrieve an icon, open the

Trashcan window, and drag the icon into any window.

Some special rules apply to the Trashcan:

• You cannot delete a disk by dragging its icon over the

Trashcan icon.

• You cannot move the Trashcan into a drawer.

• You cannot delete the Trashcan.

The Tools Menu

The Tools menu allows you to run application software by

choosing a menu item instead of opening the program icon. If

the application software supports this feature, there will be

instructions on how to create the new menu item in the

documentation accompanying the program.

~

Chapter 3. Preferences

In Chapter 2 you learned about the Workbench system and

how the various components work. You should now be

comfortable with the basic steps involved in using the Amiga,

such as selecting and opening icons, choosing menu items, and

working with windows.

Now it's time to put that knowledge to work. This chapter

explains the Preferences editors. These editors, which are

found in the Prefs drawer, let you personalize your Amiga

environment. For instance, you can:

• change the Workbench colors

• change the shape of the pointer

• change the size of your display area

• specify your printer

• set up a printer for graphic output

• set up a modem for use with the Amiga

You do not need to use every editor in order to use your Amiga.

Many of the editors let you change how things appear on the

screen to suit your own tastes. However, if you connect a

printer, modem, Multiscan or A2024 monitor to the system,

you must use the appropriate editor to tell the Amiga how to

interact with the new device.

After your system is set up the way you like it, you can move

on to Chapter 4 and learn about the other programs included

on the Workbench2.0 disk.

°

3-2 Preferences

The Prefs Drawer

Prels window

Open the Prefs drawer in the Workbench2.0 disk window, and

the following window appears:

Workbench 2.6 942368 graphics nert 959208 other nen

d I Workbench laie

isib

Input Printer Palette WBPattern ScreenHode Serial Tine

Presets

IControl PrinterGfx Overscan Font Pointer HBConfig

This window contains the icons for the Preferences editors,

which are listed below in the order in which they are covered:

Time Lets you set the date and time.

Input Lets you change the mouse speeds (how fast

the pointer moves, the length of time

allowed for a double-click) and key repeat

speeds.

Palette Lets you change the colors of the

Workbench.

WBPattern Lets you select or create a background

pattern for the Workbench screen and/or the

Workbench windows.

Pointer Lets you change the size, shape, and color of

the pointer.

Preferences 3-3

~

-

Font Lets you change the fonts used in the

different areas of the screen.

ScreenMode Lets you choose a different display mode.

This is necessary if you are using certain

types of monitors with your system, such as

an A2024 or Multiscan monitor.

Overscan Lets you adjust the size of the display area

for text and for graphics.

Printer Lets you specify the printer driver that

matches your printer and allows you to

specify options such as paper size and

margin width.

PrinterGfx Lets you set up your printer to print

graphics.

Serial Lets you set the specifications for the serial

port. This is used for communicating

through modems or networking systems.

IControl Lets you choose the keys used for some of

the keyboard shortcuts, such as moving the

Workbench screen or choosing an action

gadget from a requester.

WBConfig Lets you control whether icons appear on

the backdrop or in the Workbench window.

It also allows you to move a Workbench

window to the front of the screen by double-

clicking in the window.

All of the editors, except for Time, have menus which allow

you to save different configurations for each editor. For

instance, if you use two printers with your Amiga, you

could save the settings for each printer in the Presets drawer.

When you wanted to switch printers you could just open the

appropriate file, instead of reselecting each individual printing

option.

The menus and the Presets drawer, which are explained at the

end of the chapter, are optional and do not have to be used in

order to set up your Amiga.

3-4 Preferences

Action Gadgets

When you open an editor icon, a window appears on the screen.

Each editor window has three action gadgets: Save, Use and

Cancel. You must select one of these gadgets to implement

your changes or to close the editor window. Their functions arc

explained below:

Save If you've made changes to the settings that

you want to keep, select the Save gadget.

This will implement any changes you have

made, save the changes to disk and close the

editor. The new settings will remain in

effect even if you reboot the Amiga.

Use If you've made changes to the settings that

you want to try, but you do not want to save

them at this time, select the Use gadget.

This will temporarily implement any

changes made and close the editor. If you

reboot the Amiga, your changes will be lost,

and the previously saved settings will be

used.

Cancel If you've made changes in the editor but

decide you don't want to use them, select

the Cancel gadget. This will close the editor

without using or saving any changes made

in the window. The settings that were in

effect prior to opening the editor will remain

in effect.

Preferences 3-5

The Time Editor

month

calendar-

~

~

Open the Time icon, and the following window appears:

Workbench Screen

Tine Preferences

Hay M99T

Su

13

2H

21

No

7

14

21

78

lu

1

8

15

n

21

He

2

16

■h

Ih

3

IB

n

24

31

hr

4

11

18

K

Sa

5

12

19

2h

Tine

17:43

This window lets you set the correct date and time.

To set the date:

1. Select the cycle gadget in the upper left corner until

the correct month is displayed.

As you select the gadget, the calendar will change to

reflect the displayed month and year.

2. If the incorrect year is displayed, select the year

gadget, delete the incorrect information, and enter the

current year.

Click in the gadget, press Backspace or Del to erase the

displayed year, type in the current year, and press

Return.

3. Select the correct day from the calendar display.

The currently selected day will he highlighted.

year

hour

minute

3-6 Preferences

To set the time:

1. Point to the slider bar in the hour slider, and hold

down the selection button.

The bar is highlighted,

2. Drag the bar until the correct hour is displayed at the

top of the slider, then release the selection button.

The hour value is based on a 24-hour clock and ranges

from 0 (midnight) to 23 (11 PM).

3. Point to the slider bar in the minute slider, and hold

down the selection button.

The bar is highlighted.

4. Drag the bar until the correct minute is displayed at

the top of the slider, then release the selection button.

The minute range is from 00 to 59.

To determine if your

Amiga has a battery

backed-up clock, refer

to your Introducing

the Amiga manual.

Save/Use/Cancel

To save the displayed date and time to both the system clock

and to the battery backed-up clock (if your Amiga has one),

select the Save gadget. To only save the displayed date and time

to the system clock, select the Use gadget. If the Amiga is

rebooted or turned off, the date and time will be lost. To exit

the editor without making any changes, select the Cancel

gadget.

•~

Preferences 3-7

~ The Input Editor

Open the Input icon, and the following window appears:

Workbench Screen

House Speed;

deceleration:

Double-Click:

Shou | |

Key Repeat Delay:

Key Repeat Rate:

Key Repeat Test:

Save | ^

House

J
1.58 sec I

Test |

Keyboard

8.68 sec 1

0,950 sec 1

1
Use |

E

Cancel [

i < > /

This window lets you change the speed at which the mouse

and keyboard operate. There are two mouse speeds that you

can change: how fast the pointer moves across the screen and

how fast the mouse registers a double-click of the selection

button. For the keyboard, you can change how fast a key

repeats when it is held down continuously and how long it

takes before a key will start to repeat.

Input window

""

3-8 Preferences

Mouse Speed

The Mouse Speed slider lets you determine how fast the

pointer moves across the screen as you move the mouse.

house Speed: 1

flcceleration: j/j

There are three mouse speeds that you can choose from: 1, 2,

and 4. A setting of 1 is the fastest; 4 is the slowest. You may

want to try each setting until you are comfortable. While you

don't want the pointer to move too slowly, it may be hard to

control if it is moving too fast.

Another factor to consider is the size of your work surface.

When the mouse speed is fast, you don't need to move the

mouse very much to get the pointer across the screen. A slower

mouse speed requires more desk space for your mouse.

To set the mouse speed:

1. Point to the slider bar, and hold down the selection

button.

The bar is highlighted.

2. Drag the bar across the slider.

When the bar is all the way to the left, the mouse speed

is set to one. If the bar is all the way to the right, the

mouse speed is set to four, and the pointer will move

significantly slower.

3. When you reach the desired value, release the mouse

button.

As you drag the slider, the displayed mouse speed takes effect.

This allows you to try out each speed without exiting the

editor.

Preferences 3-9

Acceleration

There may be times when you need to be able to move the

mouse over large screen areas while keeping fine control for

smaller movements. For instance, if you are using the mouse

to create a complex drawing with a paint program, you may

need to cover a lot of screen surface quickly but with precision.

If you simply increase the mouse speed, you lose a certain

amount of mouse control. However, when acceleration is

turned on, the mouse speed remains constant when you first

start to move the pointer, allowing you to work precisely

within a small area. However, as you move the pointer further

across the screen, the mouse speed gets faster—similar to

pressing the accelerator on a car. This allows you to cover large

areas of the screen quickly.

When acceleration is on, a check mark appears in the check

box. To turn acceleration on or off, select the check box.

Double-Click

The Double-Click slider determines the maximum amount of

time allowed between the two clicks of a double-click.

Double-Click: 1.56 sec I I

^

Show | |~~ JesU Yes

The range is from 0.20 to 4.00 seconds. If you set the double

click speed to 0.20 seconds, you must click the mouse twice

within two-tenths of a second in order to register a double

click. If you set the double-click speed to 4.00 seconds, you

have a full 4 seconds between the two clicks of a double-click.

3-10 Preferences

To see the amount of time for the selected value, select the

Show gadget. A box appears next to the gadget and remains

there for the length of time allowable between the two clicks.

To test the speed you've chosen, double-click in the Test

gadget. If the double-click took place within the allotted time,

a Yes appears next to the Text gadget. If there was too much

time between your two clicks, a No appears.

Key Repeat Delay

Most of the keys on the keyboard automatically repeat when

held down. However, there is a delay that occurs before the key

starts repeating. The delay, measured in seconds, can be

changed by using the Key Repeat Delay slider.

Key Repeat Delay: 8.60 sec ■ I

You can see the current setting by looking at the slider value.

The range is from 0.20 (shortest) to 1.50 (longest) seconds. For

instance, if the current setting is 0.80 seconds, it will take

eight-tenths of a second before the key starts to repeat.

To increase the delay before the key starts repeating, drag the

slider bar to the right. To decrease the delay, drag the slider bar

to the left.

Preferences 3-11

Key Repeat Rate

~

The Key Repeat Rate slider determines the rate at which the

keys will repeat, after the initial key repeat delay.

Key Repeat Rate: 9.858 sec _l

The allowable range is from 0.002 (fastest] to 0.250 (slowest)

seconds. To increase the speed, drag the slider bar to the left. To

decrease the speed at which the keys repeat, drag the slider bar

to the right.

Key Repeat Test

You can test the settings you have chosen for key repeat delay

and key repeat rate with the Key Repeat Test gadget.

Key Repeat Test: iiiiniiiiil^ |

Select the gadget by pointing to it and clicking the selection

button. A cursor will appear in the gadget. Hold down one of

the letter keys on the keyboard. Your input will appear in the

Key Repeat Test gadget and will show the current key delay

and key repeat rates.

Save/Use/Cancel

To save your changes, select the Save gadget. If you only want

to try your changes, select the Use gadget. To exit the Input

editor without making any changes, select the Cancel gadget.

3-12 Preferences

The Palette Editor

Open the Palette icon and the following window appears:

Palette window

This window lets you change the colors of the Workbench.

Each color on the Workbench screen is made up of various

amounts of red, green, and blue. The red, green, and blue

sliders, let you change the amounts of each color and create

new colors. The current Workbench colors are shown in the

selection gadget at the top of the window.

The number of available colors is determined by the type of

display mode you are using and is set via the ScreenModc

editor (explained later in this chapter). For instance, although

the standard Hires display uses 4 colors, you can change the

screen mode and use up to 16 colors. In this case the Palette

editor would have 16 colors in its selection gadget.

Preferences 3-13

^
To change a color:

1. Select the color you want to change.

Point to a color in the selection gadget, and click the

selection button. The selected color will be shown in the

display box to the left of the selection gadget.

2. Use the slider gadgets to change the selected color.

By changing the values of the sliders you can change the

amount of red, blue and green used in the selected color.

Point to the slider bar in either the red, green or blue

slider, hold down the selection button, and use the

mouse to drag the slider bar. As you drag the bar through

the slider box, the color in the display box and on the

screen will change.

Workbench Screen

Red: i\

Green: 11

Be careful when changing the black and white settings as it

could affect the three dimensional appearance of the screen. To

preserve the three-dimensional effect, be sure to keep the color

that replaces black darker than the color that replaces white.

color selection gadget

display box

3-14 Preferences

By experimenting and changing the values for each of the three

color sliders, you can create any of the Amiga's 4,096 colors.

The table below shows some settings that will bring you close

to your desired color. Remember these settings are just

approximate. You may have to adjust the settings to achieve

the color you want, as the actual shade of the color may vary

depending on your monitor.

Palette Color Table

Color Red Green Blue

White

Yellow

Orange

Red

Brown

Gray

Purple

Lt. Blue

Green

Blue

Black

15

15

15

15

8

8

7

6

0

0

0

15

15

7

0

5

8

0

8

8

0

0

15

0

0

0

0

8

10

11

0

15

0

In addition to the standard Preferences menus (explained at the

end of this chapter), the Palette editor also has a Presets menu

item in the Edit menu which lets you choose from nine

predetermined color settings. For instance, if you choose

Sunset from the submenu, the default grey changes to blue and

the default blue becomes orange.

Save/Use/Cancel

To save the colors, select the Save gadget. If you only want to

try the colors, select the Use gadget. To exit the Palette editor

without making any changes, select the Cancel gadget.

Preferences 3-15

~ The Workbench Pattern Editor

~

Open the WBPattern icon and the following window appears:

Workbench Screen

Preferences

Pattern:

(■ Workbench

J Windows

WBPattern window

This editor lets you change the background pattern of the

Workbench and its windows. You can select an already existing

pattern or create your own. The pattern will fill any open areas

of the window. The default is no pattern.

'

3-16 Preferences

Presets gadget -

For a quick demonstration of how this works, follow the steps

below:

1. Select one of the patterns in the Presets gadget.

There are 8 patterns in the Presets gadget. Point to one,

and click the selection button. A magnified view of the

pattern will appear in the box in the middle of the

window. An actual-size view will be shown in the

display box above the Presets gadget.

workbench Screen

HBPattern Preferences aia

Pattern! in mi urn

(I Workbench ■ ■ im « ■■
ii ii

JHindws ,J-:BB1

i i
Tpcf I llllll! I
llii I I I

III!

i ii i st u m

i n mi n inClear

Save Use

Is]
Did

2. Select the Test gadget.

The selected pattern will fill the background of the

Workbench.

Preferences 3-17

Workbench Screen

^

"

pi a
Pattern:

(• Workbench

JUindws

mi mi niiu

III

■ ■ II
II II

■III
its _

ntiirin. m

W

□IB
-if -rf -

rr1 ti1-rr it Tf Tf Tf if it-rf Tr Tr-ri*Tr

j:rH tPt? ^tPtFtP tHtH tH t? t? t? -i

:rH t ? 1? tF ^ :W t?t? t? t? t? tH 7? 7? t? :^ tP 4? T? t? t? t? 7?t?x±

To create a pattern:

1. Select the Workbench or Windows radio gadget.

This determines whether the pattern appears in the

Workbench window or any open disk or drawer

windows.

2. // there is a pattern in the magnified view box, select

the Clear gadget.

This will erase the contents of the magnified view box.

The box will fill with the currently selected color.

3. Select a color to draw with from the color selection

gadget

Point to a color in the selection gadget, and click the

selection button. The selected color will appear in the

display box above the gadget. You can also select a

pattern from the Presets gadget, and then use the mouse

to edit it.

Test gadget

3-18 Preferences

Your screen is made

up of rows and coiums

of tiny dots, or pixels.

The number of pixels

in a screen depends

upon the display mode

you have chosen (ex

plained later in this

chapter).

selected color

Clear gadget

magnified view box

4. Point within the magnified view box to where you want

to start drawing, then click the selection button.

One pixel of the selected color will appear. If you hold

down the selection button and move the mouse, you can

fill in several pixels at once. When you want to switch

to another color, move the pointer over to the color

selection gadget, and select the next color you want

to use.

Workbench Screen

AAAA

AAAA

AAAA

Presets:

As you create your pattern in the magnified view, the

pattern is repeated in the actual-size box. This gives you

a better idea of how the pattern will look on the display.

5. When your pattern is finished, select the Test gadget

The pattern will appear in the background of the

Workbench window or any open disk/drawer windows,

depending on which radio button you selected.

The rest of this section describes the various components of

the Workbench Pattern editor.

Preferences 3-19

^
Workbench Screen

Pattern:

(■ Workbench

J Windows

display box

actual-size box

color selection gadget

magnified view box

'

Color Selection Gadget

The available colors are shown in a selection gadget to the

right of the magnified view box. Select the color you want to

use by pointing to it and clicking the selection button.

The selected color is shown in the display box above the color

selection gadget. This is the color you will draw with when

you click the selection button in the magnified view box.

When you want to draw with another color, move the pointer

over to the selection gadget, point to a new color, then click the

selection button.

The available colors are determined by the colors chosen with

the Palette editor. You cannot change them within the

Workbench Pattern editor. The number of colors is determined

by the ScreenMode editor (explained later in this chapter].

3-20 Preferences

Magnified View Box

You can use the mouse to draw a pattern inside the magnified

view box. When the pointer is inside the magnified view box

and you click the selection button, a small block of color

appears. That block represents one pixel. If you hold down the

selection button and move the mouse, you can draw with the

mouse, filling in several pixels at once.

Actual-Size Box

This box shows the pattern in the size that it will appear on the

Workbench. You cannot edit the pattern in this box.

Presets Gadget

There are eight preset patterns that you can select. When you

select one of these patterns, it appears in both the magnified

view and the actual-size boxes. You can then edit it in the

magnified view if you wish.

Pattern

These buttons determine whether the pattern will appear on

the Workbench or in any open disk/drawer windows.

Select the Workbench button, and the pattern that currently

appears in the magnified view will be used on the Workbench.

The pattern will not appear on the Workbench until you select

the Test, Save or Use gadget.

Preferences 3-21

Select the Windows button, and the pattern in the magnified

view will be used in all disk and drawer windows.

You can switch back and forth between the two patterns by

selecting the buttons. When you select the Workbench radio

button, the last pattern that appeared in the magnified view

box while the Workbench button was selected will reappear.

When you select the Windows button, the pattern will change

to the last pattern created for the windows.

Test

Select the Test gadget to try out the pattern. This gadget does

not save the pattern. If you exit the editor without saving your

pattern, the pattern will disappear.

Clear

Select the Clear gadget to erase the contents of the magnified

view. The box will fill with the currently selected color.

Undo

Select the Undo gadget to cancel the last action performed by

the mouse. The pattern in the Undo display area will be

exchanged with the pattern in the magnified view box.

For instance, if you've just drawn a red line through the

pattern, selecting Undo erases the red line (but leaves the rest

of the pattern). However, if after drawing the red line, you

accidentally clicked the selection button once and created one

small dot of color in the box, selecting Undo will only erase the

dot since that was the last action performed with the mouse.

3-22 Preferences

Save/Use/Cancel

To save your patterns, select the Save gadget. If you only want

to try the patterns, select the Use gadget. To exit the

WBPattem editor without making any changes, select the

Cancel gadget.

The Pointer Editor

Open the Pointer icon and a new screen appears:

Pointer Preferences

magnified view

box

selected color

Test

C I ear

—i

Set Point

| Reset Color |

Use Cance L

This editor lets you change the size and shape of your pointer.

A magnified view of the current pointer is shown in the left

side of the window. It is this image that you modify to change

the pointer. To the right of the magnified view are copies of the

pointer which let you judge how the Pointer will look against

the colors on the Workbench.

Preferences 3-23

Although the pointer is only made up of three colors, there are

four colors shown in the selection gadget. The left-most color

is the Workbench background color and is transparent. This

color cannot be changed. You will be able to see through any

areas of the pointer drawn with this color. You can change the

other three colors.

To change the colors:

1. Select the color you want to change from the color

selection gadget.

Point to the color and click the selection button. The

selected color will be shown in the display box to the left

of the selection gadget.

2. Change the amounts of red, green and blue in that color

by using the three color sliders.

Point to the slider bar in a color slider, and drag it to the

left or right. The color in the display box and selection

gadget will change as you do this so that you can see the

color you are creating. Remember, you cannot change

the leftmost color.

To edit the pointer:

1. Select the color with which you want to draw.

Point to the color and click the selection button. The

selected color will be shown in the display box to the left

of the selection gadget.

2. Point to a place in the magnified view where you want

to place a pixel of the selected color, then click the

selection button.

A small, colored rectangle appears where you've clicked

the mouse. To draw several rectangles, hold down the

selection button and move the mouse.

3-24 Preferences

Pointer Preferences

Save

[Test

C lear

Set Point

|Reset Co tor]

[]

Use Cancel

Repeat steps 1 and 2 to add other colors to your pointer. Just

point to the color in the selection gadget that you want to draw

with, and click the selection button.

The other gadgets on the screen are explained below:

Test

While you are drawing in the magnified view, the screen

pointer docs not change. The Test gadget lets you change the

screen pointer so that it reflects what is drawn in the magnified

view. This way you can see what the pointer looks like on the

screen without closing the Pointer editor.

The pointer only changes at the time you select Test. If you

select Test then keep editing the pointer, the pointer does not

change to reflect the revisions. You must select Test again if

you want to see any new changes to the pointer.

Preferences 3-25

Clear

Select the Clear gadget to clear the magnified view. All pixels

will be changed to the background color. You can then draw a

new pointer.

Set Point

This gadget lets you determine where to put the pointer's point

(or "hot spot"). The point is the single pixel in the pointer that

must be over an icon in order to select the icon. In the

magnified view, the point is indicated by a smaller square

within one of the pixels.

To set the point:

1. Select Set Point.

2. Point to the pixel in the magnified view where you

want the point to be, then click the selection button.

Reset Color

Select the Reset Color gadget to bring back the last set of colors

that were saved.

Save/Use/Cancel

To save the pointer that is currently shown in the magnified

view, select the Save gadget. If you only want to try the pointer,

select the Use gadget. To exit the Pointer editor without

making any changes, select the Cancel gadget. If you select

Cancel after changing the screen pointer by selecting the Test

gadget, a requester will ask if it is OK to discard the changes

made to the pointer.

3-26 Preferences

The Font Editor

A font is a set of char

acters of the same de

sign.

The screen shown

here represents a hard

disk system. If you

have a floppy disk sys

tem, only three sizes

of the Topaz font will

appear in the scroll

gadget.

Font window

The Font editor lets you change the fonts that are used on the

Amiga.

The Font editor is primarily useful to people with hard disk

systems. If you have a floppy disk system, the only font

immediately available to you is Topaz, which is stored in the

computer's ROM (Read-only memory). Additional fonts are

supplied on the Extras disk, but to use these, you have to delete

programs from your Workbench disk. This is not advisable

unless you are an experienced Amiga user.

Never delete anything from your master copy of

Workbench2.0.

Open the Font icon, and the following window appears:

Workbench Screen

Font Prefi E31B

topaz 8Workbench icon text (•

Screen text J | topaz 8

Systen default text J | topaz 8

tine; 18

tines 24

topaz 8
topaz 9

topaz 11

9123456789 aflbBcCdDeEf

Color selection (Workbench icon text only):

(• Text Only Text: [■ M

J Text & Field Field: |~ M

Save I Use I Cancel

This window lets you change the fonts that appear under the

Workbench icons and in the Workbench menus and title bars.

It also allows you to change the default system font that the

Amiga uses to display information, such as the output of the

View By menu item.

Preferences 3-27

Text Radio Buttons

The radio buttons at the top of the Font editor window allow

you to select the text that you want to change.

Workbench icon text

Screen text _J

Systen default text J

topaz 8

topaz 8

topaz 8

Your choices are:

Workbench icon

text

~

Screen text

System default text

Changes the font below icons in the

Workbench windows. This is the

only text for which you can specify a

color (see the "Text/Field" section

below). Any changes to the

Workbench icon text will take effect

when you exit the Font editor.

Changes the font that appears in all

screens — in the menus, the title

bar, requesters, etc. This font

will only take effect when the

Workbench is reset. When you

select the Save or Use action gadget,

the Font editor will close, and the

Workbench will automatically try to

reset. If you have any project or tool

windows open, a requester will ask

you to close them. You can leave

disk or drawer windows open.

Changes the font that the Amiga

uses to display information, such as

the text in the Workbench Output

Window. This font change is not

immediately noticeable.

3-28 Preferences

To select a text area, point to the radio button next to that area,

and click the selection button. Remember, you can only

change the font for one text area at a time. However, you can

change the font for each area without exiting the Font editor.

For instance, you can select the Workbench icon text radio

button, and select a font for the icons. Then, select the Screen

text radio button, and select a font for the screen. Finally, select

the System default text radio button, and select a font for that

area.

NOTE: Many application programs choose their own fonts and

are not affected by your choices in the Font editor.

Font Gadget

When you select a radio button, a list of available fonts appears

in the scroll gadget. The font name is followed by a number.

The number represents the size of the font—the higher the

number, the larger the font. Sizes vary from font to font, as

some fonts are naturally smaller than others. The maximum

size allowable is 124 points.

tines 24

topaz 8
topaz 9

topaz 11

topaz 11

8123456789 aflbBcCdDeEf

A nonproportional

font is one where

every character is the

same width.

When you are selecting a font for the Workbench icon text or

Screen text, all of the fonts are available. However, the font

used for the System default text must be a nonproportional

font, such as topaz or courier.

Preferences 3-29

~ To see the names of the available fonts, drag the scroll bar, or

use the scroll arrows, to scroll through the fonts. To select a

font, point to it and click the selection button. The name of the

selected font will be shown in the text gadget next to the

selected radio button.

An example of the chosen font, in its actual size, is shown in

the display box next to the font scroll gadget. If you do not like

the way a font looks, select another one. You can keep making

selections as long as the appropriate radio button remains

selected.

~
Text/Field

MOTE: This is only applicable to the Workbench icon text.

When changing the font for the Workbench icons, you can also

specify the color of the text and the field. Two radio buttons let

you choose between Text Only or Text & Field.

Color selection (Workbench icon text only):

(• Text Only Text: [f

Field: ["J Text & Field

The field is the area

immediately surround

ing the text.

If you select the Text Only radio button, the text will be the

color specified by the Text color selection gadget. The field will

be the Workbench background color or pattern.

If you select the Text & Field radio button, you can specify a

color for both the text and the field. This option ensures that

the text is legible regardless of the background pattern.

3-30 Preferences

To change the color of the text, select a color from the Text

color selection gadget by pointing to the color of your choice

and clicking the selection button. To change the color of the

field, select a color from the Field color selection gadget. Be

sure to select two different colors for the text and the field.

Otherwise, the text will blend in with the field, and you will

not be able to read the words.

The number of available colors is determined by the

ScreenMode editor, while the colors themselves are

determined by the Palette editor. You cannot change the colors

within the Font editor.

Save/Use/Cancel

To save the fonts shown in the text gadgets, select the Save

gadget. If you only want to try the fonts, select the Use gadget.

To exit the Font editor without making any changes, select the

Cancel gadget,

Remember, if you've changed the Screen text font, the Amiga

will attempt to reset the Workbench screen. All tool or project

windows must be closed.

Types of Displays

This section explains the types of displays that you can use

with your Amiga so that you will be aware of your choices

before using the ScreenMode or Overscan editors.

The ScreenMode editor lets you change the display mode for

the Workbench screen. The display mode refers to the number

of horizontal pixels and the number of vertical pixels in a

screen. This is also known as the screen resolution.

Preferences 3-31

The standard Workbench screen that appears when you boot

with your original Workbench disk is a Hires (high-resolution)

screen. It is 640 pixels wide (left to right). Its height is

determined by your country's video standard. For an NTSC

display, a Hires screen is 200 pixels high (top to bottom); for a

PAL display it is 256 pixels high.

Most display modes provide an interlaced option which

doubles the number of horizontal lines on a screen, thereby

increasing the resolution. Depending on which model of

Amiga you own, your system may use a Hires-Interlaced

screen (400 lines NTSC; 512 lines PAL). Interlaced screens may

flicker when used with certain monitors. Some Amiga models

have special hardware installed to eliminate the flicker when

used with the appropriate monitor. It is possible to add similar

hardware to other Amiga models as well.

The display modes available to you may depend upon the type

of monitor you are using. Each display mode is explained in the

following sections and the chart on page 3-32 lists all the

display modes, the hardware needed to use that mode, and the

standard screen sizes.

Remember that the display mode you choose only pertains to

the Workbench screen. If an application opens its own screen,

you should check the documentation supplied with the

software to see which display modes the application supports.

In the following sections describing the various display modes,

the information along the right margin is presented in the

following format:

• width x height of standard screen

• width x height of interlaced screen

• maximum number of colors

Height is shown for both NTSC and PAL systems—NTSC/

PAL.

3-32 Preferences

Pnr r ii>

Display Mode

NTSC: Hires

NTSC: Hires

Interlaced

NTSC:

SuperHires

NTSC:

SuperHires

Interlaced

PAL: Hires

PAL: Hires

Interlaced

PAL: SuperHires

PAL: SuperHires

Interlaced

Productivity

Productivity

Interlaced

A2024_10Hz

A2024_15Hz

sible Display Modes

Special Requirements

NTSC monitor1

NTSC monitor1

NTSC monitor1

NTSC monitor1

PAL monitor1

PAL monitor1

PAL monitor1

PAL monitor1

Multiscan monitor2

Multiscan monitor2

A2024 monitor2

A2024 monitor2

lIf this is not the standard video mode for your country,

Standard

Screen Size

640 x 200

640 x 400

1280 x 200

1280x400

640 x 256

640x512

1280x256

1280x512

640 x 480

640 x 960

1008x800

1008x800

it will only be

available if you have dragged the appropriate monitor from the

MonitorStore drawer to the Monitors drawer.

2You must drag the appropriate monitor from the MonitorStore drawer to

the Monitors drawer in order for this monitor to be recognized by the

Amiga.

Preferences 3-33

~

Hires 640 x 200/256 non-interlaced

640 x 400/512 interlaced

16 colors maximum

Workbench 2,8 941792 graphics nen 995698 other nen

□I Workbench
la

Ran Disk

m
Horkbench2.l

p| Horkbench2.B %t full, 39K free, 839K in useE

Shell
Expansion Systen Monitors

Prefs

HBStartup Utilities

Trashcan

This is the default display mode used by the Amiga. It is

suitable for most text-based applications, such as word

processing and databases.

Unless you have display enhancer hardware, the Hires-

Interlaced screen may flicker.

3-34 Preferences

SuperHires 1280 x 200/256 non-interlaced

1280 x 400/512 interlaced

4 colors maximum

H
Ulii

M
IMwti.1

:|HrUN

T\
fell

iM Mil

Hilitie

.Hint,

IKft*

Etf««

Wuiiu:

hutf.

A SuperHires screen essentially cuts the width of the pixels

used by a Hires screen in half. It doubles the amount of

information that can lit on the screen, making text and icons

considerably smaller. SuperHires may be especially useful for

video applications.

SuperHires is only available on machines equipped with the

Enhanced Chip Set. If you have display enhancer hardware,

you should disable it when using SuperHires mode, or the

display may be distorted. (See the display enhancer

documentation for instructions.)

Preferences 3-35

^

^

~

Productivity 640 x 480 non-interlaced

640 x 960 interlaced

4 colors maximum

Horkbene h

Ran Disk

Hnr-kbenchZ.a

Productivity mode looks similar to the Hires-Interlaced mode.

You must have the Enhanced Chip Set and a Multiscan

monitor in order to use Productivity mode.

If you do not have display enhancer hardware, you can use

Productivity mode to display 480 vertical lines without any

flickering or visible scan lines. This is useful for desktop

publishing, CAD/CAM, and graphics programs.

If you do have display enhancer hardware, a Hires-Interlaced

screen is a better choice as it uses fewer system resources than

Productivity mode while providing more colors.

3-36 Preferences

A2024 1008 x 800 only

no interlaced option

4 shades of grey maximum

The A2024 mode is only available on an Amiga with an

A2024-style monochrome monitor. These display modes are

commonly used for desktop publishing and CAD/CAM

programs as they allow you to display a complete 8.5 x 11 inch

page on the monitor screen. The lOHz mode is recommended

for text editing. The 15Hz mode refreshes the screen more

frequently, providing a better picture. However it uses more

system resources than the lOHz mode.

■w-

Preferences 3-37

~ The Screen Mode Editor

~

Open the ScreenModc icon and the following window appears:

Workbench Screen

Screenflode Preferences

Choose Display Mode:

NTSCHires

NTSC:SuperHires

NTSClHires-Interlaced

NTSClSuperHires-Inter laced

Properties of the Selected Mode:

|NISC Hires

Visible Size!

Min Size:

Max Size:

flax Colors:

648 x 268

648 x 288

16368 x 16384

16
ButoScroU: _•]

Jlse

This window lets you select the display mode for the

Workbench screen. The different modes were explained in the

previous section.

ScreenMode window

Choose Display Mode

The available display modes are shown in the Choose Display

Mode scroll gadget. If there are several modes available, you

may have to scroll through the list to see all of the options.

To select a display mode from the list, point to it and click the

selection button. The selected mode will appear in the display

box under the Display Mode gadget.

3-38 Preferences

Properties of the Selected Mode

This display box lists information about the display mode you

selected. The possible properties, depending on the selected

mode and the icons in the Monitors drawer, include:

This shows whether or not the display mode

supports an interlaced screen.

Certain display modes are only available if

you have the Enhanced Chip Set in your

Amiga.

If an NTSC machine has the Enhanced Chip

Set and the PAL icon is in the Monitors

drawer, PAL display modes will be available.

If a PAL machine has the Enhanced Chip Set

and the NTSC icon is in the Monitors

drawer, NTSC screens will be available.

This shows whether or not the display mode

supports the use of genlocking equipment.

This shows whether or not the display mode

supports a draggable Workbench screen. A

draggable screen can be pulled down to

reveal any other open screens behind it.

This appears when the selected display

mode is made up of several panels, such as

the A2024 screen.

Interlaced

ECS

PAL

NTSC

Supports

Genlock

Draggable

Panelled

Requires This indicates that display enhancer

bypassing hardware should be disabled when using this

the Display display mode.

Enhancer

Preferences 3-39

Screen Sizes

Various screen measurements are shown in the lower, left

corner of the window. The size is given in the number of pixels.

The first number represents the width of the screen; the second

number represents the height.

~

^

Visible Size: 648 x 268

Min Size: 648 x 288

Max Size: 16368 x 16384

Max Colors: 16

The sizes correspond to the currently selected display mode.

Visible Size This reflects the size of the text overscan

area, as determined by the Overscan editor

(explained in the next section).

Min Size This is the smallest, or minimum, screen

size that the selected display mode supports.

Max Size This is the largest, or maximum, screen size

that the selected display mode supports. The

amount of chip memory available may

further restrict this size.

NOTE: If you try to use a screen size that is

beyond the capability of the available

graphics memory, the system will default to

the screen size currently selected.

Max Colors This is the maximum number of colors that

can be displayed on a screen in the selected

display mode.

3-40 Preferences

Width

Use the Width text gadget to specify the width of your

Workhcnch screen.

Width: 648 ^Default

Enter a number between, or equal to, the minimum and

maximum widths. Once you enter a number, that number

remains constant no matter which display mode you select

until you select the Default gadget. However, if the number

you've entered is larger than the maximum size for a selected

display mode, the width value decreases to the maximum size.

The Default check box to the right of the Width gadget, allows

you to select the default setting for width. This is usually equal

to the width shown for the visible size measurement.

Height

Use the Height text gadget to specify the height of your

Workbench screen.

Height: |2B6 | _vj Default

Enter a number between, or equal to, the minimum and

maximum heights. Just as with the Width gadget, the height

size remains constant regardless of the selected display mode

until you select the Default gadget.

Preferences 3-41

Colors

This slider gadget lets you select the number of colors that can

be displayed on the screen.

Colors! 4

To increase the number of colors, point to the slider bar, hold

down the selection button, and drag the bar to the right. To

reduce the number of colors, drag the bar to the left. The

number of colors selected is shown to the left of the slider.

The fewer colors selected, the faster the screen can be redrawn.

Fewer colors also use less memory.

AutoScroll

If you've specified a screen width that is larger than the

monitor's display area, you may want to turn on the AutoScroll

option. When AutoScroll is selected, the screen automatically

starts to scroll when the mouse reaches the edge of the visible

portion of the screen.

Save/Use/Cancel

To save the display mode, select the Save gadget. If you only

want to try the settings, select the Use gadget. To exit the

ScreenMode editor without making any changes, select the

Cancel gadget.

3-42 Preferences

The Overscan Editor

Open the Overscan icon and the following window appears:

Overscan window

Workbench Screen Eg

Overscan Preferences IE 5

ntsc.nonitor

fntscnonitor

Edit Text Overscan...

Edit Standard Overscan.,.

1
A

V

Regular Size: MB x 299

Text Overscan: 649 x 288

Standard Overscan: 648 x 288

Haxinun Overscan! 724 x 241

Save | Use | Cancel s\

1 <I>M

Your screen usually fills most of the monitor's display area, but

there is often a small amount of unused space around the edges

of the monitor screen. This area is known as the overscan area.

This window lets you enlarge the size of your screen so that

you can take advantage of that unused space.

In general, any application software that uses a Workbench

screen should support the sizes you select with the Overscan

Editor. It is possible that some older software will have limits

on the window size,

The various display groups for which you can enlarge the

overscan areas arc shown in the scroll gadget in the top of the

window. As explained earlier, the number of display groups you

can choose from depends on the type of chip set in your Amiga

and, possibly, the type of monitor you are using.

Preferences 3-43

~ The default group will be the video standard for your country,

PAL or NTSC. If your monitor supports both video standards,

and the appropriate icon is in the Monitors drawer, the other

video standard will also be available. Do not try to use the

other video standard unless your monitor supports it, or your

screen image may be garbled.

The possible groups and the modes they represent are outlined

below:

NTSC Hires/Hires-Interlaced

SuperHires/SuperHires-Interlaced

PAL Hires/Hires-Interlaced

SuperHires/SuperHires-Interlaced

Multiscan Productivity/Productivity-Interlaced

Only available if a Multiscan monitor has

been connected to the system.

A2024 A2024— lOHz and 15Hz

Only available if an A2024 monitor has been

connected to the system.

When you change the overscan values for a particular display

group, all modes within that group are affected. To change the

overscan values for a display group, point to the group in the

scrolling list and click the selection button. The selected group

will appear in the display box under the scroll gadget.

~

3-44 Preferences

Edit Text Overscan...

NOTE: This function has no effect when used with the A2024

display modes.

This gadget lets you adjust the area available for text display.

When you select the gadget, the following screen appears:

Use the handles to size

and place your Text Overscan

area. It nay be as big as

you like, but the whole area

should renatn visible,

Press <ESC>ape to cancel

or <EHTER> to keep changes.

J
The black rectangles are handles. The handles, and the line

connecting them, represent the outermost area where text can

be displayed. To enlarge the overscan area, point to a handle,

hold down the selection button, and drag the handle to the

edge of the screen. Do this with the handles on each side of the

screen.

Be careful not to move any part of the handle off the screen. If

part of a handle is out of the viewing area, you will not be able

to see all of the text on a screen.

Use the center handle to position the screen. By dragging the

handle, you can shift the screen slightly to the right or left, or

up or down. In this way you can center the display area on your

monitor screen without having to use the monitor's horizontal

and vertical controls.

Preferences 3-45

^

^

To exit the screen without saving any changes, press Esc. To

save changes, press Return. You will be returned to the

Overscan editor.

You can also exit the screen with a menu. Hold down the menu

button and point to the top left corner of the Text Overscan

screen. A menu will appear.

Edit

Keep C

Quit (Cancel Changes) OQ

Use the handles to size

and place your Text Overscan

area. It nay be as big as

you like, but the uhole area

should renain visible.

Press <ESC>ape to cancel

or <ENTER> to keep changes.

Choose Keep Changes (or press right Amiga-K or Return) to

save your changes and exit the screen. Choosing Quit (right

Amiga-Q) or pressing Esc allows you to leave the screen

without implementing your changes. You will be returned to

the Overscan editor.

3-46 Preferences

Edit Standard Overscan...

NOTE: This function has no effect when used with the A2024

display modes.

This gadget lets you adjust the standard display size. When you

select the gadget, the following screen appears:

Use the handles to size and

place your Standard Overscan

area. It should fill your

whole screen.

Press <ESC>ape to cancel

or <EHTER> to keep changes.

The handles, and the line connecting them, represent the

outermost area where data will be displayed. At times, you

may want your graphics to fill as much of the screen as

possible, even running off the screen so that there is no

discernible border surrounding the picture.

Use the mouse to drag the handles as much as necessary so

that the line connecting them completely encompasses the

screen. The resulting area should be slightly larger than the

monitor screen. As with the Text Overscan Editing screen, you

can use the center handle to position the screen.

To exit the screen without saving any changes, press Esc. To

save changes, press Return. You will be returned to the

Overscan editor.

Preferences 3-47

You can also use the menu to exit the screen. Choose Keep

Changes (or press right Amiga-K} to save your changes and exit

the screen. Quit (or right Amiga-QI allows you to leave the

screen without implementing your changes. You will be

returned to the Overscan editor.

^

Screen Sizes

The different sizes of your overscan areas are displayed at the

bottom of the Overscan window.

Workbench Screen

Overscan Preferences 101©

ntsc.nonitor

I
[
t

|ntsc.nonitor

Edit Text Overscan... [

Edit Standard Overscan,.. |

Regular Size; 646 x 288

Text Overscan; 646 x 288

Standard Overscan; 646 x 280

Haxlnufi Overscan; 724 x 241 j

Save | Use | Cancel |

lafc

1 <i>i~

screen sizes

The sizes are given in number of pixels. The first number

represents the width of the screen (left to right); the second

number represents the height of the screen (top to bottom).

The sizes correspond to the sizes for a standard Hires screen

when editing the PAL or NTSC groups. If Multiscan is selected,

the sizes for a non-interlaced Productivity screen will be given.

All other display modes in a group will be affected

proportionally.

3-48 Preferences

The regular size is

sometimes referred to

as the nominal or

standard size.

The different size categories are explained below:

Regular This is the standard, non-overscan size of a

Size screen.

Text This reflects the size of the current text

Overscan overscan area. As you enlarge or reduce the

text overscan area, this value changes.

Standard This reflects the size of the current standard

Overscan overscan area. As you enlarge or reduce the

standard overscan area, this value changes.

Maximum This is the maximum allowable size for any

Overscan overscan area, text or standard.

Save/Use/Cancel

To save your new overscan sizes, select the Save gadget. If you

only want to try the sizes, select the Use gadget. To exit the

Overscan editor without making any changes, select the

Cancel gadget.

Preferences 3-49

~ The Printer Editor

~

~

Open the Printer icon and the following window appears:

Workbench Screen

Printer Preferences

Printer Driver

CalConp_ColorHaster

CalConp_ColorHaster2
CBOPS1966

Diablo_630
Epson!

generic

'pinter

Paper

Paper

Port:

Type:

Size:

0

B

B

Parallel

Fanfold

Narrow Tractor

Paper Length

Left Margin

Right Margin

Print Pitch: B

Print

Print

Spacing: B

Quality: B

(Lines):

(Chars):

(Chars):

66

5

75

IB-Pica

6 lP

Draft

IEIB

This window lets you tell the system what type of printer you

are using along with what type of output you want.

The first thing you need to do is to select a printer driver.

A printer driver is software that enables the Amiga to

communicate with a particular model of printer. The drivers

arc usually named for the printers they represent. The printer

driver selected is used as both the text and graphic printer.

If you have a floppy disk system, the printer drivers are stored

on the Extras2.0 disk. However, the Printer editor looks for the

drivers on the Workbench!.0 disk. You must copy the driver for

your printer to your Workbench!.0 disk. For instructions on

how to do this, see the box on page 3-50. The driver will then

appear in the Printer Driver scroll gadget. To select it, point to

it and click the selection button. The selected driver is shown

in the text gadget underneath the scroll gadget.

If you have a floppy

disk system, your win

dow may look slightly

different. It will not

contain a list of avail

able printer drivers in

the scroll gadget.

Printer window

If you are unsure of

which driver to select,

please refer to Appen

dix B, "Printer Driv

ers." Some drivers are

capable of supporting

more than one printer.

3-50 Preferences

^_^__--— Copying a Printer Driver from —

Extras2.0 to Workbench2.0

1. Select the Workbench2.0 window, then choose Show All

Files from the Windows menu.

2. Double-click on the Devs drawer.

You can close the Workbench2.0 window if you wish.

This will keep the screen from getting cluttered with

windows.

3. Look for the Printers drawer in the Devs window.

You do not need to open the Printers drawer, lust leave it

in a visible part of the window. Once you've located the

appropriate printer driver, you will copy it by dragging the

driver icon over the Printers drawer icon.

4. Insert the Extras2.0 disk into your disk drive, and open

its window.

5. Select Show All Files from the Window menu, and

double-click on the Devs drawer.

You can safely close the Extras2.0 window if you like.

6. Double-click on the Printers drawer in the Devs

window.

The Printers window will contain icons for the various

printer drivers. Scroll through the window until you find

the driver that works with your printer. (If you are unsure

of which driver to use, sec Appendix B for additional

specifications.)

7. Drag the appropriate printer driver icon over the

Printers drawer icon in the Workbench2.0 Devs window.

If you have a single-drive system, requesters will appear

asking you to swap the Workbcnch2.0 and Extras2.0 disks

until the printer driver is copied.

If you have two drives, put a disk in each drive, and the

driver will be copied directly from one disk to the other.

The next time you open the Printer editor, the name of the

printer driver will appear in the scroll gadget.

Preferences 3-51

^

~

~

If you have a hard disk system, all the available drivers are

shown in the scroll gadget in the upper left corner of the editor.

Drag the scroll bar to see all the available drivers. When you

see a driver for your printer, point to it and click the selection

button. The selected printer driver is shown in the text gadget

underneath the scroll gadget.

Workbench Screen

Printer Preferences

Printer Driver

ana

EpsonQ

EpsonXOld

|EpsonX

Paper Length (Lines):

Left Hargin (Chars):

Right Margin (Chars): 75

'rinter

Paper

Paper

Port:

Type:

Size:

B
o

&

Serial

Fanfoid

U.S. Letter

Print Pitch: Q| 18-Pica

Print Spacing! Q| 6 Ipi

Print Quality: &| Draft

E3IB

If a driver for your printer is not in the list, check to see if a disk

with an Amiga printer driver file was included with your

printer. If the instructions for your printer tell you to indicate a

printer file, select the text gadget and type in the name of the

file included with your printer. (Be sure to specify the complete

path to the file or copy the file into the Devs/Printers drawer

on the Workbench2.0 disk.)

If you want to use a printer that is not included in the list, and

you do not have a printer driver for it, enter generic in the text

gadget. For many printers this allows you to print plain text,

but not graphics or extra type styles, such as italics and

boldface.

selected driver

3-52 Preferences

Once you have chosen your printer driver, the other gadgets in

the window let you set the specifications for your printer's

output.

NOTE: The specifications you set with this editor may be

overridden when you use certain application packages, like

desktop publishers or word processors. Those types of

programs usually ask you to specify print specifications

specifically for that program.

linch = 25.4mm

Paper Length

This gadget determines the total number of lines on your page,

including top and bottom margins. For instance, if you are

using 11 inch long paper, with 6 lines to an inch (this is set

with another gadget), you will have 66 lines on your page.

To set the paper length, select the Paper Length text gadget,

delete the current value, type in the correct value, and press

Return.

1 inch = 25.4mm

Left Margin

This gadget determines the width of the left margin — the

number of characters from the left edge of the paper to where

you want text to start printing. For instance, if you want a one-

inch margin, and you are using 10 pitch type, enter 10. (Pitch

refers to the number of characters in a horizontal inch and is

explained later in this section.)

To enter the value, select the Left Margin text gadget, delete

the current value, type in a new value, and press Return.

Preferences 3-53

Right Margin

This gadget determines the width of the right margin — the 1 inch = 25.4mm

number of characters from the left-hand edge of the paper to

where you want the right margin to begin. For example, if your

paper is 8.5 inches wide, and you're using 10 characters per

inch, you can fit 85 characters across a page (8.5 x 10). To leave

a one-inch right margin, you must subtract 10 characters from

the right edge of the page. The right margin would be 75.

To enter the value, select the Right Margin text gadget, delete

the current value, type in a new value, and press Return.

^ Printer Port

This cycle gadget lets you specify the port where you have

attached your printer. Your options are Parallel or Serial. The

displayed option is the selected option.

If you need to change the displayed option, select the Printer

Port gadget, and the other available option will appear.

Paper Type

This gadget specifics the type of paper you are using. The

options are Fanfold [continuous-feed paper) or Single

(individual sheets). The displayed option is the selected option.

If you need to change the displayed option, select the Paper

Type gadget, and the other available option will appear.

3-54 Preferences

Paper Size

1 inch = 25.4mm

Tractor-feed paper

has holes along the

side that attach to the

sprockets on your

printer.

This gadget specifies the size of paper you are using. You have

seven choices:

Narrow 9.5 inches wide by 11 inches long

Tractor (241 millimeters by 279 millimeters)

Wide 17.875 inches wide by 11 inches long

Tractor (454 millimeters by 279 millimeters)

Custom When you select Custom, you must be sure

to specify the correct number of lines that fit

on your paper. Do this through the Paper

Length gadget described on page 3-52.

Sometimes when printing in graphics mode

on Epson and other dot matrix printers,

narrow blank lines appear across the

printout. Selecting Custom may eliminate

this.

DIN A4 8.3 inches wide by 11.7 inches long

(210 millimeters by 297 millimeters)

DIN A5 5.8 inches wide by 8.3 inches long

(148 millimeters by 210 millimeters)

U.S. Letter 8.5 inches wide by 11 inches long

(216 millimeters by 279 millimeters)

U.S. Legal 8.5 inches wide by 14 inches long

(216 millimeters by 356 millimeters)

To make your choice, keep selecting the Paper Size gadget until

the appropriate option is displayed.

Preferences 3-55

Print Pitch

Pitch refers to the number of characters printed in 1 inch of 1 inch = 25.4mm

horizontal text—the higher the number, the smaller the space

between characters. Your choices are:

10-Pica 10 characters per inch

12-Elitc 12 characters per inch

15-Fine 15 characters per inch

To make your choice, keep selecting the Print Pitch gadget

until the appropriate option is displayed.

NOTE: These are the standard sizes that most printers can

support for text printing. Graphic printing from desktop

publishing or word processing programs can override this

^^ setting and allow you to print any size character.

Print Spacing

Spacing refers to how many lines of text are printed in 1 inch = 25.4mm

1 vertical inch of space. You can select 6 lines per inch (lpi)

or 8 lpi. The higher the number, the less space there is between

the lines.

If you need to ehange the displayed option, select the Print

Spacing gadget, and the other available option will appear.

NOTE: These are the standard settings that most printers can

support for text printing. Graphic printing from desktop

publishing or word processing programs can override this

setting.

~

3-56 Preferences

Print Quality

This gadget determines the quality of the printout. Choosing

Draft gives you a lower-quality printout but faster printing.

Choosing Letter gives you a higher-quality printout but slower

printing.

If you need to change the displayed option, select the Print

Quality gadget, and the other option will appear.

NOTE: These are the standard settings that most printers can

support for text printing. Graphic printing from desktop

publishing or word processing programs can override this

setting.

Save/Use/Cancel

To save the settings shown in the window, select the Save

gadget. If you only want to try the settings, select the Use

gadget. To exit the Printer editor without making any changes,

select the Cancel gadget.

Preferences 3-57

^
The Printer Graphics Editor

^

Open the PrinterGfx icon and the following window appears:

Workbench Screen

PrinterGfx Preferences

Color Correct

R:_|G:Jb:_|

Colors =

Dithering:

Scaling:

Inage;

Rspect:

Shade:

Threshold: 7

4896

Gl

01

Bl

Bl

B

Ordered

Fraction

Positive

Horizontal

Black & Hhite

1

Snoothing Left Offset

| No. Inches: fl

Center Picture:

Lin its

Type: B| Ignore

Width ():

Height C): \l

Density: f

<\>U

PrinterGfx window

This window supports extended printer graphics features. The

printer you are using should be selected through the Printer

editor.

For tips on printing screen dumps, see the box on page 3-58.

Color Correct

NOTE: This can only be used with a color printer.

Color correction tries to better match the colors on your screen

to the colors on the printout, You can use color correction on

red, green or blue, or on a combination of the colors. To turn on

color correction, select the check box next to the color, or

colors, you want to correct: r (red), g (green), or b (blue).

3-58 Preferences

Tips for Printing Screen Dumps

For better quality screen dumps:

• On most printers, friction fed paper tends to

produce better graphic dumps than tractor fed

paper. There is less horizontal banding,

• Densities which use more than one pass should

only be used for black-and-white screen dumps. If

you use a multiple-pass density for a gray-scale or

color dump, the output may be muddy or dark.

Multiple-pass color dumps also dirty the printer

ribbon (i.e., the yellow will become contaminated

with other colors).

For faster screen dumps:

• Lower the density.

• Use horizontal dumps rather than vertical dumps.

• If you are dumping a two-color image, set Shade

to black-and-white. This is much faster than a

gray-scale or color dump.

• Turning on Smoothing doubles the printing time.

Use Smoothing for the final copy only.

• Floyd-Steinberg dithering doubles the printing

time, while Ordered and Halftone dithering cause

no increase in printing time.

• If you are dumping a Hires screen that displays

more than 4 colors, you can speed up the dump by

moving the screen to the back of the display once

printing has started. This is easily done by

pressing left Amiga-N.

Preferences 3-59

^

~*

Workbench Screen

Color Correct Snoothing

R: _^Jg: _£^: __f ^f Nil

| Colors ^8

Dithering: B

Scaling: B

Inage: B

flspect: B

Shade: B

Threshold: 7

Save |

B' '

Ordered

Fraction

Positive

Horizontal

Black & White

1

Left Offset

JjuhesjJF^

___^^ Center Picture: |

Units '

Type: B

Width (

Height (

Density:

Use |

Ignore

): ffl 1

)■ fa 1
'

1 I

Cancel |

—--—^

■

V

1*1*1/

:

- check boxes

'Colors gadget

:

Color correction results in a reduction of the number of printed

colors. When color correction is not used, all 4,096 colors

displayed by the Amiga can be printed on a color printer. For

each color you choose to correct, 308 shades of that color are

lost. The number of colors that can be printed is shown in the

Colors gadget underneath the color correction check boxes.

~

Smoothing

Sometimes when printing diagonal lines, the printed lines may

be jagged. When smoothing is turned on, the Amiga attempts

to smooth diagonal lines to get rid of the jagged appearance.

This option is best suited for use with programs that do graphic

dumps of text. When smoothing is turned on, printing may be

much slower.

Floyd-Steinberg dith

ering cannot be used

with Smoothing. If

Floyd-Steinberg is se

lected when Smooth

ing is on, the dithering

made automatically

changes to Ordered.

(Dithering is ex

plained later in this

section.)

3-60 Preferences

1 inch = 25.4mm

1/10th inch = 2.54mm

Left Offset/No. Inches

This gadget determines the number of inches to shift, or offset,

the printed picture. This is similar to setting up a left margin.

The offset is entered in increments of tenths of an inch. The

Center Picture option (below) disables Left Offset.

To enter the value, select the No. Inches text gadget, delete the

current value, type in the correct value, and press Return.

Center Picture

When Center Picture is turned on, the printed picture is

horizontally centered on the page. To turn Center Picture on,

select the check box gadget. Any value entered for the Left

Offset will be ignored.

When Shade is set to

Black & White, chang

ing the dithering

method has no effect

on the printout.

Dithering

[ust as images on your screen are made up of tiny pixels,

printed images arc made up of tiny dots. Dithering refers to the

printing of dots of different colors (or shades of grey) in such a

way that they are so small and close together that the eye sees

them as one color. This enables you to produce printouts

which appear to have more colors than the four ink colors

normally available on a color printer.

For instance, where there is a pixel of black on the screen,

black dots will appear on the printout. However, if you have a

pixel of purple, a color printer will use dots of yellow, magenta,

and cyan to create the illusion of purple. If you arc printing grey

scale printouts, the printer will use varying patterns of black

dots to replicate the intensity of the purple on the screen.

Preferences 3-61

~

The available dithering options are:

Ordered Color intensities are formed using an

ordered pattern of dots, similar to a

checkerboard pattern. The dots, while they

vary in color, are of the same density and are

printed in straight rows and columns. This

is the standard type of dithering.

Halftone Color intensities arc formed by varying the

size and density of the dots. This technique

is similar to the one used in newspapers and

comic books. It works best on high density

printers (greater than 150 dots per inch).

For instance, while a pixel of black may be

reproduced with tour black dots, a pixel of

purple may be reproduced by two red and

two blue dots of varying sizes that are placed

in such as way that to the human eye they

look like purple.

Floyd- Color intensities are formed using the

Steinberg Floyd-Steinberg error-distribution method,

a complex algorithmic formula. Basically

Floyd-Steinberg creates a dot pattern that

maximizes the image's detail by distributing

the intensities of each pixel throughout the

dots comprising that pixel as well as

throughout the neighboring dots.

Printing may be slowed down considerably

when this option is chosen.

For an illustration of each of the dithering methods, see page

3-62. The pictures were generated on a 300 dot-per-inch printer.

This option automati

cally turns off Smooth

ing and works best on

high density printers

{greater than 150 dots

per inch).

3-62 Preferences

Examples of Different

Dithering Output

Ordered

Halftone

Floyd-Steinberg

Preferences 3-63

Scaling

Scaling refers to the process of changing the size of an image.

The actual size of the printout will be determined by the

Limits setting (explained later in this section). It will be scaled

up or down to the nearest multiple of the width and height of

the picture. The available options are:

Fraction The perspective of the picture is preserved.

Pixels are enlarged or reduced at random.

Select this option if you are printing pictures

with lots of shading.

Integer Every pixel on the screen is guaranteed to

appear as an even number of dots on the

--^ printout. Select this option when printing

a picture that contains thin vertical and

horizontal lines (like a grid).

For example, if the picture on the screen is

320 x 200, the printed picture will be either

320, 640 or 960 dots wide, etc., and 200, 400

or 600 dots high, etc.

Integer scaling completely overrides the

Aspect setting making it possible to get a

slightly distorted picture. (The Aspect

setting, explained on page 3-64, determines

whether the picture is printed horizontally

or vertically on the page.) This option is also

useful for printing out bit-image text, since

-—-- the fonts will not be distorted due to

fractional scaling.

3-64 Preferences

This setting only af

fects black-and-white

and grey scale print

ing.

Image

When set to Positive, the image is printed as it appears on the

screen. When set to Negative, the image is reversed — what is

black on the screen is printed as white, and what is white on

the screen is printed as black. This is similar to a photographic

negative.

positive negative

Aspect

When set to Horizontal, the image is printed as it appears on

the screen —what appears across the top of the screen is

printed across the top of the paper. When set to Vertical, the

image is printed sideways — what appears across the top of the

screen is printed along the right-hand side of the paper.

horizontal vertical

Preferences 3-65

Shade

~

These options let you select what colors to print. Not all

printers support these options. The available options are:

Black & Colors are printed as either black or white.

White Whether a color is printed as black or white

is determined by the threshold value

(explained below). Dithering has no effect

when black-and-white printing is selected.

Grey Scale 1 Colors are printed in varying shades of grey.

Color Colors are printed as they appear on the

screen. This can only be used with color

printers.

Grey Scale2 This option supports a maximum of four

shades of grey and is used for printing

pictures designed using the A2024 monitor.

~

Threshold

The threshold value determines which colors on the screen are

printed as white, and which are printed as black. When the

setting for Image is Positive and the threshold value is low

(around 2), only the darkest color on the screen is printed as

black. Everything else is printed as white. Increasing the

threshold value causes more colors to be printed as black.

This setting only af

fects black-and-white

printing.

3-66 Preferences

If you change the Image setting to Negative, black and white

will be reversed. Therefore, a low threshold value will cause

the darkest color on the screen to be printed as white.

threshold = 8 threshold = 13

Limits/Type

The Width and Height limits (explained on 3-69) allow you to

specify the dimensions for your printout. However, those

limits can be interpreted in several ways, dependent on the

Type setting. The available options are:

Ignore The Width and Height limits are ignored.

The printed picture's size is the size

requested by the application. The only

restrictions are that its width cannot be

greater than:

(right margin - left margin) + 1

characters per inch

For instance, if you are using 8.5 inch paper,

with 1 inch margins, and 10 characters per

inch, the width cannot be greater than 6.6

inches.

Preferences 3-67

~

~

~

Height is restricted to the number of lines

on the page divided by the lines per inch

(this is usually equal to the length of the

paper). For instance, if paper length is set to

66 (11 inch paper), and line per inch is set to

6, the printout cannot be longer than 11

inches.

Bounded The printed picture's size is bounded by the

Width and Height limits. For example, if the

printed picture should be no bigger than 4.0

x 5,0 inches (but it could be smaller), set

Width to 40, Height to 50, and select

Bounded. (Width and Height are interpreted

in tenths of inches.)

This option is provided so that the text

settings (margins, lines per page, etc.) do not

have to be changed every time a graphic

print is made.

Absolute The Width and Height limits are interpreted

as absolute values. For example, if the

printed picture should be exactly 4.0 x 5.0

inches, set Width to 40, Height to 50, and

select Absolute. This completely overrides

the Aspect setting (Horizontal or Vertical),

making it possible to get a very distorted

picture.

However, you can use Absolute to get a non-

distorted printout that is a specific width or

height, not both. Set cither the Width or

Height limit to the desired dimension, and

set the other limit to zero.

3-68 Preferences

For example, if Width is set to 40 and Height

to 0, then the printed picture will be 4.0

inches wide and as tall as necessary in order

to be in perspective. If both dimensions are

set to zero, the printed picture will be as

wide as possible and as tall as necessary in

order to retain the picture's perspective.

Pixels The Width and Height limits are interpreted

as pixels, instead of tenths of an inch. If one

of these values is set to zero, the same rules

for the Absolute option apply. The printout

will be the width or height specified, and as

tall or as wide as necessary to retain

perspective.

Multiply The Width and Height limits are used to

multiply the source picture's width and

height. For instance, if you specified a Width

of 2 and a Height of 4, the printed picture

will be two times the source picture's width

(in pixels) and four times the source picture's

height. For example, if the source picture

were 320 x 200 pixels, the printed picture

would be 640 pixels wide and 800 pixels

high.

If one of these values is set to zero, the same

rules for the Absolute option apply. The

picture will be scaled as necessary to

maintain the proper perspective.

Preferences 3-69

^

~

Width

This gadget limits the width of the printed picture. The value

is interpreted as tenths of an inch unless Pixels or Multiply is

the selected Type. To enter a value, select the text gadget, type

the correct value, and press Return.

Height

This gadget limits the height of the printed picture. The value

is interpreted as tenths of an inch unless Pixels or Multiply is

the selected Type. To enter a value, select the text gadget, type

the correct value, and press Return.

Density

This gadget selects the graphics print density. The lower the

density, the faster the image will print (on those printers with

multiple densities). When you select a higher density, more

dots are used to create the printout and the image is sharper.

However, it will take a long time for the image to print.

This option is not supported by every printer. You can check

the specifications for your printer in Appendix B, "Printer

Drivers", to determine if multiple densities are supported.

Save/Use/Cancel

To save the settings shown in the window, select the Save

gadget. If you only want to try the settings, select the Use

gadget. To exit the PrinterGfx editor without making any

changes, select the Cancel gadget.

3-70 Preferences

The Serial Editor

Open the Serial icon and the following window appears:

1 Workbench Screen

Serial Preferences

Serial window *-

BflUD

Input Buffer

Handshaking

XON/XOFF (•

RTS/CTS J

None J

Save |

Rate

Size

9688

512

Parity

None

Even

Odd

Nark

Space

(I

J

J

J

J

Use

■

Bits / Char

^ J

la

■ 1

J

Stop Bits

1 (•

2 J

Cancei |

In order to successfully communicate through a modem or

network, you must make sure that information is sent and

received in a form understandable and compatible with the

device with which you are communicating. This window

lets you set the specifications for the serial port. Check the

documentation packaged with your serial device to determine

the appropriate settings.

With serial communi

cation, information is

sent and received one

bit at a time.

Baud Rate

The baud rate determines the number of bits transferred

through the serial port each second. Since most characters are

usually 10 bits (1 start bit, 8 data bits, 1 stop bit}, if you divide

the baud rate by 10, you can approximate how many characters

per second (cps) are transmitted.

Preferences 3-71

The baud rate you select must match the rate of the device

with which you are communicating. The larger the value, the

taster the data is transferred. The available rates arc: 110, 300,

1200, 2400, 4800, 9600, 19200, and 31250 baud. The current

rate is shown to the left of the slider.

To select the correct baud rate, point to the slider bar, and drag

the slider until the correct value is shown.

Input Buffer Size

The input buffer is an area of memory set aside for serial

communication. The buffer holds incoming information that

is sent to the Amiga. The available sizes are: 512, 1024, 2048,

4096, 8192, 16384, 32768, and 65536 bytes. The current size is

shown to the left of the slider.

To select the buffer size, drag the slider until the desired value

is shown. You may want to use a larger buffer when working

with a high baud rate or when the Amiga is performing many

tasks.

Handshaking

Handshaking refers to the method used to control the flow of

information through the serial port and the device attached to

it. The computer and the device must be set to the same

handshaking method in order to communicate. The available

choices are:

XON/XOFF This is the most common method.

Characters embedded in the data stream

between the two devices regulate the data

flow. These special characters arc called

XON and XOFF.

3-72 Preferences

RTS/CTS With this method, data flow is regulated via

separate control lines, called RTS (Request

To Send) and CTS (Clear To Send).

NOTE: This method requires a properly

wired serial cable.

None This method causes handshaking to be shut

off entirely, allowing communication

between the devices without restriction or

regulation. Use this option with caution.

To change the handshaking method, select the radio button

next to the correct method.

Parity

Parity refers to a method for detecting transmission errors.

Some computers check for errors in transmission by setting the

highest bit of each character a certain way. This bit is called the

parity bit. The computer checks this bit to ensure that the

transmission is complete and accurate. The available choices

are:

None All bits are used for data. This should be

used when Bits/Char is set to 8. No parity

checking occurs.

Even The total number of ON bits in each

character should always be an even number.

Odd The total number of ON bits in each

character should always be an odd number.

Mark The highest bit is always ON.

Space The highest bit is always OFF.

To change the parity method, select the radio button next to

the correct method.

Preferences 3-73

Bits/Char

Bits per character specifies the number of bits that are sent

through the serial port for each character and the number of

bits expected for each character received.

Your choices are 7 or 8. This setting should correspond with

your setting for parity. If parity is set to Even, Odd, Mark or

Space, bits per character should be set to 7 since some systems

look for parity in the 8th bit of data. If parity is set to None, you

should set bits per character to 8.

To change the number of bits sent, select the other radio

button.

-— Stop Bits

Stop bits are extra bits added at the end of a character. They

allow the computer to correctly interpret spacing between

words and when a transmission ends. This pertains to both

characters sent and received through the serial port.

Your choices are 1 or 2. Slower-processing computers usually

require two stop bits. Computers which operate at 300 baud, or

faster, generally require one stop bit. If you are using 8 data

bits, you can only use one stop bit, or you may lose some data

during transmission.

To change the number of stop bits, select the other radio

button.

Save/Use/Cancel

To save the settings shown in the window, select the Save

gadget. If you only want to try the settings, select the Use

gadget. To exit the Serial editor without making any changes,

select the Cancel gadget.

3-74 Preferences

The IControl Editor

[Control window

Open the IControl icon, and the following window appears:

Verify Tineout

,5 Second J

1.8 Second (■

1.5 Seconds J

2.9 Seconds J

5.8 Seconds J

tonnand Keys

A

A
A

jjj HB screen to front

Front screen to back

Re<iuester *

Requester CflHCEL

Mouse

Screen Drag

Shft _|

Ctrl _|

flit _|

A j/J

Coercion

flvoid flicker:

Preserve colors:

Hiscellaneous Flags

Screen nenu snap: _

Text gadget filter: _V

<\>\A

This window lets you change several system settings, such as

the default keys for moving screens or for selecting an action

gadget in a requester. The different gadgets are explained below.

Verify Timeout

In rare instances, the system may be waiting for a response

from a program you are running while, at the same time, the

program is waiting for the system to do something.

To help prevent this kind of situation, the Verify Timeout

gadget allows you to specify the amount of time that the

system will wait for a response from another program. If no

response is received in the allotted time, the system will

proceed and avoid a deadlock.

Preferences 3-75

Your choices are .5, 1.0, 1.5, 2.0, and 5.0 seconds. In general, it

is best to select a longer period of time. To select a timeout

setting, select the radio button next to the time of your choice.

The default setting is 1 second.

Command Keys

These four gadgets let you change some of the default keys

used by the Workbench. You can only specify a new letter key

to be used in conjunction with left Amiga. The use of left

Amiga cannot be changed. The defaults you can change are:

WB screen Specifies the key used to move the

to front Workbench screen in front of any other

screens. The default is N.~
Front screen Specifies the key used to move the front-

to back most screen behind all other screens. The

default is M.

Requester Specifies the key used to select the OK,

OK Retry or Continue gadget shown in a system

requester. The default is V.

Requester Specifies the key used to select the Cancel

Cancel gadget in a system requester. The default

isB.

To enter a new key, select the text gadget, type in the new

letter and press Return.

Mouse Screen Drag

Normally, you can hold down left Amiga, point anywhere in

the Workbench screen, and drag the screen by holding down

the selection button and moving the mouse. This gadget lets

3-76 Preferences

you specify other keys that can be used in addition to or in

place of left Amiga.

The available keys are left Shift, Ctrl, and left Alt. To select a

key, point to the check box to its right and click the selection

button.

For instance, if you select Ctrl, you must hold down Ctrl to

drag the screen. If Ctrl and Shift are selected, you must hold

down both Ctrl and left Shift to drag the screen.

Coercion

NOTE; These two options, Avoid flicker and Preserve colors,

are only applicable when Productivity mode is selected.

When a Productivity screen is displayed, your Multiscan

monitor works at a higher frequency than if an alternative

mode (Hires, SuperHires, etc) is displayed. When several

screens are open, the front-most screen determines the

frequency of the monitor. If you drag the front screen down so

that a Productivity screen and a non-Productivity screen are

both visible, the back screen may be distorted since the

monitor is still operating at the frequency determined by the

front screen.

For instance, assume you have both a Productivity Workbench

screen and a Hires paint program open. When the Productivity

screen is in the front, the monitor is working at a higher

frequency than when the paint program is displayed. If you

drag the Productivity screen down, so that you can sec both the

Workbench screen and the paint program screen, the paint

program screen may be distorted. This is because the monitor

is still working in the higher frequency.

However, the Amiga will try to display the back screen

properly, and in doing so may disturb the colors of the screen or

interlace the screen. The Coercion gadgets allow you to disable

Preferences 3-77

these effects. Selecting the Avoid flicker box will prevent the

back screen from becoming interlaced. The Preserve colors

gadget keeps the screen's original colors intact. However,

selecting these options may result in an even more distorted

back screen.

Screen Menu Snap

This option is provided for users who work with screens that

are larger than the monitor's display area. Normally, the

Workbench menus appear at the top left corner of the screen.

If the left-most side of the screen is not visible, Screen menu

^ snap shifts the Workbench screen so that the menus are still

accessible. The screen only shifts while the menu button is

held down.

Text Gadget Filter

This gadget controls whether control characters are recognized

when entered into text gadgets. A control character is a key

combination (usually Ctrl and an alphabetical key) that

performs a certain function. For instance, Ctrl-M is equivalent

to pressing Return.

Several control characters which perform text editing

functions are listed below:

Ctrl-M

Ctrl-H

Ctrl-X

Ctrl-U

Same as pressing Return

Deletes character to the

(same as Backspace).

Deletes the entire line

Deletes all characters to

cursor.

left

the

of the

left of

cursor

the

3-78 Preferences

Ctrl-K Deletes all characters from the cursor to the

end of the line.

Ctrl-A Moves the cursor to the beginning of the

line.

Ctrl-Z Moves the cursor to the end of the line.

When Text gadget filter is on, control characters that perform

editing operations can be entered into text gadgets, and their

functions will be performed. Control characters that are not

recognized as having editing functions will be filtered out.

When Text gadget filter is off, control characters will be

entered into the text. Special editing functions will not be

available. You can insert control characters into the text

gadget, whether filtering is turned on or not, by pressing

Ctrl-left Amiga along with the desired alphabetical key. For

instance, to enter Ctrl-M, press Ctrl-left Amiga-M.

NOTE: In certain windows with multiple text gadgets, like the

IControl window, pressing Tab moves the cursor to the next

text gadget. In these windows, even if Text gadget filter is off,

you must press left Amiga-Tab to enter a Tab into the text

gadget.

Save/Use Cancel

To save the settings shown in the window, select the Save

gadget. If you only want to try the settings, select the Use

gadget. To exit the IControl editor without making any

changes, select the Cancel gadget.

Preferences 3-79

The Workbench Configuration Editor

~

The Workbench Configuration Editor is no longer part of the

system software. Its features have been incorporated into menu

items and a new Commodity Exchange program.

To save the Workbench window as backdrop, choose the

Backdrop menu item in the Workbench menu, then choose

the Snapshot menu item in the Windows menu.

To select the Double-click for window to front option, use the

ClickToFront Commodity program explained in Chapter 5.

~

3-80 Preferences

The Editor Menus and Presets Drawer

Each editor has three menus: Project, Edit, and Options. These

menus let you save changes to a specified file, enabling you to

save different configurations of the same editor. By default

these files are saved in the Presets drawer, although you can

save them elsewhere if you wish. If you save icons for the files,

you can implement the settings by opening the file's icon. You

do not need to open the actual editor.

For instance, if you use two different printers with your

Amiga, an MPS 1250 and an HP LaserJet, you can save the

specifications for each printer in two different files in the

Presets drawer. When you wanted to use the MPS 1250 printer,

you could open the Presets drawer and just double-click on the

MPS 1250 icon. The specifications would immediately take

effect, although the Printer editor window would not open. If

you were to open the window, it would show the settings for

the MPS 1250. When you wanted to switch to the HP LaserJet,

you could simply double-click on the HP LaserJet icon.

This section explains each of the menus and provides a

detailed example of saving specifications for two printers.

Preferences 3-81

The Project Menu

The options in this menu let you save the editor settings to a

specific file. It also allows you to open previously saved files.

The options are:

Open... Loads the information from a previously

saved file. When you choose Open, a file

requester appears.

Save As... Allows you to specify the file where you

want to save the currently displayed

settings. A default filename in the Presets

drawer is provided in the requester. If you

want to use a different filename, type in the

complete path, then select the OK gadget.

When you want to use those settings, open

the editor, choose the Open menu item, and

type in the complete path to the file. (The

default path is SYS:Prefs/Presets.) Select the

Use gadget, and the settings will be used

until you reboot the Amiga or open another

editor file.

You could also open the Presets drawer and

double-click on the file's icon.

Quit Exits the editor.

~

3-82 Preferences

The Edit Menu

The options in this menu allow you to easily restore previously

used settings or the default settings. The options are:

Reset to Returns the editor settings to the default

Defaults settings.

Last Saved Returns the editor settings to the last saved

settings.

Restore Returns the editor to the settings that were

displayed when the editor was open.

The Options Menu

This menu contains one item to allow you to save icons with

your files. It is described below:

Save Icons? Allows you to choose whether or not to save

icons with the files saved with the Save As

menu item, If you choose to save icons with

the files, the icons will be saved in the same

drawer as the file.

For instance, if you save printer

specifications to the SYS:Prefs/Presets/

Printer.pre file, the icon for the file will

appear in the Presets window. If you double

click on the icon, specifications saved in the

file will be implemented.

Preferences 3-83

Using the Presets Drawer

Suppose you have two printers attached to your Amiga,

an MPS 1250 that you use for dot-matrix printouts and an

HP LaserJet that you use for high-quality, desktop publishing

output. The following example shows how to save printer

specifications for both printers.

1. Open the Printer editor.

2. Make the appropriate selections to correspond with the

HP LaserJet printer.

3. Choose Save As from the Project menu.

When the requester appears, select the default file or

enter a filename, such as SYS:Prefs/Presets/Laser.

4. Without closing the editor, make the appropriate

selections to correspond with the MPS 1250 printer.

5. Choose Save As from the Project menu.

When the requester appears, enter a new filename, such

as SYS:Prefs/Presets/MPS 1250.

6. Select the Save gadget.

The editor window will close and the current printer

specifications will be for the MPS 1250 printer.

When you want to use the HP LaserJet:

7. Open the Presets drawer, and double-click on the

Laser icon.

The settings for the HP LaserJet will take effect even

though the Printer editor does not open.

An alternative method is to open the Printer editor, choose the

Open menu item, and enter SYS:Prefs/Presets/Lascr in the

requester.

When you want to use the MPS 1250, open the Presets drawer

and double-click on the MPS 1250 icon.

Chapter 4. The Workbench Programs

Chapter 3 taught you how to customize your Workbench and

set up your Amiga to work with various peripherals. This

chapter explains the rest of the drawers in the Workbench

window.

Aside from Prefs, there are five other drawers in the

Workbench!.0 disk window: System, Monitors, Utilities,

WBStartup and Expansion. The Utilities and System drawers

contain icons for programs included on the Workbench2.0 disk;

such as:

• Clock, a program for displaying a clock on your screen

• AddMonitor, a tool that lets you notify the Amiga that

a monitor other than the standard RGB-style monitor

has been added to the system

• More, a program for displaying text files

• Say, a tool that lets the Amiga speak

The Monitors drawer contains icons used by the AddMonitor

program. The WBStartup drawer allows you to automatically

start different programs when you boot or power on the Amiga.

The Expansion drawer is sometimes used when you add

peripherals to your Amiga. For instance, if you add a

Bridgeboard to an Amiga, an icon for a specialized library is

copied to the Expansion drawer. If a peripheral uses the

Expansion drawer, it will be explained in the documentation

packaged with that product.

The first thing explained in this chapter is how to use Tool

Types. Tool Types let you specify different parameters for many

programs. Next, the programs in the System drawer are

covered, followed by those in Utilities. Finally, you'll learn

how to add programs to the WBStartup drawer.

4-2 Workbench Programs

Tool Types

Before you start reading about the Workbench programs, you

should take a few minutes to familiarize yourself with the

concept of Tool Types. As explained in Chapter 2, Tool Types

are used to specify parameters used by a program. For instance,

you can use a Tool Type to change the style of clock displayed

by the Clock program or to specify a file to be used by the

Display program.

Tool Types are usually in the form of KEYWORD - argument.

In this manual, the KEYWORD is shown in uppercase letters

while the argument is in lowercase letters. However, case

differences do not matter when entering the information.

You enter Tool Types in an icon's Information window. Select

the appropriate icon, then choose Information from the Icons

menu. When the window appears you can add, delete or change

Tool Types.

Adding a Tool Type

1. Select the appropriate icon, then choose Information

from the Icons menu.

The Information window will appear.

2. Select the New gadget.

A cursor appears in the text gadget.

Workbench Programs 4-3

^

~

Workbench Screen

InfomaUon

Clock (Tool)

Blocks! 27

Bytes: 13128

Stack: [4B96~

Last Changed: 28-Jun-98 17:21:42

Cwwent:

Tool Types;

Script _

flrchived

Readable _£

Writable

Executable

Deletable

Del | jSECOMDS

Save Cancel

3. Type in the new Toot Type and press Return.

After pressing Return, the new Tool Type will appear in

the Tool Types scrolling list.

Workbench Screen

□ 1 Information Jfljfl
Clock (Tool)

Blocks: 27

Bytes: 13126

Stack: [4896

Last Changed: 2fl-Jun-9(17:21:42

Script _

flrchiued _

Readable V_

Writable _•

Executable _/

Deletable </

Connent;

Tool Types;

SECONDS

Cancel

2<\>U

To add another Tool Type, repeat steps 2 and 3.

In this example,

the Keyword

does not take an

argument.

text gadget

new Tool Type

4-4 Workbench Programs

4. Select the Save gadget to save the new information.

If you are adding more than one Tool Type, do not select

Save until you've entered all of them. Selecting Save

closes the Information window. If you do not want to

save your changes, select Cancel or the window's close

gadget.

Deleting a Tool Type

1. Select the appropriate icon, then choose Information

from the Icons menu.

Any Tool Types you have added will be shown in the

Tool Types scrolling list.

2. Select the Tool Type you want to delete from the list.

Point to the Tool Type and click the selection button.

The Tool Type will now appear in the text gadget.

3. Select the Del gadget.

To delete another Tool Type, repeat steps 2 and 3.

4. Select the Save gadget to save the change.

Do not select Save until you have made all of your

changes. Selecting Save closes the Information window.

If you do not want to save your changes, select Cancel

or the window's close gadget.

Changing a Tool Type

1. Select the appropriate icon, then choose Information

from the Icons menu.

Any Tool Types you have added will be shown in the

Tool Types scrolling list.

Workbench Programs 4-5

2. Select the Tool Type you want to change from the list.

Point to the Tool Type and click the selection button.

The Tool Type will now appear in the text gadget.

3. Edit the text in the text gadget, making the necessary

changes, then press Return.

4. Select the Save gadget to save the change.

Do not select Save until you have made all of your

changes. Selecting Save closes the Information window.

~

~

The System Drawer

The System drawer contains programs that have an effect on

the way the system operates.

Workbench 2.9 965688 graphics nen 977368 other nen

□I Workbench

Ran Disk

HI
Workbench?.

iffllS

flddHonitor

Setnap |

Fornat

m
BindMonitor

w DiskCopy FixFonts

4-6 Workbench Programs

The list below explains when or why you would need to use

each program. Please see the section describing the individual

programs for more information.

AddMonitor Is used to inform the system that you've

added another type of monitor, such as an

A2024 or Multiscan monitor. You can also

use it if you have a monitor that supports

the video standard that is not normally used

in your country (PAL for NTSC countries,

and vice versa).

BindMonitor Assigns names (Hires, SuperHires, etc.) to

the different display modes. BindMonitor is

automatically run, via the Mode_Names

tool, when the Workbench is started.

CLI Controls the Shell, the program that lets you

communicate with the Amiga through

typed commands. The Shell is fully

explained in Chapter 7, "Using AmigaDOS."

The CLI is not explained in this Chapter.

DiskCopy Is used to make copies of disks.

FixFonts Is used to make new fonts accessible to the

system.

Format Is used to format a floppy or hard disk.

NoFastMem Is used to temporarily disable any expansion

RAM used by your Amiga. This is

sometimes needed when using older

programs that do not work properly if

expansion RAM is present.

RexxMast Must be running in order for programs that

use the AREXX language to operate properly.

A command to start RexxMast is part of the

standard Startup-sequence (the file that is

read when the Amiga is turned on or

Workbench Programs 4-7

~

SetMap

rebooted). You only need to open the

RexxMast icon if you delete the RexxMast

command from your Startup-sequence or if

your computer doesn't have enough memory

to load the program. If you're interested in

learning about the AREXX language, please

see Chapter 10. RexxMast is not explained

in this chapter.

Tells the Amiga what keyboard you are

using. (You do not need to use SetMap if you

have an American keyboard.)

~
AddMonitor

You must use AddMonitor if you want to use the display

modes available with non-RGB style monitors, such as an

A2024 or Multiscan monitor. To use AddMonitor you drag an

icon for the type of monitor you want to use from the

MonitorStore drawer on the Extras2.0 disk to the Monitors

drawer on the Workbench2.0 disk.

If you have a hard disk system, both the MonitorStore and the

Monitors drawer will be in your System2.0 window.

There are icons in the MonitorStore drawer for A2024,

Multiscan, PAL and NTSC monitors. The PAL and NTSC

icons are for users who have monitors that support the video

standard not used in their country.

For instance, if you live in Europe and use a PAL Amiga, but

have a monitor that also supports NTSC displays, you must

put the NTSC icon into the Monitors drawer to make the

NTSC display modes available to your system. If you have an

NTSC system, you do not need to put the NTSC icon into the

Monitors drawer; the NTSC display modes will be your default

display modes.

4-8 Workbench Programs

If you have a floppy disk system:

1. Open the Workbench2.0 disk window.

2. Remove the Workbench2.0 disk from the disk drive,

insert the Extras2.0 disk, and open the Extras2.0 disk

icon.

NOTE: If you have two disk drives, do not remove your

Workbench2.0 disk. Just insert the Extras2.0 disk in the

other drive, and open the Extras2.0 icon.

3. Open the MonitorStore drawer in the Extras2.0 disk

window.

Workbench 2.8 958624 graphics nen 939768 other nen

ol Workbench

MonitorStore

window

g| HonitorStore

Muttiscan R2824

■
KTSC Pal

o| Horkbench2.B %% full, 39K free, 839K in use|E|Co

Shell Svsten HBStartup Monitors

Prefs
Utilities Expansion

Trashcan —

]<1>I^

You can close the Extras2.0 disk window if you want to

unclutter your screen.

Workbench Programs 4-9

~

~

4. Drag the icon for your monitor type over the Monitors

drawer in the Workbench2.0 disk window.

Workbench 2.8 958624 graphics nen 939768 other nen

d I Workbench

□I MonitorStore

Multiscan R2824

■ H
NTSC Pal

□ I Horkbench2.B %% full, 39K free, 839K in

d
Shell Systen HBStartup Monitors

Prefs
Utilities Expansion

Trashcan ~

dragging the

Multiscan icon

A requester will appear asking you to insert the

Workbench2.0 disk. You may have to swap between the

Workbench2.0 and Extrasl.O disks until the file is

completely copied.

NOTE: If you have two disk drives, you will not see this

requester. The system will copy directly from one disk to

the other.

If you have a hard disk:

1. Open the System2.0 disk icon.

2. Open the MonitorStore icon.

3. Drag the icon for your monitor type over the Monitors

drawer.

4-10 Workbench Programs

Once the icon is copied, double-click on the monitor icon. The

AddMonitor program will tell the Amiga that the monitor has

been connected, and the corresponding display modes will be

available through the ScreenMode editor (explained in Chapter

3.)

As long as the icon is in the Monitors drawer, AddMonitor will

be run every time you boot your Amiga. You will not need to

double-click on the monitor icon.

BindMonitor

The Amiga's ROM (read-only memory) contains data to

support the various display modes possible with the different

types of monitors. However, ROM does not automatically

recognize the display modes by name. For instance, a Hires

display is 640 x 200/256 pixels, but ROM does not recognize

the word Hires. It only recognizes the pixel configuration of

640 x 200/256.

BindMonitor assigns names to the different display modes so

that the system will associate the display mode with the

appropriate name. To make things easier, there is a file called

Mode_Names in the WBStartup window. Mode_Names

already contains the assignments for all the possible display

modes. As long as this icon is in your WBStartup drawer, the

system will automatically be told the display mode names

every time Workbench is loaded.

When you open the ScreenMode Editor in the Prefs drawer, the

names assigned through BindMonitor (via the Mode_Names

file) will appear in the Choose Display Mode gadget. If

Mode_Names is ever removed from the WBStartup drawer,

only the display modes, such as 640 x 200 or 1008 x 800, will

appear in the ScreenMode window.

Workbench Programs 4-11

DiskCopy

You can copy a disk by selecting the disk icon, holding down

Shift, then double-clicking on the DiskCopy icon. The copy

procedure will follow the same steps as if you had chosen the

Copy menu item. A requester will notify you when it is time to

swap disks.

The DiskCopy program is used by the Copy menu item in the

Icons menu. If you simply double-click on the DiskCopy icon,

you will be referred to the Copy menu item.

1

~

^

FixFonts

FixFonts should be used after you have added, or deleted,

information from your Fonts drawer. (The Fonts drawer does

not have an icon associated with it; you have to use the Show

All Files menu item in order to see the Fonts drawer on the

Workbench.)

If you have a floppy disk system, the only font immediately

available to you is Topaz. Topaz is stored in ROM. Other fonts

are available in the Fonts drawer on the Extras2.0 disk, but to

copy them to your Workbenchl.O disk, you would have to

delete information from the disk to make room for them.

You should not delete files from the Workbench2.0

disk unless you are an experienced user. Instructions

are given in Chapter 7, "Using AmigaDOS," for

making room on the Workbench2.0 disk. If you do

decide to modify your disk to make room for fonts, be

sure to use a backup copy of your original

WorkbenchlO disk.

If you have a hard disk system, the fonts from the Extrasl.O

disk will be in your Fonts drawer on your System2.0 partition.

4-12 Workbench Programs

The Fonts drawer contains a .font file and drawer for every font

available to the Workbench. For instance, inside the Fonts

drawer there is a .sapphire file and a Sapphire drawer which

contain the data needed to create the different sizes of the

Sapphire font.

Sometimes additional font files are supplied with word

processing or desktop publishing software. The software

usually includes instructions on adding the files to the Fonts

drawer. After you add fonts to the Fonts drawer, FixFonts

updates all the .font files so that they accurately reflect the

current contents of the corresponding font drawers.

To use FixFonts, double-click on the FixFonts icon. FixFonts

does not open a window.

Format

You can format a disk by selecting the disk icon, holding down

Shift, then double-clicking on the Format icon. The formatting

procedure will follow the same steps as if you had chosen the

Format Disk menu item.

The Format program is used by the Format Disk menu item in

the Icons menu. If you simply double-click on the Format icon,

you will be referred to the Format Disk menu item.

NoFastMem

Some very old programs may not run properly when memory

other than graphics memory is present in the Amiga system,

such as the expansion memory present in the A2000/A3000 or

the additional memory provided by an A501 memory cartridge

in the A500. In this case, double-clicking on the NoFastMem

Workbench Programs 4-13

icon forces the Amiga to use only the available graphics

memory. The icon works like a toggle switch. To restore all

memory to the system, double-click on the NoFastMem icon

again.

~

SetMap

SetMap allows you to select the correct keymap for your

keyboard. A keymap tells the computer which character to

register for each key on the keyboard. The default keymap

stored in ROM is usa—a standard American keyboard.

Additional keymaps are included on the Extras2.0 disk (in the

Devs/Keymaps drawer).

Keymap

cdn

chl

ch2

d

dk

e

f

gb

i

is

n

s

usaO

usa2

Keyboard

French Canadian

Swiss French

Swiss German

German

Danish

Spanish

French

Great Britain

Italian

Icelandic

Norwegian

Swedish

For programs developed with VI.0

Dvorak

If you have a floppy disk system, you must copy the correct

keymap from the Extras2.0 disk to your Workbench2.0 disk.

4-14 Workbench Programs

* HD1

Keymaps drawer

If you have a hard disk system, the file will already be in the

System2.0:Devs/Keymaps drawer. However, you will have to

add the appropriate Tool Type to the SetMap icon's

Information window. Skip ahead to the "Adding A Tool Type"

section on page 4-16.

To copy a keymap to Workbench2.0:

1. Open the Workbench2.0 disk window, and select

Show All Files from the Window menu.

Additional icons will appear in the window. Look for

the icon for the Devs drawer. You may need to scroll the

contents of the window, or enlarge the window, to find

the icon.

2. Open the Devs drawer.

A window will appear containing several files and two

drawers: Keymaps and Printers. (You can safely close

the Workbench!.0 disk window if you want to unelutter

the screen.!

Workbench 2.8 934664 graphics nen 952376 other ntn

u\ Workbench Msi
o| Horkbench2.8 96K full, 39K free, 839K in |H|CQ

3. Remove the Workbench2.0 disk from the disk drive,

insert the Extras2.0 disk and open the ExtrasZO disk

icon.

Workbench Programs 4-15

NOTE: If you have two disk drives, do not remove your

Workbench2.0 disk. Just insert the Extras2.0 disk in the

other drive, and open the Extras2.0 icon.

4. Select the Extras2.0 disk window, and choose Show All

Files from the Window menu.

Just as with the Workbench2.0 disk window, an icon for

the Devs drawer will appear.

5. Open the Devs drawer in the Extras2.0 disk window,

then open the Keymaps drawer that appears in the

Devs window.

You can close the ExtrasLO disk window and the

Extras2.0 Devs window if you want to unclutter the

screen. The only windows that need to be open are the

Workbench2.0 Devs window and the Extras2.0

Keymaps window.

There will be several icons in the Keymaps window.

These icons represent the various keymaps for the

different keyboards used throughout the world.

Workbench 2.0 916792 graphics nen 933368 other nen

o Workbench

M ±.

Ran Disk

|
Horkbench2.B

Extras2.B

-A-F

usa2

A _

usa6

□I Devs IBIB

lountList
Keynaps

Printers

keymap icon

4-16 Workbench Programs

dragging the

German keymap icon

6. Find the icon that represents the correct keyboard for

your use.

7. Drag the correct Keymap icon out of the Extras2.0

Keymaps window and over the Keymaps drawer in the

Workbench2.0 Devs window.

Workbench 2.8 916792 graphics nen 933368 other nen

o| Workbench

□I

Ran Disk

Horkbench2.8

Extras2.8

BIB

dk ch2

□ I Deus I Pi! Pi

lountList
Keynaps

Printers

A requester will appear asking you to insert the

Workbench!.0 disk. You may have to swap between the

Workbench2.0 and Extras!.0 disks until the file is

completely copied.

NOTE: If you have two disk drives, you will not see this

requester.

The angle brackets in

dicate that informa

tion, in this case a file

name, must be substi

tuted. Do not type the

brackets.

Adding a Tool Type

Once the correct keymap is in the Keymaps drawer, you must

add a Tool Type to the SctMap icon's Information window to

notify SetMap of the new keymap file. The format is

KEYMAP = <file>. For example, to enter the keymap for a

German keyboard:

Workbench Programs 4-17

"

~

~

1. Select the SetMap icon, then choose Information from

the Icons menu.

The SetMap Information window will appear on the

screen.

2. Select the New gadget.

A cursor will appear in the text gadget.

3. Type:

KEYMAP = c!

Workbench Screen

o! Infornation

SetMap (Tool)

Blocks: 9

Bytes: 4112

Last Changed: 3B-Hay-98 17:19:12

Connent;

Script

flrchiued

Readable

Writable

Executable

Detetable

Tool Types:

Heu| Del | |Keyny=d

Save Cancel

Press Return, and the new Tool Type will appear in the

Tool Types scrolling list.

4. Select the Information window's Save gadget.

To implement your change, double-click on the SetMap icon.

You can have SetMap run automatically every time you boot

your system by dragging the SetMap icon into the WBStartup

drawer. This is fully explained in "The WBStartup Drawer"

section on page 4-35.

text gadget

4-18 Workbench Programs

The Utilities Drawer

The Utilities drawer contains some basic programs that you

may want to use while working with your Amiga.

Utilities window

Workbench 2,8 951232 graphics nen 943688 other nen

a I Workbench

Ran Disk

m
Horkbench2.l

a I Utilities

Clock

kl

tiore

ex

Exchange

Display

MB

The programs arc listed below:

Clock Displays a clock on the Workbench screen.

Display Displays an IFF graphics file.

Exchange Monitors and controls the Commodities

Exchange programs on the Extras2.0 disk.

More Displays the contents of text files on the

screen.

Say Makes the Amiga talk.

Each of the these programs is explained in this section.

Workbench Programs 4-19

Clock

The Clock lets you display the time on your Workbench

screen. You can also use it as an alarm clock to signal you at a

specified time.

When you open the Clock icon, a window with a round clock

face appears. If the time shown is incorrect, use the Time editor

in the Prcfs drawer to set the clock (see Chapter 3).

~

Workbench Screen

□I Workbench

p| Clock EDiB

Ran Disk

m
Horkbench2.8

2<\>U

analog clock

When the Clock window is selected, menus are available that

let you change to a digital display, change the way the time is

shown, and set the alarm.

4-20 Workbench Programs

The Type Menu

This menu lets you change the way the clock is displayed. If

you choose Analog, the round clock appears. (This is the

default.) This is the only mode that lets you change the size of

the Clock window. If you choose Digital, a digital clock the

height of the title bar appears.

digital clock

Workbench Screen

njUarkhench

Ran Disk

Horkbench2.i

<\>U

The Mode Menu

This menu lets you choose a 12-hour or 24-hour clock. If you

choose the 12 Hour menu item, AM or PM is shown after

the time. If you choose 24 Hour and a digital display, time is

displayed as 0:00 (12:00 AM or midnight) through 23:59

(11:59 PM|. 12 Hour is the default.

The Seconds Menu

This menu lets you choose to display the seconds. If you

choose the Seconds On menu item, a second hand appears on

the analog display. In a digital display, the seconds are shown

after the minutes (11:36:04). Seconds Off is the default.

Workbench Programs 4-21

-

~

-

The Date Menu

This menu lets you choose to display the date. If you choose

the Date On menu item, the date is shown underneath the

analog clock. If you are using the digital clock, the date and

time will be alternately displayed. Date Off is the default.

The Alarm Menu

With this menu, you can tell the Amiga to signal you at a

certain time. The signal is a brief flash on the display. If your

monitor is hooked up to the Amiga's audio output, you will

also hear a short tone.

To set the alarm:

1. Choose the Set menu item.

In the requester that appears, time is shown in the same

mode as your clock — either 12 Hour or 24 Hour. If it is

shown in 12 Hour mode, an AM/PM cycle gadget will

appear next to the time sliders.

Workbench Screen fc-

o| Horkbench

H d Clock |EIQ

Ran Disk

Mln^ii
HorkEincb2.B

fllarn Set IS

12 : ee

Use Cancel |

idNe

■v

hour slider

minute slider

The requester defaults to 12:00. It does not reflect the

currently set time.

4-22 Workbench Programs

2. To change the setting for the hour, use the hour slider.

Point to the bar in the hour slider, and press the

selection button. Use the mouse to drag the bar up or

down until the correct hour is displayed at the top of the

slider.

3. To change the setting for the minutes, use the minute

slider.

As with the hour slider, drag the slider bar until the

correct minute is displayed.

4. When the requester displays the desired alarm time,

select the Use gadget

If you want to restore the previous alarm setting, select

the Cancel gadget.

5. To turn the alarm on, choose the Alarm On menu item.

When the clock reaches the alarm setting, the screen

will flash and a short tone will sound.

The alarm will remain on and will flash at the same time each

day, until you choose Alarm Off. If the Clock is not displayed,

the alarm will not work. The next time you open the Clock,

you will have to reset the alarm.

Tool Types

By entering Tool Types in the Clock icon's Information

window, you can save the menu, size and position settings so

that the Clock will open as you want it every time. The

acceptable Tool Types are:

DIGITAL The clock will open in digital mode.

24HOUR The clock will open in 24-hour mode.

Workbench Programs 4-23

SECONDS The clock will display the seconds.

DATE The clock will display the date.

LEFT = <n> The clock will open <n> pixels from the

left edge of the screen.

TOP = <n> The clock will open <n> pixels from the

top of the screen.

WIDTH- The clock will be <n> pixels wide

<n> (disregarded if using a digital clock).

HEIGHT = The clock will be <n> pixels high

<n> (disregarded if using a digital clock).

Display

Display allows you to view graphic files saved using the

standard Amiga IFF ILBM format. Most graphics created with

standard Amiga paint programs save files in this format. You

can create a slide show with Display by specifying multiple

files to be shown. You can advance from one picture to the

next automatically, or you can tell Display to wait for a mouse

click.

To display a single picture file:

1. Select the Display icon.

2. Hold down Shift, and double-click on the icon of the

picture file.

The file will be displayed on a new screen.

4-24 Workbench Programs

To return to the Workbench screen, press Ctrl-C. You can also

click on the hidden close gadget in the upper left corner of the

screen.

An alternative method is to add a Default Tool to the picture

icon's Information window. If you do this, you will be able to

display the picture by opening its icon.

1. Select the picture icon, then choose Information from

the Icons menu.

An Information window will appear.

2. Select the Default Tool text gadget.

A cursor will appear in the gadget. Delete any existing

text.

3. Type in the path to the Display program as the

picture's default tool.

Be sure to specify the complete path, such as

Workbench2.0:Utilities/Display.

If you have a hard disk system, the complete path is

System2.0:Utilities/Display.

4. Select the Save gadget.

If you open the picture icon, the Display program will be run,

and the picture will be displayed.

To display multiple files:

1. Select the Display icon.

2. Hold down Shift, and select the icons for the picture

files you want to display.

3. When you get to the last picture file, double-click on its

icon.

The first picture file will be displayed. Press Ctrl-C to

advance to the next picture. To exit Display before all

the pictures are shown, press Ctrl-D.

Workbench Programs 4-25

~

*

^

You can also create an ASCII text file containing a list of the

IFF files that you want to display. This "filelist" can be created

with one of the Workbench text editors, ED or MEmacs, or

with any word processor that allows you to save files in ASCII

format. For instance, a sample file might look like this:

PicsDisk:Art/Sea

PicsDisk:Art/Mountain

Pics Disk: Art/Sky

PicsDisfcArVLightning

PicsDisk:Art/Gulls

This indicates that the IFF files are in the Art drawer on a disk

called PicsDisk. The filelist should be saved in a drawer

accessible by the Workbench, and it should have a project type

icon. {You can check this by opening the icon's Information

window. If it is not a project, you can use the IconEdit program

to change the icon's type. See Chapter 5 for instructions on

using IconEdit.)

Open the filelist icon's Information window, and add the

following Tool Type:

FILELIST = true

Select the Default Tool text gadget and enter the path to the

Display program, for instance, Workbench2.0:Utilities/

Display. This tells the system that the file is a project of the

Display Tool. When you open the filelist icon, Display will

automatically be run, and the pictures in the list will be

displayed.

Tool Types

Display supports several Tool Types for moving from one

picture to the next. You can move forward by clicking the

selection button or by specifying a certain amount of time for

Display to wait before moving ahead. Several of these Tool

Types are global, which means they must be added to the

Information window for the filelist icon or for the Display

icon.

ASCII is a standard

text format that can

be read by many pro

grams and computers.

4-26 Workbench Programs

LOOP = true

BACK = true

The angle brackets

indicate that infor

mation, in this case a

number, must be sub

stituted. Do not type

the brackets.

The global Tool Types are listed below:

FILELIST = true Display all the pictures listed in the

ASCII file.

MOUSE = true Clicking the selection button

displays the next picture file.

Clicking the menu button displays

the previously displayed picture.

When Display has shown all of the

selected picture files, it will loop

back, or start over, with the first

picture. This will continue until you

press Ctrl-D.

The picture files will be displayed on

a back screen. The Workbench

screen will remain active and at the

front of the display. This is useful

when you are printing picture files

while doing something else.

Display will automatically print

each file that is displayed. You can

also print manually by pressing Ctrl-

P while the picture is displayed on

the screen.

If the screen is larger than the

display area, it will scroll

automatically when the pointer is

moved to the edge of the screen.

TIMER = <seconds> Display will automatically advance

from one picture to the next in the

specified number of seconds. For

instance, if you enter TIMER = 5,

Display will automatically move

ahead to the next picture after

5 seconds have passed.

PRINT = true

AUTOSCROLL =

true

Workbench Programs 4-27

The following Tool Types can be entered on a per-picture basis.

EHB = true Unspecified, 6-bitplane pictures are

treated as Extra Halfbrite rather than

HAM.

NOTRANSB-truc

VIDEO - true

Borders around the picture are not

transparent when genlocked.

The picture file will be displayed

with a full-video display clip.

~

Exchange

Exchange lets you monitor and control the Commodities

Exchange programs stored in the Tools/Commodities drawer

on the Extras2.0 disk. (For more information on the individual

Commodities programs, see "The Commodities Drawer"

section of Chapter 5.)

When you open the Exchange icon, a window appears.

CX

~

Workbench Screen

□I Workbench DIE

Ran Disk

m
Horkbench2.8

pj Cwwodities Exchange: HotKey=a[t help

Rvailable Comodities

Hide | Exchange
„ it | NoCapsLockw

1 flutoPoint ^

Shew. Sidf

Enable Disable

Kill

Title: NoCapsLock

Description: Renders Caps Lock Ineffectu

Status: ENABLED

Exchange window

4-28 Workbench Programs

Any Commodities that have been opened will be displayed in

the Available Commodities scroll gadget. When you select a

Commodity from the scrolling list, information about that

program appears beneath the gadget:

Title Shows the name of the selected Commodity.

Description Gives a brief description of the program.

Status Shows whether the program is enabled or

disabled.

The gadgets to the right of the scroll window control the

selected program. Exchange also has an Action menu that

contains menu items corresponding to each of these gadgets.

You can perform the same operation by choosing the menu

item or using the menu item's keyboard shortcut.

The operations are explained below:

Show Brings the window for the selected

Commodity to the front of the screen. If the

window is closed, Show automatically

opens it.

If the selected Commodity does not open a

window, this gadget will be ghosted.

Hide Closes the window for the selected

Commodity but does not exit the program.

This is the same as selecting the window's

close gadget or choosing the Hide menu

item from a Commodity's menu.

If the selected Commodity does not open a

window, this gadget will be ghosted.

Disable Temporarily turns off a Commodity.

Enable Turns a Commodity back on if it has been

disabled.

Workbench Programs 4-29

~

~

~

Kill Exits the currently selected Commodity

program. If the program has a window,

selecting the Kill gadget is the same as

choosing the Quit menu item.

The gadgets to the left of the Available Commodities scroll

gadget control the Exchange window. There are corresponding

menu items in Exchange's Project menu. These operations are

explained below:

Hide Closes the Exchange window, but the

program continues to run.

Quit Shuts down Exchange so that it is no longer

monitoring the other Commodities.

More

More allows you to display ASCII text files on the Workbench

screen.

To run More, select the More icon, then while holding down

Shift, double-click on the text file icon. If the text file does not

have an icon, use the Show All Files menu item in the Window

menu to display a pseudo-icon for the text file.

You can also run More without specifying the text file by

double-clicking on the More icon. In this case, a file requester

will ask you for the complete path to the text file you want to

read. This file requester contains a pattern gadget that allows

you to view all the files that match the specified pattern.

Pattern matching is fully explained in Chapter 7, "Using

AmigaDOS."

t

4-30 Workbench Programs

A typical More display looks like this:

The angle brackets

indicate that infor

mation must be substi

tuted. Do not type the

brackets.

:S/startup-sequence

version >H1L;

:ailat 21
SetClock iill.: load
resident >NIL: clList pure add
esident >NIL: c:Copy pure add
resident >NIL! clRssign pure add
copy >NIL: ENVRRC: ranlenv all quiet noreq
lakedir ran:t ran:clipboards
assign T: ran:t Jset up T: directory for scripts
if exists syslflonitors
list >t:non-start sys:nonltors/~(t?.info) lfornat="run >HIL: JfsXs*
execute tlnon-start
end if
assign ENV: ranlenv
un >NIL: iprefs >NIL:
ait >NIL1 5
addbuffers >NIL: dfB: 15
echo "flniga Workbench Bisk. 2.8 Release Version SWorkbench"
3 indE>r i vers

setenu Workbench SWorkbench
setenv Kickstart SKickstart
esident c:Execute pure add

JSl

The message at the bottom of the window, More (66%) ,

indicates the percentage of the file viewed so far.

To move through the display, use the following key sequences:

Space bar Displays the next page.

Backspace Displays the previous page.

Return Displays the next line.

< Displays the first page.

> Displays the last page.

%n Displays approximately n% into the file; if

you type %60, you will be moved 60% into

the file.

Ctrl-L Refreshes the window.

/<text> More will perform a case-sensitive search

for the text specified after the slash (/).

.<text> More will perform a case-insensitive search

for the text specified after the period {.).

Workbench Programs 4-31

N Finds the next occurrence of the previously

searched for text.

H Help [displays a list similar to this one).

Q Exits the program.

Ctrl-C Exits the program.

Shift-E Allows you to edit the file using the editor

set in ENV:editor (see Chapter 7 for more

information on environment variables).

A case-sensitive search means that More will look for the text

exactly as it is entered. If you type the text in capital letters,

More will only look for occurrences of the text that appear in

capital letters.

A case-insensitive search means that it does not make a

difference whether the text is entered in upper or lowercase

letters. More will search for the text in any form.

When you reach the last page of the display, End of File

is displayed at the bottom of the screen.

4-32 Workbench Programs

Say

With Say, the Amiga can speak words typed on the screen.

When you open the Say icon, two windows appear.

Phoneme window

Input window

1

1

Workbench Screen M--
□ Workbench EDlS

Phonene wtndou E3IB

Type your nessage, then return.
Qptions are:
-n (nale) -f (fenale)
-r (robot) -n (natural)
-s## (speed 48-466)
-PH (pitch 65-326)
-x filenane (connand line only)

a| Input window EDiQI

1

■

V

The top window is the Phoneme window, and the bottom

window is the Input window. You enter text in the Input

window, and the text is displayed phonetically in the Phoneme

window and spoken through the Amiga's stereo output

connectors.

To use Say:

1, Select the Input window, then type a word, phrase, or

sentence.

If your text reaches the edge of the Input window, do not

press Return. The text automatically wraps around to

the next line.

Workbench Programs 4-33

■~

~

2. After you've entered your text, press Return.

The Amiga will literally say the sentence, while at the

same time the text will appear in the Phoneme window.

This is the phonetic interpretation of your input.

Workbench Screen

□I Workbench

Phonene window

-n Cnale) -f (fmale)
-r (robot) -n (natural)
-sH (speed 48-488)
-P» (Pitch 65-328)
-x filenane (corwand line only)
RY REM DHflX HHH4HDERFUHL RHRIY3G

11

ai Input uindow

I an the uonderful ftniga

phonetic interpretation

typed input

In some cases, it may help to spell a word phonetically (as it

sounds) to get the Amiga to repeat it correctly.

You can change the voice, pitch and speed of your Amiga's

speech by choosing any of the different options shown in the

Phoneme window.

1. Select the Input window.

2. Type the letter, or letters, necessary to make your

changes.

Your choices for voice and inflection are:

-r robot inflection

-n natural inflection

-m male voice

-f female voice

When you change the voice, you can also change the

pitch so the change in the new voice is noticeable.

Say only understands

English phonetics. To

have the Amiga pro

nounce other lan

guages, the input

words must be spelled

according to English

pronunciation rules.

For instance, the Ger

man phrase "die

Weite" should be

spelled "dee Vytah"

for more correct pro

nunciation.

4-34 Workbench Programs

Type-p followed by a number from 65 through 320—the

higher the number, the higher the voice's pitch. Do not

put a space between the p and the number.

To change the speed of the voice, type -S followed by a

number from 40 through 400—the higher the number,

the faster the voice speaks. Do not put a space between

the s and the number.

3. Press Return.

For example, to use a deep male voice with a natural inflection

that speaks at a moderate pace, select the Input window and

type:

-mn-s125-p65

Then press Return. Remember that the hyphen must be typed

before the alphabetical option. Next, enter some text. When

you press Return, the Say program will speak your text using

the new options.

To exit the Say program, select the Input window's close

gadget. You can also select the Input window and press Return

without entering any text. Either of these actions will close

both the Input and Phoneme windows.

Tool Types

Say supports Tool Types for all the voice, pitch and speed

options. Instead of entering the options in the Input window,

you can enter them in the Say icon's Information window. This

saves your selections so that they do not have to be re-entered

each time you open Say. The Tool Types are:

-m Male voice

-f

-r

-n

Female voice

Robot inflection

Natural inflection

Workbench Programs 4-35

■p# Sets the pitch; # represents a number

ranging from 65 through 320.

-s# Sets the speed; # represents a number

ranging from 40 through 400.

When you run Say, the options entered as Tool Types will be

used, unless you specify other options in the Input window.

The WBStartup Drawer

Any icons stored in the WBStartup window will be opened

whenever the Workbench is started. For instance, if you drag

the Clock icon into the WBStartup window, the Clock program

will be run when you reboot, or power on, your Amiga.

If you are using a non-American keymap, you may want to put

the SetMap icon into the WBStartup drawer. This way the

correct keymap will be used each time you boot your Amiga.

The Mode_Names icon will already be in the WBStartup

window.

Workbench 2.8

a Workbench

m
Ran Disk

Hor-kbench2,8

952072 graphics nen

D| HBStartup

m

974882 ether nen E

- IBl<5

1
i

Hode_Nanes

i

■

V

i

WBStartup window

4-36 Workbench Programs

DONOTWAIT

The angle brackets

indicate that infor

mation, in this case a

number, must be sub

stituted. Do not type

the brackets.

Tool Types

The icons that are put into the WBStartup window support a

few special Tool Types:

Normally the Workbench waits for

one program to finish executing

before it opens the next program. If

you specify the DONOTWAIT Tool

Type, the Workbench will open all

the programs at once. DONOT

WAIT does not take an argument.

If you do not specify the

DONOTWAIT Tool Type, a

requester may appear and state that

the program has not yet returned.

The system will ask you if it should

wait some more. Select the No

gadget in the requester to continue.

Lets you specify how many seconds

the Workbench should wait before

opening the next icon in the

WBStartup window.

STARTPRI = <priority> Lets you assign a priority to an icon

so that it opens before, or after,

other icons. By default, all icons

have a priority of 0. The acceptable

range is from - 128 to + 127—the

higher the value, the higher the

program's priority.

WAIT = <seconds>

Chapter 5. The Extras Programs

In Chapter 4, you learned about all the programs supplied on

the Workbench2.0 disk. This chapter explains the programs

found on the Extras2.0 disk, such as:

• Colors, which lets you change the colors of a screen

• GraphicDump, which prints entire screen images

• IconEdit, which lets you create and change icons

• KeyShow, which displays the keymap for your Amiga

If you have a hard disk, the Extras programs will be in the Tools

and MonitorStore drawers in your Systcm2.0 window.

When you are finished with this chapter, you should be

comfortable with the Workbench system and with running

programs through the Workbench. Hard disk users should

continue on and read Chapter 6, "Using a Hard Disk."

Otherwise, this chapter concludes the section on the

Workbench.

~

~

If you are interested in learning about AmigaDOS and the

Shell, proceed to the second section of the manual. Chapters 7

through 9 explain how to use AmigaDOS and the Amiga

editors.

5-2 The Extras Programs

The MonitorStore Drawer

MonitorStore window

This drawer contains icons for A2024, Multiscan, PAL and

NTSC monitors. These icons represent projects used by the

AddMonitor program (explained in Chapter 4) and provide an

easy way for you to notify your system that you have attached

one of these monitors.

Workbench 2.9 955816 graphics nm 971956 other nen

a I Workbench E3

Ran Disk

Horkbench2,

Extras2.B

■
Multiscan R2824

NTSC Pal

I <!■>!.

See the "AddMonitor" section of Chapter 4 for full instructions

on adding an A2024, Multiscan, PAL or NTSC monitor to your

system.

The Extras Programs 5-3

~ The Tools Drawer

~

The Tools drawer contains programs that expand your printing

options, allow you to change the color of non-Workbench

screens, even create new icons.

Workbench 2,9 885672 graphics nen 945872 other nen

a Workbench

m
Ran Disk

HI
Horkbench2.

m
Extras2.B

o| Tools

IconEd it
HEnacs Graph LcDunp V

HDBackup

Colors

;>l': "■

Calculator InttPrtnter

CJ1D

Connodtties

KeyShou PrintFUes

The programs are listed below:

Calculator A standard, four-function calculator.

CMD Allows you to redirect printer output to

a file.

Colors Changes the colors of a non-

Workbench screen.

GraphicDump Allows you to print screen images.

HDBackup A hard disk backup and restore

program, described in Chapter 6.

IconEdit Allows you to change and create icons.

InitPrinter Initializes your printer.

Tools window

5-4 The Extras Programs

* HD1

KeyShow Displays the current keymap.

MEmacs A text editor, described in Chapter 9.

PrintFiles Sends files to the printer.

The programs in the Commodities drawer are explained

starting on page 5-27.

If you have a hard disk system, there may be additional icons in

your Tools window that arc not shown here, such as

HDToolbox, Park, and Drive Definitions. These programs

pertain to hard disk specific operations and are fully explained

in Chapter 6.

ii m

Calculator window

Calculator

The Calculator is a standard four-function calculator that you

can use to add, subtract, multiply and divide. Open the

Calculator icon, and the calculator appears.

Workbench Screen

The Extras Programs 5-5

It works like any standard calculator — you enter numbers and

use the operations keys to reach an answer. The "buttons" on

the calculator are gadgets. The numbered gadgets represent the

digits 0 through 9. The non-numerical gadgets represent:

CA Clear all previous entries. Resets the calculator to 0.

CE Clear the current entry. If you make a mistake

typing, select this gadget, and re-enter your value.

Multiply

/ Divide

+ Add

- Subtract

Decimal point

< - Delete the last digit entered

+ - Change the sign of the current entry. Positive

numbers become negative; negative numbers

become positive.

Display the result of the operation.

~

5-6 The Extras Programs

To press a button, select the gadget with the mouse or press the

corresponding key on the keyboard. The <- sign corresponds

to Backspace.

For instance, to add 675 and 916:

1. Select the gadgets for 675 — 6, 7, and 5.

As you select each gadget, the corresponding number

will be displayed in the calculator window.

2. Select the + gadget.

Workbench Screen

d! Workbench inna

m
Ran Disk

Horkbench2.

m
Extras2,B

□I Cafe

1

jJjlJ

liii
jjjj

_§j_j

9

±J
3

■:-

EG B

675.0

^flJ^Ej

jlJzJ

3. Select the gadgets for 916 — 9, 1, and 6.

4. Select the = gadget.

The sum, 1591, will be displayed in the window.

To do the same calculation using the keyboard, you could just

type 675, press +, type 916, then press Return. As you typed

each number, it would be displayed in the calculator window.

To exit the Calculator, select the close gadget.

The Extras Programs 5-7

CMD

~

~

CMD directs your printer output to a file. This is useful if you

do not have a printer attached to your Amiga. You can capture

your output on disk, then take the disk to another Amiga that

is connected to a printer. You can also use it to save the images

from GraphicDump (explained later in this chapter).

Before you can use CMD, you must tell the program some

details about how your system is set up and where you want

the printer output to be sent. This is done by adding Tool Types

to the CMD icon's Information window.

As shipped, CMD is set to certain default Tool Types. If your

choice is the default, you do not need to enter anything in the

Tool Types window. The recognized KEYWORDS and

arguments are:

DEVICE = <port> The Amiga port where your printer is

attached, either parallel or serial.

DEVICE = parallel is the default.

FILE - <filename> This is the name of the file where you

want the printer output to be sent.

FILE = ram:CMD_file is the default.

SKIP = true This tells CMD to skip any short

initial write. Sometimes, especially

with screen dumps, the first write sent

to the printer is a printer reset. You can

use SKIP = true to ignore that first

write.

The default is SKIP-false—initial

writes are not skipped.

MULTIPLE = true This tells CMD to intercept more than

one file.

The default is MULTIPLE = false—only

one file is redirected.

The angle brackets

indicate that infor

mation must be substi

tuted. Do not type the

brackets.

5-8 The Extras Programs

NOTIFY = true This tells CMD to display progress

messages.

When CMD intercepts the file, a

typical message that may appear is:

Redirected <# of bytes> from

parallel.device to <filename>

After the output is sent to the file and

CMD is turned off, another message

may state:

CMD redirection of parallel.device removed

The default is NOTIFY = false-

messages are not displayed.

To use CMD, double-click on its icon. The next time you send

information to your printer, it will be sent to the designated

file instead,

0
■ □ Colors

Colors lets you change the colors of a non-Workbench screen,

such as a screen opened by an application program like a

communications program or word processor. However, color

changes made with Colors are only temporary. They cannot be

saved to disk.

The Extras Programs 5-9

~

~

To change the colors of a screen, Colors must open on that

screen. The following example will show you how to open

Colors on the MEmacs screen. (Don't worry about using

MEmacs at this point. It is fully explained in Chapter 9,

"Editors.")

1. Open the Tools window, and open the MEmacs icon.

MEmacs opens on another screen.

2. Drag the MEmacs screen down so that you can see the

Tools window on the Workbench screen.

Point to the MEmacs title bar, hold down the selection

button, and drag the screen down.

Workbench 2.8 923656 graphics nen 888744 other nen

Ran Disk

m
1lorl;bench2.l

m
Extras2.8

IconEdit

- □

Colors

Comodities

KeyShou PrintFiles

MEmacs screen

-

5-10 The Extras Programs

Colors window

3. Open the Colors icon in the Tools window.

The Colors window will open on the front-most screen

which will be the MEmacs screen.

Workbench 2.8 923656 graphics nen 888744 other nen

d| Workbench Dj Toot;

m
Ran Disk

m
Horkbench2.f

Extras2.B

MicroEHfiCS

IBIS

KevShow PrintFiles

Die

a] Colors

4. Drag the MEmacs screen back up to the top of the

display.

Using Colors

Just like the Prefs Palette editor, the Colors window contains

color sliders that let you change the application screen colors.

The number of colors is equal to the number of colors in the

screen. In this example, the MEmacs screen is only made up of

two colors, so Colors will only have two colors in its color

selection gadget.

1. Select the color you want to change from the color

selection gadget.

The selected color appears in the display box that runs

along the left side of the Colors window.

The Extras Programs 5-11

2. Use the color sliders to change the selected color.

Drag the slider bars in the R (red), G (green), and B (blue)

color sliders until you create the color you want.

□j Colors ■

color selection gadget

leset Use Cancel

selected color

HtcroBIRCS — nain

To return to the original screen colors, select the Reset

gadget. To implement your changes, select the Use

gadget. Select the Cancel gadget to exit Colors without

making any changes.

To exit MEmacs, click on the MEmacs screen and press Ctrl-C.

~

5-12 The Extras Programs

GraphicDump

Do not include the

brackets around the

numbers. They just in

dicate that a substitu

tion must be made.

GraphicDump prints, or dumps, entire screens, including

menus and icons, just as they appear on your monitor. Your

printer must be capable of printing graphic images. Most dot-

matrix printers can print GraphicDump output.

Before using GraphicDump, make sure the settings in the

Printer and PrinterGfx editors are appropriate for your printer.

You can specify the dimensions of the printout with the Limits

setting in the PrinterGfx editor. Otherwise, the printout will

be the full width allowed by the printer.

To use GraphicDump, double-click on its icon. In about ten

seconds the front-most screen image will be sent to the printer.

The ten second delay gives you time to open or close windows,

display menus, or move screens.

Tool Types

GraphicDump supports a SIZE Tool Type. The acceptable

arguments for SIZE and the resulting size of the printout are:

SIZE = tiny 1/4 the total width allowed by the printer.

SIZE = small 1/2 the total width allowed by the printer.

SIZE = medium 3/4 the total width allowed by the printer.

SIZE = large Full width allowed by the printer, (default]

The height of the printout is such that the perspective of the

screen is maintained. The Limits Type gadget in the PrinterGfx

editor must be set to Ignore for GraphicDump to recognize

these arguments. Otherwise, the size of the printout is

determined by the Limits setting.

To specify specific dimensions in a Tool Type, use:

SIZE = <xdots>: <ydots>

Substitute the width, in number of dots, for the <xdots>

argument and the height for the <ydots> argument.

The Extras Programs 5-13

—

~

IconEdit

IconEdit lets you personalize your Workbench by changing the

appearance of existing icons and creating new icons.

Open the IconEdit icon, and the following window appears:

inm umiHimin
i ii ■

iiiii

■ i ii i i mini u I in ii i mi i ii mi

Undo

Clear

{[■ Nomal

J Selected

1<\>\£

fust as with the WBPattern and Pointer editors in the Prefs

drawer, you can draw and edit an icon in the magnified view

box. However, the IconEdit window also contains several

gadgets to give you more control over your drawing, such as

gadgets for drawing squares, circles, and straight lines.

Color Selection Gadget

This gadget lets you select a color for drawing. In addition to

the standard way of selecting a color by pointing to it and

clicking the selection button, this color selection gadget also

allows you to choose two colors at once.

selected color

color selection gadget

magnified view box

5-14 The Extras Programs

To create a "checkerboard" pattern, select the first color, hold

down Shift, then select the second color. If you were to create a

solid box or circle, it would be filled with dots of both colors.

To create a pattern of vertical bars, select the first color, hold

down Alt, then select the second color.

Keyboard shortcut: Press P to cycle forward through the colors.

Press Shift-P to cycle through dithered patterns using the

background color. Press / to reset the color to a solid pattern.

Magnified View Box

You use the mouse to draw your icon in this box. Click the

selection button, and a pixel of the selected color will appear.

Hold down the selection button while moving the mouse, and

you can draw with the mouse.

The pointer turns into cross hairs when it is inside of the

magnified view box. The center of the cross hairs is where the

new pixel will appear. Pixel coordinates are shown in the

IconEdit window title bar to help you with the placement of

your images.

Freehand Gadget

This gadget allows you to draw unstructured shapes very

quickly. If you select this gadget, then draw in the magnified

view box, the pixels will quickly fill in as the mouse passes

over them. However, you may not get a continuous line, and

some pixels may not be filled in. This gadget is useful when

you just want to sketch an icon, then go back and fill in the

details later.

Keyboard shortcut: Press S to select the freehand gadget.

The Extras Programs 5-15

Continuous Freehand Gadget

~

This gadget is very similar to the freehand gadget except that

you will always get a continuous line. However, in order to

achieve a continuous line, you cannot draw as fast as you can

when using the freehand gadget. The pixels will not be

continually filled in as you move the mouse. There may be a

delay before the display catches up with your movement.

Keyboard shortcut: Press D to select the continuous freehand

gadget.

Circle Gadget

To draw a circle:

1. Select the circle gadget.

2. Point inside the magnified box at the point where you

want the center of the circle, hold down the selection

button, and move the mouse.

As you move the mouse, you'll draw a circle.

3. Release the selection button when the circle is the size

that you want.

Selecting the right portion of the gadget lets you draw a filled

circle. You can fill the circle with a dithered pattern, by

selecting two colors from the selection gadget (as explained on

page 5-14).

Selecting the left portion of the gadget lets you draw an outline

of a circle. To double the thickness of the circle's outline, hold

down Ctrl before releasing the selection button (step 3 above).

Keyboard shortcut: Press £ for an outlined circle; Shift-E for a

filled circle.

5-16 The Extras Programs

Box Gadget

To draw a box:

1. Select the box gadget.

2. Point inside the magnified box at the point where you

want a corner of the box, hold down the selection

button, and move the mouse.

As you move the mouse, you'll draw a box.

3. Release the selection button when the box is the size

that you want.

Selecting the right portion of the gadget lets you draw a filled

box. You can fill the box with a dithered pattern by selecting

two colors from the color selection gadget (as explained on

page 5-14).

Selecting the left portion of the gadget lets you draw an outline

of a box. To double the width of the box's outline; hold down

Ctrl before releasing the selection button (step 3 above).

You can automatically draw a three-dimensional box like the

type that surrounds the Workbench icons by holding down an

Alt key while drawing a box outline. To draw an "unselected"

box hold down left Alt. To draw a selected box, hold down

right Alt.

Keyboard shortcut: Press R for an outlined box; Shift-R for a

filled box.

Line Gadget \

To draw a straight line, select the line gadget, then point to

the place where you want the line to start. Hold down the

selection button, move the mouse to where you want the line

to end, then release the selection button.

As with the circle and box gadgets, you can double the

thickness of the line by pressing Ctrl before releasing the

selection button.

Keyboard shortcut: Press L to select the line gadget.

The Extras Programs 5-17

Fill Gadget

You can use the fill gadget to fill an area of the magnified view

box with the selected color. This is an easy way to change the

color of a complete area. Assume there is an icon with text in

it, and you want to change the color of that text. Simply select

the new color, select the fill gadget, then move the pointer

inside one of the letters and click the selection button. The

letter will change to the new color.

NOTE: The fill gadget will not work on a dithered pattern.

Keyboard shortcut: Press F to select the fill gadget.

undo I Undo

Select Undo to cancel the last mouse action that took place in

the magnified view box.

Keyboard shortcut: Press U to select the Undo gadget.

clear I Clear

Select the Clear gadget to erase the contents of the magnified

view box. The magnified view box will fill with the currently

selected color.

Keyboard shortcut: Press Shift-C to select the Clear gadget.

Normal/Selected Radio Buttons

The Normal and Selected radio buttons let you switch between

unselected and selected images for an icon. The normal image

is how the icon will look when it is unselected. The selected

image is how the icon will appear when you click on it.

When the Normal radio button is selected, any image drawn in

the magnified view box will appear in the normal view box at

the top of the window.

5-18 The Extras Programs

IconEdit

normal view

radio buttons-

selected view

position arrows-

1 IMIIIII

When the Selected radio button is selected, you can create the

image that will appear when the icon is selected. You can only

select this radio button when the Image menu item is chosen

from the Highlight menu. (All the menus are explained later in

this section.) Any image you create will appear in the selected

view box.

Keyboard shortcut: Press Shift-S to select the Selected radio

button; Shift-N for the Normal radio button.

Arrows

The arrows let you shift your image. By pointing to an arrow,

and holding down the selection button, you can move the

image in the magnified view in the direction of the arrow. You

can use these arrows to control the placement of your image

within the box surrounding the finished icon.

Keyboard shortcut: Press the corresponding cursor key to move

the image.

The Extras Programs 5-19

The Project Menu

The items in the Project menu let you open and save icon files.

New AN

Loads the default icon for the currently chosen type of icon.

(The type of icon is determined by the Type menu, see page

5-20) If you have made any changes to the window that have

not been saved, a requester will ask you if you want to save

those changes.

Open... AO

Opens an existing icon file. A requester appears so that you can

enter the name of the file that you want to open.

Save AS

Saves an existing icon file, overwriting the file. For instance, if

you opened a file called Testlcon, then you made changes to

that icon, choosing Save would save those changes to the

Testlcon file. The previous contents will be lost.

Save As... A A

Assigns a filename to the current image. A requester lets you

enter the name of the file where you want the image to be

saved.

Save As Default Icon A D

Saves the current image as the default icon used when you

choose the Show All Files menu item in the Workbench

Window menu or the New menu item in the IconEdit Project

menu.

For instance, if you create a drawer icon, then choose Save As

Default Icon, that icon will be used to represent drawers when

you choose the Show All Files menu item.

Quit AQ

Exits the IconEdit program. If you have not saved the current

image, a requester will ask if you want to save the image before

exiting IconEdit.

5-20 The Extras Programs

The Edit Menu

The items in the Edit menu allow you to import IFF ILBM

clips that were created with other paint packages. To do this

IconEdit uses the clipboard, an area of memory that is used

to store text and graphics while they are being transferred

between programs.

Cut AX
Deletes the image in the magnified view box and copies it to

the clipboard.

Copy AC

Copies the image in the magnified view box to the clipboard.

Paste A\

Copies any image in the clipboard to the magnified view box;

replacing the current contents.

Open Clip...

Copies an existing IFF file into the clipboard. A requester

appears so that you can enter the name of the file you want to

open.

Save Clip As...

Saves the current contents of the clipboard to a specified file.

Show Clip

Displays the contents of the clipboard using the Display

program. If the Display program cannot be found, for instance,

if the Workbench2.0 disk is not in a drive, Show Clip will not

work.

The Type Menu

The items in the Type menu allow you to specify the type of

icon you are changing or creating.

Disk A1

Represents the disk icons that appear in the Workbench

window.

The Extras Programs 5-21

~

~

Drawer A 2

Represents the drawer icons that appear in a disk window, such

as the Utilities or Tools drawer.

Ibol

Represents a tool, such as the Calculator, Clock or IconEdit

program.

Project

Represents a project, an icon that has been created by a tool,

such as the Mode_Names icon or any of the icons in the

MonitorStore drawer.

Garbage

Represents the Trashcan drawer.

AS

The Highlight Menu

The items in the Highlight menu allow you to determine how

an icon will appear when it is selected.

Complement A7

Highlights the entire icon, including the background of the box

surrounding the icon. For instance, if you are using the default

Workbench colors and the icon is surrounded by a field of grey,

the grey will become blue when the icon is selected.

unselected selected

5-22 The Extras Programs

Backfill A 8

Highlights the icon, but not the background of the box. For

instance, if you are using the default Workbench colors and the

icon is surrounded by a field of grey, the grey will remain grey

when the icon is selected.

unselected selected

Image A 9

Creates an entirely different image for the selected icon (an

animated icon). For instance, the drawer icons on the

Workbench are animated. When you select a drawer, it does not

change color. Instead an entirely new image of an open drawer

appears.

The Images Menu

The items in the Images menu let you manipulate the images

in the normal and selected view boxes and import IFF images

created with other graphic programs.

Exchange A E

Swaps the images that appear in the normal view and the

selected view.

Copy AC

Copy is dependent on which radio button is selected. If Normal

is selected, the image in the normal view is copied to the

selected view. If the Selected radio button is selected, the

image in the selected view is copied to the normal view.

Use Template

Copies a box the same size as the standard Workbench icon box

into the magnified view. You can then create your new icon

within this box.

The Extras Programs 5-23

Load

Loads previously saved images. When you point to the Load

menu item, a submenu appears. The available submenu items

are:

Norm al Im age AY
Loads the unselected image of the specified icon into the

normal or selected view box, depending on which radio

button is selected.

Selected Image AV

Loads the selected image of the specified icon into the

normal or selected view box, depending on which radio

button is selected.

Both Images AI
Loads both the normal and selected images of the specified

icon into the appropriate view boxes.

IFF Brush A\
Allows you to load an IFF file created by another program

as either the normal or selected view, depending on which

radio button is selected.

When you choose an item from the submenu, a requester

appears to allow you to specify the file that you want to load.

You must specify the correct drawer and filename.

Save IFF Brush AK

Saves an image as an IFF file.

Restore A R
Returns the IconEdit window to the state it was in when you

^^ opened the window or last selected New or Open.

5-23.2 The Extras Programs

The Extras Menu

The items in the Extras menu control a few miscellaneous

features of IconEdit.

Recolor AM
Switches the colors of any pixels using the second and third

colors in the color selection gadget. By default the second color

is black and the third color is white. If you are using the default

colors, choosing Recolor will make all white pixels black, and

vice versa.

Auto TopLeft AT

Moves the image to the upper left corner of the magnified view

box.

Color Palette...

Opens the Preferences Palette editor so that you can change the

default colors.

The Settings Menu

The items in the Setting menu allow you to save various

IconEdit options.

Use Grid

When Grid is chosen, each pixel in the magnified view box is

distinct. You can see the background color surrounding each

pixel. A check mark next to the menu item indicates that this

option is turned on. When Use Grid is not chosen, the pixels

blend together smoothly. The default is for the grid to be on.

Save Icons?

If Save Icons is chosen and you save the contents of the

magnified view box with the Save IFF Brush menu item, an

icon will be saved with the IFF file. If Save Icons is not chosen,

no icon will be saved. The default is for icons to be saved.

Save Settings

Saves all of the current IconEdit settings, including the size

and position of the IconEdit window, the size and position of

the file requesters, and all of the menu item settings.

The Extras Programs 5-23.3

~

Tool Types

IconEdit supports the following Tool Types:

UNIT=<n>

XMAG =

YMAG =

LEFTEDGE =

TOPEDGE=<n>

Specifies the clipboard unit to use.

The default is 0.

Allows you to enlarge the width of

the magnified view box. XMAG

accepts a number from 4 to 16.

The default is 4.

Allows you to enlarge the height of

the magnified view box. YMAG

accepts a number from 4 to 16.

The default is 4.

Specifies where to place the left edge

of the editor window.

Specifies where to place the top edge

of the editor window.

FRLEFTEDGE = Specifies where to place the left edge

<n> of the file requester, relative to the

editor window. For instance,

FRLEFTEDGE = 0 will align the left

edge of the file requester with the

left edge of the editor window.

FRTOPEDGE = <n> Specifies where to place the top edge

of the file requester, relative to the

editor window.

FRWIDTH = <n> Specifies the width of the file

requester.

FRHEIGHT = <n> Specifies the height of the file

requester.

5-23.4 The Extras Programs

PALETTE = <path>

SHOWCLIP =

<path>

NOICONS

NOGRID

ICONDRAWER

<path>

ILBMDRAWER-

<path>

Specifies the complete path to the

Palette editor. This is used when the

Color Palette menu item is chosen.

The default is SYS:Prefs/Palette. You

will only need to change this if you

have moved your Palette editor.

Specifies the complete path to the

utility used to display the clipboard.

The default is SYS:Utilities/Display

If you only have one floppy drive,

you may want to copy the Display

program onto your Extras2.0 disk,

and change the path to reflect this.

You could also change this Tool Type

if you have another program you

would rather use for displaying the

clipboard.

Disables the creation of icons when

saving support files, such as when

saving a file as an IFF brush.

Disables the use of the grid in the

magnified view box.

Specifies the default drawer to be

used by the file requesters that

appear when the Open and Save As

menu items in the Project menu are

chosen.

Specifies the default drawer to be

used by the file requesters that

appear when the Load and Save IFF

Brush menu items in the Images

menu are chosen.

"

The Extras Programs 5-23.5

CLIPDRAWER =

<path>

ALTDRAWER =

<path>

SRC

Specifies the default drawer to be

used by the file requesters that

appear when the Open Clip and

Save As Clip menu items in the

Edit menu are chosen.

Specifies the default drawer to be

used by the file requesters that

appear when the Load menu item is

chosen from the Images menu.

Creates a Save As C ... menu item

in the Project menu. This allows you

to save the icon as C source code.

5-24 The Extras Programs

1
InitPrinter

In Chapter 3, you learned how to use the Printer and

PrinterGfx editors to specify your print options. InitPrinter

sends the printer options to the printer. This is known as

initializing your printer.

To use InitPrinter:

1. Turn on your printer.

2. Double-click on the InitPrinter icon.

You may hear your printer reset. This is normal. It just means

that the printer is receiving the information from the Amiga

and is processing it.

This display shows an

A3000 keyboard with

a USA keymap. If you

are using another

Amiga model or key-

map, your display

may vary.

KeyShow

The KeyShow program allows you to view the current keymap

for your model of Amiga. When you open the KeyShow icon,

the following window appears:

The Extras Programs 5-25

The initial display shows the characters that appear when a

key is pressed alone. For instance, the Q key shows a lower

case q. However, when you press a qualifier key with a

character key, you may get different output. (For KeyShow the

acceptable qualifer keys are Ctrl, both Shift keys, and both Alt

keys.)

To sec the characters that are output when a qualifier key is

pressed simultaneously with a character key:

1. Select any of the qualifer keys that appear in the

KeyShow window.

The qualifier key will be highlighted to represent it

being pressed. The KeyShow display will change to

indicate the output that you get if you press the selected

qualifer key along with a character key. You can select

any combination of qualifcrs and the display will

change accordingly. Select the qualifier key again to

return it to its unpressed state.

Keyboard shortcut: Instead of pointing to the qualifer

key in the display, you can simply press the

corresponding key on the keyboard.

The following list is a guide to interpreting the KeyShow

display:

• Grey keys are qualifier keys not currently pressed. For

example, when you first open the KeyShow window,

Ctrl, Shift, and Alt appear in grey. This is because

KeyShow is not using those keys in the initial display.

• Blue keys arc dead keys. A dead key is one which

modifies the output of the key pressed immediately

afterward. For instance, on the American keyboard, the

Alt-G combination is a dead key representing the grave

accent. If you press Alt-G, then press E, you will

superimpose the accent symbol over the e (e).

These colors corre

spond to the default

colors used by the

Workbench.

5-26 The Extras Programs

NOTE: This multiple-key stroke procedure does not

apply to Del, Help, the functions keys, or the cursor

keys.

• Bold-italics indicate that a key may be used in

conjunction with a dead key. In the above example, E can

be modified by a dead key.

• $$ indicates that it would take more than one character

to define the key.

• If a character is preceded by a tilde (-) or a caret ('), it is a

control character.

• Blank keys are undefined for the currently selected

qualifer(s).

PrintFiles

PrintFiles sends files to your printer. PrintFiles accepts

multiple files, so you can use drag selection or extended

selection to specify a series of files to be printed. If PrintFiles

cannot find or open one of the files, it will skip it and go on to

the next one.

To use PrintFiles:

1. Select the icon of the first file you want to print, hold

down Shift and select the icons of any additional files

you want to print.

You can also use drag selection to select the icons.

2. Hold down Shift, and double-click on the PrintFiles

icon.

When printing multiple files, you may want to add a form feed

between each file. A form feed starts each file on a new page.

Without a form feed, the next file will start printing

immediately after the first file ends.

The Extras Programs 5-27

For instance, if your first file stops in the middle of the page,

the second file will start printing on that same piece of paper. If

you add a form feed, the second file will begin on a new sheet.

Tool Types

To add form feeds between files and at the end of a file, add a

FLAGS = formfeed Tool Type to the PrintFiles Information

window.

The Commodities Drawer

—

The Commodities drawer is in the Tools drawer and contains

the Commodities Exchange programs. These programs

monitor your keyboard and mouse input to the Amiga before

Workbench or any other application programs, such as a paint

program or communications program.

The Exchange program in the Utilities drawer on the

Workbench2.0 disk monitors and controls all the other

Commodities programs, which are shown below:

Workbench 2,8 954176 graphics nen 951544 other nm

Exchange is explained

on page 4-27.

d Workbench

M
Ran Disk

m
Horkbench2,B

: Cortnodit U

RutoPoint

s

FKev

nil
Blanker IHelp

ClickMront NoCapsLoc k

IflfE

inie

■

■v

•

L

Commodities window

5-28 The Extras Programs

AutoPoint Automatically activates the window under

the pointer.

Blanker Causes the screen to go blank if there has

been no input for a specified period of time.

ClickToFront Allows you to bring a window to the front of

the screen by double-clicking in it.

FKey Lets you assign text to function keys.

IHelp Gives you keyboard control over certain

operations usually performed by the mouse,

like enlarging or shrinking windows.

NoCapsLock Temporarily disables the Caps Lock key.

Be sure to include the All of the Commodities programs share a common Tool Type,

underscore after ex. CX_PRIORITY = <n>, which assigns priorities to the

Commodities Exchange programs. This priority is only relative

to the other Commodities programs. All the programs are set

to a default priority of 0. If you enter a Tool Type changing the

priority to a higher value, that program will have priority over

any other Commodities Exchange program.

For instance, IHelp and FKey both allow you to assign

operations to function keys. If both programs have an

operation assigned to Fl, the program with the highest priority

will intercept the key first, making it unavailable to any other

Commodities programs.

There are two Tool Types that only apply to programs that open

a window, such as Blanker and FKey. CX.POPUP = no prevents

the program window from opening when the icon is opened.

The program will be activated when you double-click on its

icon, but its window will remain closed.

CX.POPKEY - <key> determines the hot key for the program.

When the hot key (or key combination) is pressed, the

program's window is automatically brought to the front of the

screen. If the window is hidden, it will be opened. The hot key

does not start a program.

The Extras Programs 5-29

Acceptable Key Combinations

When specifying key combinations for a Commodities

Exchange program, you can use any of the function keys

(Fl through F10} and any of the keys in the typewriter area

of the keyboard (numbers, letters, symbols, etc.). However,

keys from the typewriter area must be preceded by a qualifier.

The allowable qualifiers are:

Qualifier

Alt

RAlt

LAlt

Shift

RShift

LShift

LCommand

RCommand

Control

Numericpad

Rbutton

Leftbutton

Key

either Alt key

right Alt only

left Alt only

either Shift key

right Shift only

left Shift only

left Amiga

right Amiga

Ctrl

specifies a key on the numeric

keypad

click the menu button

click the selection button

Qualifiers can also be used before function keys, but it is not

mandatory. You can use any combination of qualifiers, but it

must be followed by a typewriter or function key. A qualifier is

only recognized once in a combination, so a combination of:

LAlt RCommand LAlt F10

is the same as

LAlt RCommand F10

Some acceptable combinations are listed below:

AltF6

LCommand 8

Control LShift Y

Leftbutton Control CapsLock ='

Numericpad 8:

'Click the selection button, then press Ctrl-Caps Lock- =

aPrcss the 8 in the numeric keypad. The 8 in the typewriter area will

not satisfy the combination.

5-30 The Extras Programs

When specifying key combinations, leave a space between the

two keys. For instance:

CX_POPKEY = F9

CX.POPKEY = Shift F4

CX.POPKEY = LShift LAlt LCommand X

For a list of acceptable key combinations, see the chart on page

5-29.

AutoPoint

AutoPoint allows you to select windows without clicking the

selection button. To start AutoPoint, double-click on its icon.

AutoPoint does not open a window.

When AutoPoint is running, the system activates the window

that is underneath the pointer. This eliminates the need to

click the selection button.

The AutoPoint icon acts like a toggle switch. To exit

AutoPoint, double-click on its icon again. You can also open

the Exchange window, select AutoPoint from the scroll gadget,

then select the Kill gadget.

Blanker

When the Blanker program is operating, the screen will

automatically go blank if no input has been received during a

specified period of time. This helps preserve your monitor.

The default time is 60 seconds. If you do not press a key or

click a mouse button during a 60 second period, the screen will

go blank.

The Extras Programs 5-31

~

~

When you double-click on the Blanker icon, the following

window appears:

Workbench Screen r

a Workbench p-||'i?

M
Ran Disk

1 'll
Ml

Horkbench2.B

Ml
Extras2,8

□[Blanker: HotKey=shift fi q

Seconds |69^_ '

JUdeJ Quit]

■

V

Blanker window

To change the default time, select the Seconds text gadget,

and enter the new value. To close the window, but not exit

the program, select the Hide gadget. If you want to exit the

program, select the Quit gadget. You can also choose the Hide

and Quit menu items.

Tool Types

Blanker supports a SECONDS - <n> Tool Type that allows

you to specify the number of seconds that will pass before the

screen goes blank. For instance, to change the value to 30

seconds, enter SECONDS = 30.

The angle brackets

indicate that infor

mation must be substi

tuted. Do not type

the brackets.

5-31.2 The Extras Programs

ClickToFront

ClickToFront allows you to bring a window to the front of the

screen by double-clicking in it. You do not need to select the

window's depth gadget.

To start ClickToFront, double-click on its icon. It does not

open a window. (Remember, you can also put ClickToFront in

the WBStartup drawer so that it is automatically started each

time you boot.)

To exit ClickToFront, double-click on its icon again, or open

the Exchange window, select ClickToFront from the scroll

gadget, then select the Kill gadget.

Tool Types

ClickToFront supports a QUALIFIER Tool Type. This allows

you to specify a qualifier key that must be pressed while you

double-click in the window you want to bring to the front of

the screen. There are four acceptable key arguments:

Lalt

Rait

Control

None

Left Alt—Default

Right Alt

Ctrl

No key

For instance, if you have specified QUALIFIER = Lalt and

ClickToFront is activated, you would hold down left Alt and

double-click in the window you wanted to bring to the front

of the screen. QUALIFIER = Lalt is the standard setting as

supplied by Commodore-Amiga.

The Extras Programs 5-31.3

—

(This page was intentionally left blank.)

~

~

5-32 The Extras Programs

FKey window

text gadget

FKey

FKey allows you to assign text to a function key. This is of

particular interest to frequent Shell users as it eliminates

repetitive typing of AmigaDOS commands.

FKey assigns the function keys to the specified text before

the system or any other application accesses the key.

Therefore, if your application uses function keys, you

should disable or quit FKey when using that software.

When you open the FKey icon, the following window appears:

Workbench Screen

You can assign text to every function key and Shifted function

key, giving you a total of 20 assignments. Notice that the first

three function keys are already assigned to AmigaDOS

commands. These arc Status Full, Dir, and List, respectively.

(For an explanation of the commands see Chapter 8,

"AmigaDOS Reference."] The output of these function keys is

viewable through the Execute Command menu item or a Shell

window. You can edit these text gadgets if you wish.

The Extras Programs 5-33

To enter text, select the appropriate text gadget in the FKcy

window, and type the text.

Some special characters supported by the text gadgets are:

\n Adds a Return. If the function key is linked to an

AmigaDOS command and the \n is omitted, the

command will appear in the Shell window, but you

will have to manually press Return.

\r Adds a Return.

\t Adds a Tab.

\0 Adds a zero.

<key> You can use angle brackets to enter key

combinations; the combination must be prefaced

-—-* by a qualifier.

There are several gadgets at the bottom of the FKey window.

The Modifier cycle gadget determines whether the text is

attached to the function key alone or to the combination of

Shift and the function key. When None is displayed, the text is

assigned to the function key alone. When the gadget displays

the word Shift, text is assigned to the Shifted function key.

The four action gadgets allow you to enable or quit FKey:

Save Enables FKey and permanently saves the

text entered in the window. The text will be

saved even after FKey is shut down.

Use Enables FKey and temporarily uses the text

in the window. When FKey is shut down, the

,^-v current text will be lost, and FKey will

revert to using any previously saved text.

Cancel Enables FKey but ignores any recent changes

made to the text. Only the last saved text is

recognized.

5-34 The Extras Programs

The angle brackets

indicate that infor

mation must be substi

tuted. Do not type the

brackets.

Quit Shuts down the FKey window disabling all

function key assignments until the program

is run again. This is the same as choosing

the Quit menu item.

The next time you start FKey, only the saved text will be

present in the window.

Tool Types

FKey supports a <Function Key> - <text> Tool Type which

allows you to assign text to a function key. The acceptable

values for <Function Key> are Fl through F10 and SF1

through SF1O for Shifted function keys.

The function key assignments mirror those made in the FKey

window. If you enter text in the window, it will appear in the

Tool Types gadget, and vice versa.

IHelp

IHelp allows you to use the keyboard, instead of the mouse, to

perform certain operations usually performed by the window

gadgets. To start IHelp, double-click on its icon. IHelp does not

open a window.

The operations performed by IHelp, and the default function

keys assigned to those operations, are listed below:

Cycle windows Brings the rearmost application window

(Default—Fl) on the Workbench screen to the front of

the screen and activates it. This only

affects application windows opened by

tools or proiects, such as the Clock. Disk

and drawer windows are not affected.

The Extras Programs 5-35

Enlarge window Enlarges the active window to its

maximum size, taking into account the

edges of the screen.

Shrinks the active window to its

minimum size.

Brings the rearmost screen to the front of

the display.

Zooms the active window just as if you

had selected the window's zoom gadget.

To exit IHelp, double-click on its icon again, or open the

Exchange window, select IHelp from the scroll gadget, and

select the Kill gadget.

~

Enlarge window

(Default—F2)

Shrink window

(Default—F3)

Cycle screens

(Default—F4|

Zoom window

(Default—F5)

Tool Types

You can change the default keys assigned to the IHelp

operations by entering Tool Types in the IHelp icon's

Information window. Each Tool Type takes a key argument.

This argument is the key or key combination that you want to

press to invoke the operation.

The acceptable Tool Types and the operations they correspond

to are listed below:

CYCLE = Cycle windows. For example,

CYCLE = Shift C

MAKEBIG= Enlarge active window. For example,

MAKEBIG = Control Shift B

MAKESMALL = Shrink active window. For example,

MAKESMALL-RAltS

CYCLESCREEN- Cycle screens. For example,

CYCLESCREEN - LShift Alt S

ZIPWINDOW= Zoom active window. For example,

ZIPWINDOW = RCommand Z

5-36 The Extras Programs

NoCapsLock

NoCapsLock disables the Caps Lock key. The Shift keys still

function normally, but you don't have to worry about

accidentally pressing Caps Lock while using the keyboard.

To start NoCapsLock, double-click on its icon. It does not open

a window. To exit NoCapsLock, double-click on its icon again,

or open the Exchange window, select NoCapsLock from the

scroll gadget, and select the Kill gadget.

Chapter 6. Using a Hard Disk

This chapter provides details on using your hard disk. This

includes information on HDBackup, a program used to back up

and restore files on your hard disk, and HDToolbox, a utility for

advanced users that allows control over hard disk operations.

Rather than using HDBackup to back up your hard disk, you

may choose to use BRU, an advanced backup and restore utility

accessed through the Shell. BRU is documented in Appendix C

of this manual.

About Your Hard Disk

The following information is not essential for using a hard

disk. You may want to read it to help understand more about

what is going on inside your Amiga system.

Your hard disk allows you to store, use and retrieve large

amounts of data quickly and conveniently. Information is

stored on hard drive disks {or platters) located within the hard

drive. Unlike floppy disks, these platters cannot be removed

and are protected from the wear and tear of being handled.

Hard disk platters look like small compact disks. They are

coated with a magnetic recording surface that records

information on both sides. A hard disk usually contains

anywhere from one to eight platters.

In order for the computer to locate information quickly on the

hard disk, the platters are divided into smaller sections. Each

hard disk platter is organized into tracks, cylinders and sectors.

Tracks are similar to the grooves on a record album. They

divide the hard disk platter into concentric circles.

6-2 Using a Hard Disk

A cylinder on a single hard disk platter is the recording space

on both the top and bottom of one track. A cylinder on a

multiple-platter hard disk is the recording space (top and

bottom) on all of the platters of the tracks with the same track

number.

Sectors are like pie slices that divide the tracks. They are the

smallest unit of storage on the hard disk platter, usually 512

bytes.

The hard disk finds information by using the combination of

three locations—cylinders, tracks and sectors—as an

"address". It is similar to the box number, street and city on a

mailing address.

Information stored on the hard disk platter is read and written

by read/write heads. A read/write head is similar to the head of

a cassette tape deck, but moves across the surface on an arm

similar to the tone arm of a record player. The head discharges

magnetic impulses at the right places to record data. To read

data, the head(s) move to the appropriate cylinder and sense the

Using a Hard Disk 6-3

magnetic impulses from the sectors as the rotating platter

passes beneath them. There is a separate head for each surface
(top and bottom) of each hard disk platter.

read write head

There are many types of hard drives, with varying storage

sizes from 20MB (over 20 million characters) to 500MB of

information. A 50 MB hard drive has about as much storage

space as 59 of the standard Amiga 3.5-inch floppy disks.

Assuming an average page holds about 3500 characters, this

would be the equivalent of nearly 14,400 typed pages.

Hard Disk Partitions

Because the storage capacity of hard disks is large, your hard

disk can be divided into partitions which are simply

subdivisions of the hard disk's storage space. Partitions can be

used to better organize your work. For instance, you may want

to separate the system software and other files your computer

uses from your own application programs and files. If you add

an additional operating system to your Amiga (such as the

UNIX® operating system}, you may decide to provide it with

its own partition to keep it separate from AmigaDOS.

6-4 Using a Hard Disk

Commodore-supplied hard disks come with at least one

partition—the Workbench (or System2.0). Depending on

which computer you own, you may have received up to two

additional partitions including the Work partition which is

provided as your storage space.

With the HDTooIbox program, you can partition your hard disk

in any way you'd like, giving each partition any name you'd

like (other than devices that already exist). This feature is

described in detail in the HDTooIbox section beginning on

page 6-49.

The best time to partition a hard disk is before you begin using

it. All information on affected partitions (for instance, a large

partition you may have separated into two smaller ones] is

erased in the process. If you already have information stored on

affected partitions, you should back up the information and

restore it after you partition. For more information see

"Backing Up Your Hard Disk" on page 6-14.

Copying Software to
Your Hard Disk

In addition to working with the utilities provided on

Workbench, you will want to transfer applications from floppy

disks to your hard disk. It is faster and more convenient than

using floppy disks. Rather than inserting floppy disks each

time you want to use a program, you can call up programs from

the hard disk.

Most software can be installed on your hard disk. Many

applications provide an easy-to-use installation process. Read

the manual that is supplied with a program carefully, as well
as any Read Me files on the disk. // a program includes

installation directions, you should always follow them
precisely.

Using a Hard Disk 6-5

^•v In case you have a program without installation directions, this

section demonstrates how to copy a generic software program

to your hard drive. In this example, we assume you are

installing a program to a partition on your hard disk called

Work.

You should create a new drawer for each application you install

and name it accordingly:

1. Open the Work partition window by double-clicking

on its icon.

2. Choose New Drawer from the Window menu.

A new drawer icon called "Unnamed 1" will appear in

the window.

A requester will appear telling you to enter a new name

for "Unnamedl" in a text gadget.

You can give a drawer any name you'd like, but you

should use a name that reminds you of its contents,

such as the name of the program. (For more information

on renaming icons, see "The Icons Menu" section on

page 2-67.)

3. Using the Backspace key, delete the contents of the

text gadget (or use right Amiga-X) and type in the

correct name.

Be sure to delete any spaces before or after the new

name.

4. Press Return or select the OK gadget

The requester will go away, and the new name will

appear under the icon.

You can now copy the software into the new drawer.

This can be done by simply pointing and dragging.

"

6-6 Using a Hard Disk

5. Put the software disk into the disk drive.

Make sure the software disk is write-protected. This is a

precautionary measure to ensure that you don't alter

your original software disk.

6. Double-click on the disk's icon.

Look at the contents of the disk on your screen. Often

software disks contain duplicate files that are already on

your system. You next need to copy any files that are

not already on your system to the new drawer you

created.

7. Holding down the Shift key, point to each icon on the

software disk that is not already on your system.

Keeping the Shift key held down, drag the icons over

the new drawer and release the selection button.

You will notice that both your hard disk light and your

disk drive light will begin flashing. This shows that

Workbench is reading from your program disk and

writing to your hard disk.

When the lights have stopped flashing, the information

transfer is complete. Your software should now be in the

drawer you created.

8. Remove the original software disk from the floppy disk

drive, and try to run the program from your hard disk.

If the program runs properly from the hard disk, you

have installed it correctly. If you have any problems

running the software or if requesters appear asking for

the original software disk, read the following section.

Using a Hard Disk 6-7

Troubleshooting

~

If you are having trouble running a program from the hard disk,

you may have to set up an ASSIGN statement for the software

to run properly.

Often, the indication that you need an ASSIGN statement

comes in the form of a requester. For example, suppose you

copied a program called WriteStuff into a drawer called WS in

the Work: partition. When you try to run the software, a

requester appears saying:

Systen Request

Please insert

WriteStuff

in any drive

Retry

volune
V,

Cancel

This means that although you have already installed the

program on your hard disk, the program itself doesn't know

where to look for the files it needs. Instead, it looks for them on

the original disk (volume) on which it was distributed—in this

example, the disk called WriteStuff. By using the ASSIGN

statement, you will tell the system where to find the required

files.

6-8 Using a Hard Disk

ASSIGN statements are AmigaDOS commands that are

entered through the Shell. Chapter 7, "Using AmigaDOS/' and

Chapter 8, "AmigaDOS Reference/' of this manual describe

how to use AmigaDOS commands. If you arc not at all familiar

with using the Shell, you may wish to read Chapters 7 and 8

before atempting to use ASSIGN statements. The following

instructions will, however, take you through the process of

using ASSIGN statements.

Adding an ASSIGN Statement to

your User-Startup File

The Shell is a window that you use to communicate with the

Amiga via typewritten commands. In this case, you will use

the Shell to enter the ASSIGN command in the proper place—

the User-Startup file.

The User-Startup file is a list of commands that tell the

computer what to do when it boots up. You will need to put the

ASSIGN statement into the User-Startup file so that as soon as

you boot your computer, your installed program will work.

The User-Startup file is not on your disk as supplied by

Commodore; however, you will create the file the first time

you follow this procedure.

If a requester similar to the previous example has appeared,

select the Cancel gadget on the requester. The requester may

appear again. Select Cancel each time it does.

Using a Hard Disk 6-9

~

~

To add an ASSIGN statement to your User-Startup:

1. Double-click on the Shell icon, which is normally

located in the System2.0 window.

The Shell window will appear.

The Shell gives you a text "prompt" which ends in a

">". This is where you will type in an AmigaDOS

command followed by a Return. Please see the section

"The Shell" on page 7-13 of this manual to familiarize

yourself with the Shell window.

2. Type the following words into the Shell after the

prompt:

ED S/User-Startup

then press Return.

Make sure you type in the command exactly as it is

above.

l>

Shell

-

6-10 Using a Hard Disk

This command tells the computer you will edit (create

or make changes to) the User-Startup file which is

located in the directory called S. ED tells the computer

you will be using the text editor that is called ED. A text

editor is a program that makes it possible to create and

make changes in a text file.

You will notice that a new window will open. You are

now using ED, and on the screen is the User-Startup file.

The first time you use it, it will be empty. This is where

you will always enter your ASSIGN statements. Move

the cursor so it is at the beginning of a blank line.

ASSIGN statements are set up as follows:

ASSIGN diskname: partition:drawer [Returnl

where:

ASSIGN Is the first word you type in to tell the

computer you are entering an

ASSIGN statement.

diskname Is the name of the disk which

contained the software program. This

must be entered in the exact form

that was stated in the requester.

partition Is the name of the hard disk partition

which contains the drawer where you

will keep your program.

drawer Is the name of the drawer you made

for the software.

Using a Hard Disk 6-11

Example ASSIGN statement

In the previous example, you copied a program called

WriteStuff to a drawer called WS in your Work partition. You

received a requester which said "Please insert volume

WriteStuff into any drive". It is looking for the WriteStuff disk.

In this case, your ASSIGN statement would read as follows:

ASSIGN WriteStuff: Work:WS

Now that you have seen how to form an ASSIGN statement,

you should have a better idea of what it does. You are

"assigning" the name of the original software disk to the name

of the drawer that now contains the program. Using the

previous example, when you double-click on the program's

icon, instead of the program looking for the volume WriteStuff

[which is the original software disk), it will look in Work:WS

(where Work: is the partition and WS is the name of the

drawer).

The following example illustrates an ASSIGN statement if the

software drawer is within another drawer. If you copied the

same program into the WS drawer which is within a drawer

called Projects; your ASSIGN statement would read:

ASSIGN WriteStuff: Work:Projects/WS

NOTE: In order for the ASSIGN statement to work properly

you must make sure it is set up properly.

• Make sure that the disk name in the ASSIGN statement

is the exact name of the software disk. This is usually

the same as the name of the program, but not always.

The best way to check is to insert the software disk and

look for the disk's name under its icon.

• Make sure that the disk's name is followed by a colon.

6-12 Using a Hard Disk

• If the original disk name contains spaces, then that

name (including the colon) must be enclosed in double

quote marks.

• Put one space after ASSIGN and one space after the disk

name.

• Use a colon between the partition name and the drawer

name (and slashes between any drawers after that).

3. Following the directions above, enter your ASSIGN

statement in the blank line. Press Return.

4. Press Esc (in the upper left corner of your keyboard).

Your cursor is taken to an asterisk at the bottom of the

screen.

The following step tells you how to save the changes you've

made to the User-Startup file. (If you have made a mistake and

want to exit the User-Startup file without saving your changes:

Type a Q and press Return. If a requester appears saying edits

will be lost, type a Y. Proceed to Step 6.)

5. To save your changes in the Startup-sequence file, type

an X and press Return.

You are returned to the Shell window.

6. In the Shell window, type:

ENDSHELL

then press Return.

This command closes the Shell window.

To see if your ASSIGN statement worked, reboot your system

(by pressing the Ctrl key simultaneously with both Amiga

keys). Try opening the program from its icon on your hard disk.

If you can use your software, you have used ASSIGN properly.

If you used ASSIGN improperly (such as typing in the wrong

Using a Hard Disk 6-13

name of the software, partition or drawer) one or more of the

following may happen:

• You receive a software failure message when your

computer boots up. Press the left mouse button to

reboot.

• Your Workbench icons do not appear, and a message is

presented saying that it cannot find the software and the

"assign failed". Use Ctrl-C to get to the Workbench

screen. Open a Shell, and repeat the steps above to edit

User-Startup. Look for what you may have entered

improperly, correct it, and reboot.

• When you try to call up the program, you receive

another requester telling you to "Please insert volume

n (program name) into any drive." Open a Shell, and

repeat the steps above to edit User-Startup. Look for

what you may have entered improperly, correct it, and

reboot.

• If the program is not functioning properly, examine the

new drawer (open the drawer and choose the Show All

Files menu item) to see if it includes any of the following

drawers:

Fonts Devs/Printers

L C

Libs System

S Utilities

Devs Expansion

Devs/Keymaps

If one (or more) of the drawers in the list exists in the

new drawer, you must assign each to the corresponding

device on your hard drive. The drawer most likely to be

found in your new drawer is Fonts. Using the previous

example, the following demonstrates ASSIGNing Fonts

using the extended assign feature:

ASSIGN FONTS: WORK:WS/FONTS ADD

6-14 Using a Hard Disk

Backing Up Your Hard Disk

Although your hard disk is a good place to store information,

system and hard drive failures do occur. However infrequent,

these failures can destroy all of the information on your hard

disk.

File loss is not always the computer's fault. Another cause of

data loss on hard drives is human error, rather than hardware

failure. Common errors include accidentally formatting a

partition when you meant to format a different one,

accidentally deleting files by mistyping the file names or

selecting the wrong gadget, or simply deleting files that you

thought you no longer needed and then discovering that you

really did need them.

Making regular backups of your hard disk is a necessary

precaution against these errors. A backup (or archive) is simply

a copy of the information in your hard disk, usually stored on

either floppy disks or magnetic tape (if you have a magnetic

tape drive). If you ever lose information, you can easily restore

it to your hard disk from your backup.

Using a Hard Disk 6-15

~ HDBackup

~

HDBackup is a backup and restore utility included on the

Extras disk. On hard disk systems, you will find its icon in the

Tools drawer.

HDBackup provides an easy way to back up your hard disk to

floppy disks or tape, and then, if necessary, restore them to

your hard disk.

You have many options with HDBackup. You can back up

every file on your system or you can limit backups to a given

directory. You can set HDBackup to back up only those files

which have changed since the last time you've archived. Also,

HDBackup can compress files to a smaller size so you can save

space on your backup disks.

I
HDBackup

~

Using HDBackup for the First Time

When you create a backup, you must first decide whether you

want to back up an entire volume (a full backup) or just a

portion of a volume (an incremental backup).

The following section will take you through the step-by-step

procedure of creating a backup of an entire volume.

NOTE: Even if you plan to create incremental backups, use the

following section, "Creating a Full Backup" as a tutorial the

first time you use HDBackup.

6-16 Using a Hard Disk

Creating a Full Backup

1. Open the Tools drawer.

2. Double-click on the HDBackup icon.

The HDBackup screen will appear.

3. Choose Backup from the Project menu.

1 Project Display Sorting Options Devices

Backup

Oil f mTitft

Restore ©

No-log Restore

dej

!LJ

_J

Snaller|18BB

Selected Files

8 of 8

Selected Size

8 of 8

flrchive Size

4K on B.BVols

The Volume requester will appear with gadgets listing each of

your devices and partitions, such as RAM:, WB_2.x:, DFO: and

Work:. You now decide which of these volumes you would like

to backup.

Using a Hard Disk 6-17

HDBackup Please select an operation fron the Project Menu

~

Files Pattern:

Hatch

Files

Before

Files

«?.info

Dated;

24-Mav-91

Size:

SiialU>r|1B89

Selected Files

6 of 6

Selected Size

8 of 8

Rrchive Size

4K on e,8Vols

Enter Volune or Directory to Back Up:

HDBackup

4. Choose a volume by either clicking on a gadget or by

typing the volume name in the text gadget. Then select

the OK gadget

Once you have selected a volume, the scroll gadget on

your screen will contain your File Selection list—a list

of all the directories and files within the volume you've

selected.

Backup node

HB_2.x:

Files

Hatch

Files

Before

Files

Snaller

Pattern: |

Eft?, info 1

Dated: |

|24-May-91 |

Size: |

11688

Selected Files

315 of 315

Selected Size

2854327 of 2854327

firchive Size

4268K on 4.1 Uols

■directory

file

size
I
last modification date

6-18 Using a Hard Disk

Directories and empty directories are indicated as such to the

right of their names. Double-click on a directory to see what

subdirectories and files a directory contains. To return to the

previous directory, select the Parent gadget. If you have

descended into a subdirectory and want to return to the

original list of files, select the Root gadget.

Files in the File Selection list include information on their size

(in bytes), their last modification date (the last date you

changed the file), and their archive bit status.

An archive bit tells you whether the file has been archived

already. If a file list item has an "A" at the end, it means the

archive bit is set. If there is no "A", the file has never been

archived or has been changed since its last archive.

HDBackup has a File Data requester to provide you with even

more information about a file in the File Selection list. To see

the File Data requester:

5. Double-click on any file (not a directory) in the File

Selection list.

A typical File Data requester looks like this;

HDBackup Backup node

HB_2.x:

File Data

Nane: disk.info

Size: 848 bytes or 2 blocks

Status: Readable WriteabLe Deleteable

File Note:

<no file coment>

Date: 24-Hay-91 89:29:

e3 18 88 81 88 88 88 68 68 86 80 46 88 4d 88 11

86 86 88 81 86 81 87 f8 22 b8 87 f8 25 eB 86 66

88 88 88 86 88 88 BB 86 68 88 88 64 88 68 88 81 ,.,,,,

81 68 87 fB 25 fS 87 fB 22 d8 88 88 88 88 86 88 ,h..X.

F.M.

nrcmve size

4256K on 4.1 Vots

Using a Hard Disk 6-19

~

~

~

This information tells you:

Name The name of the file.

Size The size of the file in bytes, and the

number of archive blocks. A block is

equivalent to a sector on the hard disk.

Date The last modification date and time.

Status A list of current attributes that have

been set for the file. (For more

information on attributes, see the

"Information" section on page 2-78.)

File Note Displays any comments attached to the

file. [For more information on

comments, see page 2-80.)

You will also notice four lines of letters and numbers on

the bottom of the File Data requester. These are the first

64 characters of the file in binary form displayed in

hexadecimal format (abbreviated "hex") which is how your

computer reads the information. To the right of these lines is a

column containing the first 64 characters of the file in text

form. This can be used to take a quick look at the file's

contents.

6. To exit the File Data requester, choose the OK gadget

or type any letter.

Now you must decide if you want to set archive bits on the

volume. If you wish to use archive bits to mark files as

archived, you must choose a menu item. It is a good idea to set

archive bits; in the future, you can create backups of only those

files which have changed by using their archive bit status.

6-20 Using a Hard Disk

If you wish to set archive bits:

7. Choose Set Archive Bits from the Options menu.

Project Display Sorting

MBJ.x:

iOpt ions

Set flrchive Bits

Files Pattern: I

Hatch |a?.info

Files Dated:

Before |24-Hay-91

Files Size:

Snaller|18BB

Selected Files

315 of 315

Selected Size

2854327 of 2854327

flrchiue Size

4268 K on 4.Hols

Snaller Log Files

Conpression

^Backup Dir Structure

A check mark next to the Set Archive Bits item indicates it is

selected.

The File Selection list can be sorted in a number of ways. Your

choices are shown in the Display Sorting menu:

I Display Sorting

HB_2.x:

Options Devices

v/List Directories First

Files Patt

Hatch |l?.

v^Sort by Nane

Sort by Date

Sort by Size

Sort by flrchive Bit

Files Dated:

Before |24-Hay-91

Files Size!

SnallerjiBBB

Selected Files

315 of 315

Selected Size

285432? of 2854327

flrchiwe Size

4268 K on 4.1 Vols

Using a Hard Disk 6-21

A check mark indicates which method is selected.

With these features you can:

List Directories First Lists all directories before files. If

this is not chosen, directories are

listed with files according to the

sorting method you selected.

You have the choice of one of the following sorting methods:

Sort by Name Lists files in alphabetical order. Files

with numerical names are listed first.

Sort by Date Lists files chronologically according

to the last modification date. In other

words, the files that you've changed

(or created) most recently will be at

the bottom of the list.

Sort by Size Lists files in order of number of bytes,

from smallest to largest.

Sort by Archive Bit Lists files with a clear archive bk

first.

If you wish to change the sorting method:

8. Choose a sorting method for the File Selection list from

the Display Sorting menu.

Before you begin backing up the volume, you must tell

HDBackup which device(s) will hold your backup. For

example, drive DFO: is your archive device if you plan to

archive with floppy disks to drive DFO:.

6-22 Using a Hard Disk

9. Choose the device you will use from the Devices menu.

Display Sorting Options I Devices

HO.x:

Pc

Files Pattern:

Hatch I*?.info

Files Dated:

Before |24-Hay-91

Files Size:

Snaller|1BBB

Selected Files

315 of 315

Selected Size

2854327 of 2854327

Rrchive Size

4268 K on 4,1 Vols

To add a device (such as a tape drive) to the menu, see "Tool

Types" on page 6-45.

To see how many disks the backup will require, you can refer

to the Archive Size display in the lower left corner of the

screen. The Archive Size display shows the total archive size in

kilobytes. This is the size the backup will take up on disks or

tapes and includes extra space for archive overhead (all the

information the backup itself needs).

The Archive Size display also estimates how many disks you

will need to archive the files you've selected. (It refers to disks

as volumes.) This way you can have the proper amount of disks

on hand. Disks do not need to be formatted before using them

with HDBackup.

Using a Hard Disk 6-23

~

NOTE: When the device is set to tape:, HDBackup does not

know the size of tape you are using. The Archive Size display

will still show the number of disks needed for the backup.

Advanced users who want to use this estimate mode with tape

backups must enter the tape size in Brutab. For information on

customizing Brutab, refer to Appendix C, "Backing Up Your

Hard Disk with BRU."

By default, HDBackup backs up the directory structure for each

file. This means HDBackup will restore files to the same

directory they were in when you created the backup. The

check mark next to the Backup Dir Structure item in the

Options menu shows this is set. Although you will normally

leave it on, you can simply choose the item again to turn the

option off.

Once all the options have been selected, you must tell

HDBackup to begin creating the backup:

10. Load the first volume (disk or tape).

11. Select the Start gadget.

HDBackup Backup node

HB_2,x:

Files

Hatch

Files

Before

Files

Pattern: |

It?.info |

Dated: |

|24-Hay-91 |

Size: |

Snaller|1888

Selected Files

315 of 315

Selected Size

2854327 of 2854327

flrchtve Size

4268 K on 4,1 Vols

Start gadget

6-24 Using a Hard Disk

HDBackup displays a requester warning you that all

information on the specified drive will be erased.

HDBackup Message

Uarning! fill data on DFB: will be overwritten

Continue

Files Pattern: HeF

Quit

Hatch |l?,info

Files Dated:

Before |24-Hay-91 |

Files Size:

Snaller|1BBB

Selected Files

315 of 315

Selected Size

2854327 of 2854327

Archive Size

4268K on 4.1 Vols

Backup in progress

Click to Cancel

At this point, HDBackup waits for confirmation to proceed.

Select the Continue gadget to proceed. To abort the Backup,

select the Quit gadget.

12. To start backing up, select the Continue gadget.

HDBackup will prompt you to load disks to continue

the backup.

Using a Hard Disk 6-25

13. As you fill up each volume, label each disk with three

pieces of information:

• The date of the backup.

• The volume you backed up.

• The backup disk's volume number.

For example:

~

□

»

It is essential to have an accurately labeled disk. When you

restore files, you will need to know which disks to use, in their

proper sequence.

^

6-26 Using a Hard Disk

When the backup is complete, the Log File requester will

appear.

HDBackup Backup in Progress

ol Save BRUshell togfile

Drawer |work:HB_2.x

File |28Hay91

115624 of 2655437

flrchtye Size

284 K on 8.1 Vols

disk.info
Expansion.info

848 17-flay-91
632 17-Hav-91

A log file is a report—or log—of what was included in your

backup. While the actual backup is located on your backup

disks or tapes, the table of contents of each backup is found on

its log file. When you restore files, HDBackup uses the log file

to provide you with the File Selection list for that particular

backup. This allows you to exclude certain files from the

restore process if you wish.

By default, log files are stored on the Work partition in a

directory with the same name as the volume you are backing

up. For instance, if you are backing up the Work partition, the

file requester will show Work:Work as the default directory for

the save. You need to create the Work:Work directory before

trying to save the log file. If there is no Work:Work directory,

the file requester will display Directory Error in the title bar.

To create the directory, return to the Workbench screen, select

the Work window, then choose New Drawer to create the

directory. Return to the HDBackup screen, and select OK in

the requester.

If you want to save the log file to a different location, simply

type the correct volume name and any directory names in the

text gadget.

Using a Hard Disk 6-27

Log files are automatically named according to the date that

you've done your backup. For instance, a backup created on

May 20, 1990, would have a log file called 20May90. (If you

create a second backup of the same volume on May 20, 1990, it

will be called 20May90.1.)

14. Select the OK gadget to store the log file in

Work:WB_2.X.

If the Work:WB_2.X directory does not exist, you will

have to create it.

If you do not want to save a log file with your backup, select

the Cancel gadget to exit the requester. It is possible to perform

a complete restore without a log file. However, you cannot

exclude any files from the restore if you have not saved a log

file.

Make sure to store your backup disks or tapes in a safe

place.

Creating an Incremental Backup

You may decide to exclude certain files from your backups

because, for example, you have them on another disk, they

might take up too much room on your disks, and so on. Now

that you have seen how to back up a full volume, the following

sections will explain the various ways to create incremental

backups.

HDBackup is designed to make incremental backups very easy.

Many of the gadgets you see in the HDBackup screen are used

to select and exclude files from the backup, quickly and

conveniently. The most basic way to exclude files is to point

and click on the items that have been read into the File

Selection list.

6-28 Using a Hard Disk

When you click on a file or directory in the list, it becomes

shadowed.

HOBackup Backup node

Files Pattern!

Hatch |l?.info ;

Files Dated:

Before 124-Hay-91

Files Size!

SnaUer|1B99

Selected Files

314 of 314

Selected Size

2854381 of 2854361

Rrchive Size

4254K on 4.Hols

Expansion, (enpty directory)

This indicates that file has been excluded from the list and will

not be included in your backup.

If you shadow a directory, the entire contents of that director)'

(including all of its subdirectories) will be excluded from the

archive.

To exclude only certain files within a directory, you must

descend into a directory (by double-clicking on it) and shadow

files within it that you wish to exclude. (To get back to the

previous list, select the Parent gadget.) The directory will no

longer be shadowed, but all shadowed files within the directory

will remain shadowed and excluded from the backup.

To deselect a file or directory which has been shadowed (and

thus have it included on the backup), click on it again.

Using a Hard Disk 6-29

Selected Files and Selected Size Display

There is a running tally of selected files and selected size on

the bottom left corner of your screen.

This lists the number of files you have selected from the list

and the total size of the all these files in bytes. The number of

selected files and the selected size decreases as you shadow

files in the list.

Include and Exclude Gadgets

At times, you may want to back up only a few files of a very

large volume. You could scroll through the list and shadow

each file or directory to exclude, or you could use the Exclude

gadget.

The Include and Exclude gadgets are at the top left corner of the

screen.

The Include gadget tells HDBackup that all files in the File

Selection list should be included in the backup. By default,

HDBackup assumes that the Include gadget is selected. That is

why all files which are read into the File Selection list are

already included in the backup.

When you select the Exclude gadget, all files in the File

Selection list are shadowed and excluded. All of the contents

of directories are shadowed. You can then include some of the

files by single clicking on them. To include files from a

shadowed directory, you must descend into the directory and

click on them. Try this and note the Selected Files display.

To return to the Include mode (and thus include all of the files

again), select the Root gadget, then select the Include gadget.

6-30 Using a Hard Disk

File Selection Gadgets

You do not always need to point and click to exclude files. All

of the gadgets on the left side of the HDBackup screen are used

to include and exclude files from a backup (and later from a

restore). These gadgets allow you to include or exclude files by

their archive bit status, by a specified pattern that they may

contain, by a specified modification date and/or by a specified

size.

Here's how they work: File Selection gadgets are set after you

have selected a volume and its contents are read into the File

Selection list. You must activate the gadgets and provide them

with specific information in their text gadgets. You must then

select the Exclude gadget. All files that meet that criteria are

shadowed and thus excluded from the backup.

All of the File Selection gadgets act in conjunction with one

another. For instance, if you have activated both the Date

Selection gadget and the Size Selection gadget, a file must meet

the criteria of both to be included in {or excluded from) your

backup.

The following four sections explain in detail how to use each of

HDBackup's File Selection gadgets.

Selecting Files by Archive Bit Status

HDBackup can select files by the status of their archive bit.

With this gadget, you can select a file list of only files with

either a clear archive bit or a set archive bit, whichever you

choose.

Using a Hard Disk 6-31

~

~

After a volume is selected and its contents have been read into

the File Selection list:

1. Select the gadget marked Archive Bit.

This will highlight the gadget, indicating this feature

has been selected.

Set

2. Select either Set or Clear.

The Set gadget is a cycle gadget. With it, you can

choose:

Set Select files with archive bits set.

Clear Select files with a clear archive bit.

3. Select the Exclude gadget

If you have chosen Set, all files with set archive bits

will be shadowed |and thus excluded). If you have

chosen Clear, all files with clear archive bits will be

shadowed.

Selecting Files by Pattern

A pattern is simply a group of characters. HDBackup allows

you to type in a pattern, and only files which contain that

pattern (or only files which don't contain that pattern,

whichever you choose] will be included in your File Selection

list.

For example, you may want to archive every file in your DHO:

partition, except for .info files. In this case, ".info" is the

pattern you want HDBackup to exclude from your File

Selection list.

6-32 Using a Hard Disk

The characters #? are used as a wildcard. The wildcard means

"any text". For example, entering #?.info means any filename

which ends in ".info" will be included on the list. If you want

to archive only files which begin with the letter "s", you

would enter s#? in the text gadget. The wildcard must be used

in the pattern unless you are selecting a pattern which would

be matched exactly.

After a volume is selected and its contents have been read into

the File Selection list:

1. Select the gadget marked Files Pattern:.

This will highlight the gadget, indicating it is activated.

Hatch |tt?.info

Below this gadget is a cycle gadget that says Match. It

has two functions:

Match Select files that contain that pattern.

7? Select files that do not contain that

pattern.

2. Select either Match or ^.

3. Click in text gadget, delete its contents and type in the

pattern you wish to use.

4. Select the Exclude gadget.

Files which meet this criteria will be shadowed.

Using a Hard Disk 6-33

~
Selecting Files by Date

You can tell HDBackup to select files by date. It will then

include on your backup only those files with modification

dates before, after or exactly on the date you specify, whichever

you choose.

An example of this feature is performing a daily backup. As

mentioned earlier, each file contains a modification date—this

is the date and time a file was last used. In this case you want

an archive of only those files which have changed today.

In this case you would tell HDBackup to exclude files dated

before today.

After a volume is selected and its contents have been read into

the File Selection list:

1. Select the gadget marked Files Dated:.

This will highlight the gadget, indicating this feature

has been activated.

Before |22-Hay-82

The gadget marked Before is a cycle gadget. With this gadget,

you can select:

Before Select files with modification dates before

the specified date.

After Select files with modification dates after the

specified date.

On Select files with that exact modification

date.

6-34 Using a Hard Disk

2. Use the cycle gadget to choose Before, After or On.

Next you must set the date.

3. Click in the text gadget, delete its contents and type in

the date you choose.

The date should be in this form:

DD-MMM-YY

where:

DD Is the day of the month.

MMM Is the name of the month,

abbreviated to its first three

characters (such as SEP for

September).

YY Is the last two digits of the year.

It is not necessary to use a leading 0 for single digits.

4. Select the Exclude gadget.

Files which meet the criteria you've set will be

shadowed.

Selecting Files by Size

You may choose to back up files by a specific size. For example,

you may want to back up only your very large files (such as

data base files) that took you a long time to create.

After a volume is selected and its contents have been read into

the File Selection list:

1. Select the gadget marked Files Size:.

This will highlight the gadget, indicating this feature

has been selected.

Using a Hard Disk 6-35

- I

~

Sna Her 11899

Next you must specify a size.

2. Click in the text gadget, delete its contents and enter

the size.

Size is specified in bytes.

The gadget that says Smaller is a cycle gadget. With this gadget,

you can select:

Smaller

Larger

Equal

Select

size.

Select

size.

Select

size.

files

files

files

smaller than the specified

larger than the specified

equal to the specified

3. Using the cycle gadget, select either Smaller, Larger or

Equal.

4. Select the Exclude gadget.

Files which meet this criteria will be shadowed.

Smaller Log File Option

Normally the log file contains the complete File Selection list

for that particular archive. This includes files which were

included in the archive as well as files which were excluded by

shadowing them. When you go to restore files, you will notice

that Excluded files arc represented in a different color.

6-36 Using a Hard Disk

By choosing Smaller Log files from the Options menu,

HDBackup will eliminate the excluded files from your log file.

This way, when you go to restore files, only files which were

included in the archive will appear in the File Selection list.

This option is useful for saving disk space if you have many log

files saved on your HDBackupLogs disk.

File Compression Option

The File Compression option was designed to save space on

your backup disks. Files are compressed—made smaller—so

more files will fit on each disk.

The smaller size of the archive is the advantage of compressing

files. You should weigh this advantage with File Compression

option's two disadvantages. The first is that it takes longer to

perform the backup—sometimes two to three times longer—

because for each file, HDBackup must first compress it and

then save it to your backup disk. The second disadvantage is

that HDBackup cannot provide you with an estimate in the

Archive Size display area. Instead it reports "???" in that field.

HDBackup would actually have to go through and compress

each file just to give you an estimate.

To save backup disk space, you may be willing to overlook

these disadvantages.

The Compression menu item gives you three choices.

Using a Hard Disk 6-37

^
Project Display Sorting Options

~

Selected Files

314 of 314

Selected Size

2854381 of 2854381

Rrchive Size

4256K on 4.1 Vols

These choices are:

Compress By default, the File Compression option is

None set at None where no files will be

compressed.

Compress Every selected file on your File Selection list

All will be compressed.

Compress Only files larger than the specified size (in

Larger bytes) will be compressed. This option

Than compresses files which are very space

consuming, but cuts down the archive time

by not compressing all of the files.

When you choose the Compress Larger Than

menu item, a requester will appear asking

for the size (in bytes). A default size of 100 (K)

will appear in the text gadget. If you wish to

use this size, select the OK gadget. If you

want to change the size, click in the text

gadget and delete its contents. Enter the new

size in the text gadget and select OK.

6-38 Using a Hard Disk

Files which have been compressed can be restored in the same

way as regular files. HDBackup will automatically de

compress files before it restores them.

File compression on a backup does not affect your original file

in any way.

Checking Differences

After you've created a backup you may want some assurance

that it is complete and error-free so it can be used in the future.

The Differences mode checks a backup for errors and any

differences between the files on your backup and the files with

the same name on your hard disk.

The Differences mode can be used immediately after you've

created a backup to make sure that the backup is complete—

you should not see any differences between your backup and

your hard disk files of the same name. You can also run

Differences on a backup at a later time to see which files have

changed since the archive was created.

To run the Differences mode:

1. Choose Differences from the Project menu.

Using a Hard Disk 6-39

~

^

Project

'.4,1:

T
Differences G3

Backup

Inspect

Display Sorting Options Devices

dej

No-tog Restore

SnallerjiBBB

Selected Files

b of e

Selected Size

6 of B

flrchive Size

4K an 6,8Uots

The Log File requester will appear and show a list of

volumes you have backed up.

2. Click on the directory for the proper volume. From the

log file list, click on the log file you will check for

differences. Then select the OK gadget.

The File Selection list on the HDBackup screen will

display the list of files that you backed up.

3. Check that the Devices menu is set properly to reflect

which device(s) will contain your backup.

4. Insert the first backup disk.

5. Select the Start gadget.

The volume requester will appear asking you to select

the volume to which you'll be comparing the backup.

6. Select the volume and then select the OK gadget.

6-40 Using a Hard Disk

HDBackup will scan the list of files and report any errors and

differences in files. These differences may include variations in

file size, modification dates, contents, protection bit settings

and file names.

If you have checked differences in the file immediately after

creating it and HDBackup reports nothing, you know that

there are no errors and none of the files have been changed

since you archived. In this case you know your backup was

complete and error-free.

If files you backed up produce error warnings (such as a

warning telling you a file may be corrupted), you must decide if

the file is critical. If so, you may decide to investigate the

problem and try to archive that file again on a separate disk.

Inspecting a Backup

In one sense, HDBackup's Inspect mode works similarly to the

Differences mode—it reports errors. The Inspect mode does not

compare a backup to files on your hard disk so it is useful if you

want to check an older backup for errors.

To use the Inspect mode:

1. Choose Inspect from Project menu.

Using a Hard Disk 6-41

~

~

~

Display Sorting Options Devices

Differences CJD

Restore ©R

No-log Restore

Root Parent Start

SnaUer|1B68

Selected Files

0 Of 0

Selected Size

0 Of 0

Rrchive Size

4K on 0,8 Vols

The Log File requester will appear and show a list of volumes

you have backed up.

2. Click on the directory for the proper volume. From the

log file list, click on the log file you will inspect Then

select the OK gadget

The File Selection list on the HDBackup screen will

display the list of files that you backed up.

3. Check that the Devices menu is set properly to reflect

which device(s) will contain your backup disks.

4. Insert the first backup disk.

5. Select the Start gadget.

The volume requester will appear asking you to select

the volume or directory to inspect.

6. Select the volume and then select the OK gadget.

HDBackup will start reading the backup and inspecting it. File

names will appear in the screen's display area as it scans.

As in the Differences mode, HDBackup will display any errors

it has found in the files.

6-42 Using a Hard Disk

If no errors messages appear, your backup is error-free. If error

messages do appear, you may want investigate the problem and

decide if you want to try to back up the files again.

Restoring Files

There are two ways to restore files. If you saved a log file with

your backup, you can use the Restore menu item to look at the

log file and choose exactly which files you want to restore. If

you did not save a log file, you can use the No Log Restore

menu item to perform the backup. However, in this case, you

must restore all the files on the backup disks; you cannot

exclude any files.

Restoring Files with a Log File

1. Choose the Restore item from the Project menu.

Project

Backup S3

Inspect

Differences

No-log Resto.e

Display Sorting Options Devices

dej

d
SnallerliBBB

Selected Files

8 of 6

Selected Size

8 of 8

flrchiue Size

4K on B.BVols

The Log File requester will appear and show a list of volumes

you have backed up.

Using a Hard Disk 6-43

~
HDBackup Restore node lei

~

-o| Load BRUsheli logfile
Di,.» I

iysten
'rashcan
ib 2,xw

,ronts T
JIFF

lsk,info

ub2.x.info

[Work:

Archive Size

4K on 4,1 Vols

Double-click on the volume you want to restore to see its log

files. If you made a backup of a directory within that volume, it

will appear with all of the log files for that volume. You must

double-click on that directory to see its log files.

2. Click on the volume you wish to restore. From the log

file list, click on the log file which contains the file(s)

to restore. Then select the OK gadget.

The File Selection list on the HDBackup screen will display

the list of files that you backed up. Remember, files in light

blue were excluded from the backup when you created it. If the

file(s) you wish to restore are not on the current log file, choose

Restore from the Project menu. The Log File requester will

appear, and you can search through another log file.

You may not wish to restore all of the directories and files that

now appear in the File Selection list. You can now exclude files

you don't want restored by shadowing them or by using the

File Selection gadgets with the Include and Exclude gadgets as

you did when creating a backup, explained earlier in this

chapter.

6-44 Using a Hard Disk

3. Exclude any files you do not wish to restore.

4. Check that the Devices menu is set properly to reflect

which device(s) contains your backup files.

5. Insert the first backup disk (or tape).

6. Select the Start gadget.

The volume requester will appear. This requester is similar to

the requester which appears when you create a backup. You

must tell it where you want the files restored.

Notice that the text gadget in the requester already contains a

default—the volume that originally contained the files. If you

want them restored to the same place you can simply select the

OK gadget.

If you want files to be placed in another partition, click on the

gadget which contains the name of that partition. If the files

should be placed in a directory within a partition, you must

type the partition name and the directory in the requester's

text gadget. (For example, if you want to restore the file(s) to a

directory named Junk in the Work: partition, you would type

Workjunk in the text gadget.)

7. Select the volume you will restore to by clicking on a

gadget or typing the name in the text gadget. Select

the OK gadget.

NOTE: Sometimes you may restore files from a backup which

are already on your hard disk. HDBackup will not overwrite a

newer hard disk file with an older version of the file from the

backup.

You will see in the display area on the screen that HDBackup is

scanning the backup and restoring the files. The flashing lights

between your hard disk and your disk drive show that the

information is being passed from one to the other. When the

flashing lights have stopped, your restore is complete.

Using a Hard Disk 6-44.2

Restoring Files without a Log File

To restore files to your hard disk when you have not saved a

log file:

1, Choose No Log Restore from the Project menu.

^

Project Display Sorting

Backup C3B

Inspect ©I

Differences QD

Restore EJR

Options Devices

Snallerj1889

Selected Files

0 of 6

Selected Size

e of e

flrchive Size

4K on 8.Hols

The Volume requester will appear so that you can choose the

volume and directory where you want the files to be restored.

The text gadget usually contains the name of the volume that

originally contained the files. If you want them restored to the

same place, you can simply select the OK gadget. Otherwise,

select the gadget for the appropriate partition. You can also

type the partition and directory name in the text gadget.

2. Once the correct partition and/or directory is

displayed in the requester's text gadget, select the

OK gadget.

If you have not already inserted the first backup disk or tape, a

requester will ask you to do so. Select the Proceed gadget to

continue. A requester will notify you when the restore is

complete.

6-44.3 Using a Hard Disk

(This page was intentionally left blank.

Using a Hard Disk 6-45

Tool Types

~

Besides the available options on the HDBackup screen, you can

set options for HDBackup through Tool Types. Instructions for

adding and changing a program's Tool Types are found in the

"Tool Types" section on page 4-26.

As shipped, HDBackup is set to certain default Tool Types. If

your choice is the default, you do not need to enter anything in

the Tool Types window. If you do wish to change the defaults,

the recognized KEYWORDS are:

BRU HDBackup uses the BRU program as its

executable. (For more information on BRU,

see Appendix C.) This option allows an

alternate for the BRU executable to be given.

Default: BRU = bru

BRUPATH Allows you to specify an explicit path to find

BRU. This path is limited to 64 characters

and may not contain any spaces. If this

option is not used, HDBackup will search for

BRU first in the directory containing

HDBackup, and then in the C: directory.

Default: BRUPATH = C:

Example: BRUPATH = HDutils:

BRUARGS Allows some user-specified arguments to be

passed to BRU by HDBackup. (This is not

very useful for the most part, except for

debugging purposes.)

BRUARGS - <arguments>

6-46 Using a Hard Disk

BRUSTACK

DEVS

USE

Allows a specific stack size to be set for the

BRU process by HDBackup. The default is to

use the same stack size as HDBackup if

BRUSTACK is not given.

Default: BRUSTACK-40000

Allows you to add a device to the Devices

menu (in addition to the pre-existing DFO:

through DF3:]. A total of four devices can be

added to this menu. This must come before

a USE- option statement.

Example: DEVS = tape:

Example: DEVS = worm: |tape:

Specifies the names of the backup dcvice(s)

to use. These devices should already exist on

the device menu (DFO: through DF3:); or

should have been defined in the DEVS =

option.

USE = <namc>| jname] |[name]

Example: USE-dfO: |dfl: |df2:

FONTNAME Sets the font that HDBackup will use.

Default: FONT-topaz

FONTSIZE Sets the size of the HDBackup font. The font

can be any height from 6 to 15, but the

width must be 8. This option precludes use

of proportional fonts.

SCREEN Sets the type of screen to use, either the

Workbench screen or a custom screen.

Default: SCREEN-custom

SCREEN = workbench

Using a Hard Disk 6-47

~
NUMCOLORS Allows you to choose the number of colors

for a custom screen, either 4 or 8. (It has no

effect if SCREEN = workbench.!

~

Default: SCREEN = 4

SCREEN -8

LACE Controls whether or not the custom screen

is (USA) 200 lines high or (USA) 400 lines

high. This will also affect the colors used

[see LACECOLORS).

Default: LACE = off

LACE-on

COLORS Sets the colors for a custom HDBackup

screen. The number is of the format Red-

Green-Blue, in hex. For example, black is

000 and white is FFF. All colors must be

specified if this parameter is used.

Default: COLORS = 555,FFF,579,0FF,AAA,

0A8,B75,CCC

LACECOLORS Sets the colors for the custom screen that

will be used if LACE = on is specified. See

COLORS.

Example: LACECOLORS = 000,458,FFF,800,

7FF,AA3,8B2,1I1

BACKUP Causes HDBackup to automatically go into

RESTORE the desired mode, either Backup or Restore,

and begin building the File Selection list.

BACKUP - <volume[path]>

RESTORE - <volume[path]>

6-48 Using a Hard Disk

START If set to on, the option set by specifying the

BACKUP- or the RESTORE- option will

begin automatically. Otherwise, the File

Selection list is built, and the user must

start the backup (or restore).

Default: START = off

START=on

ICONS If set to on, log files will have icons created

for them, as will any directories that need to

be created in which to save the log file.

Default: ICONS-on

ICONS-off

FILEICON Names the icon to use as a template for the

log file icons. The .info extension will be

added. If this is not specified, the internal

default icon will be used. This has no effect

if the ICONS = off option has been set.

Example: FILEICON- work:my_icon

DIRICON Names the icon to use as a template for the

log file directory icons. The .info extension

will be added. If this is not specified, the

internal default icon will be used. This

has no effect if the ICONS = off option has

been set.

Example:

DIRICON = work:my_directory_icon

LOGDIR Sets the directory in which to store the log

files.

Default: LOGDIR-sys:hdbackuplogs

vl

Using a Hard Disk 6-49

HDToolbox

HDToolbox provides a variety of tools for controlling hard disk

operations. HDToolbox is compatible with the A3000, the

A2091, and other hard disks that follow the Amiga Rigid Disk

Block standard.

To run HDToolbox from your hard disk:

1. Open the System2.0 partition.

2. Open the Tools drawer. HDTOOlbOX

3. Double-click on the HDToolbox icon.

If your hard disk has not been installed:

1. Boot your system with your 2.0Install disk.

2. Double-click on the 2.0Install icon, then open the

Tools drawer.

3. Double-click on the HDToolbox icon.

The first screen which appears is called the Hard Drive

Preparation, Partitioning and Formatting screen. You will learn

more about this screen in the next section.

You will use this opening screen to get to the functions of

HDToolbox. The functions you can select with HDToolbox

include:

• Partitioning

• Preparing a New Hard Disk

^-v, • Configuring the Drive Type of the Hard Disk

• Low-Level Formatting a Hard Disk

• Locating Bad Blocks on a Hard Disk

• Defining File System Characteristics

• Adding, Deleting or Modifying File Systems

Detailed explanations and instructions for using each of these

functions of HDToolbox are found in the remainder of this

chapter.

6-50 Using a Hard Disk

The Hard Drive Preparation,
Partitioning and Formatting Screen

The Hard Drive Preparation, Partitioning and Formatting

screen provides a list of the hard drives you have connected to

your system. This window can display up to four drives at a

time. If there are more than four drives connected to a system,

you can scroll the contents of the window by using the scroll

bar or the scroll arrows at the right side of the window.

Hard Drive Preparation,

Interface flddress Llffl

Partitioninc and Fornatting - Version

Hard Drives in Systen

Status Drive Type

Change Drive Type

Modify Bad Block

Low-level Format

List

Driv

]

]

'I

Help

1

Exit

Partition

Verify Data

Savrtoses

.2

Drive

on Drive

1

• i

IS

t

1

The information provided in the window is:

Interface Displays the type of hard disk. The

type of hard disk is almost always

SCSI.

SCSI stands for Small Computer

System Interface A SCSI hard disk is

part of a family of SCSI devices

which connect to your computer.

SCSI devices have a standard

~

Using a Hard Disk 6-51

connector, developed to be

compatible with many different

types of computers. SCSI devices are

useful because they increase the

speed and flexibility of your

computer system.

The Interface will read XT if you

have connected a A59O Hard Drive

Plus.

Address Displays a value, 0 through 6, that

you have set for each SCSI device

attached to your system. The

address is used by the computer to

find the information at this location.

Each SCSI device on your system

must have a different address.

The SCSI controller pre-installed in

your computer is set as device 7.

Most hard drives come pre-

configured as device 0, so the first

additional SCSI hard disk can be

connected without change. If you

add additional drives, you will need

to reset them to different (unused)

addresses. If two or more devices are

jumpered to the same address, the

system will not function properly.

See the hard disk's documentation

Ofor more information, including

jumper location.

6-52 Using a Hard Disk

LUN

Status

Drive Type

Shows the Logical Unit Number

(LUN) of the drive, a value from 0 to

7. The LUN is a secondary address.

It is used when a device controls

multiple devices. For example, a

controller card may be capable of

controlling more than one hard disk.

Just as each SCSI device attached

must have a different address, each

device attached to the controller

card needs a different LUN.

The LUN of a SCSI hard drive will

usually be 0. See the controller card's

documentation for more

information on whether your

controller supports multiple LUNS,

and/or how to change them.

Shows whether or not you have

made any changes to a drive that

have not been saved. To save

changes after any HDToolbox

operation, you must select the Save

Changes to Drive gadget on the Hard

Disk Preparation, Partitioning and

Formatting screen.

Shows the drive's manufacturer,

name, and revision.

NOTE; This information may not

correspond exactly to the name and

number listed in the drive's

documentation. This was the name

reported by the drive to HDToolbox.

Using a Hard Disk 6-53

~

~

If the drive is listed in this window

as Unknown, it is not partitioned

and the drive type will have to be

selected. (See "Changing the Drive

Type" section on page 6-80.)

SCSI tape drives are always listed in

Drive Type as Unknown.

The remaining gadgets are used to perform the functions of

HDToolbox, described throughout the remainder of this

chapter.

Because many functions of HDToolbox involve erasing all

the information stored on your hard disk, the entire

contents of your hard disk should be backed up before usim;

the program. This may be done through the HDBackup

program, described earlier in this chapter, or (for advanced

users) through BRU, described in Appendix C.

You may abort any changes made to HDBackup screens or

requesters by selecting the Cancel gadget. This gadget is

present on each screen and will return you to the previous

screen without saving any changes.

Partitioning

A partition is a subdivision of the space on your hard disk. Each

partition on your system appears as an icon on the opening

Workbench screen. Depending on which model computer you

own, your hard disk may already be partitioned into sections

called System!.0 and Work.

6-54 Using a Hard Disk

HDToolbox provides a screen where you can easily partition

your hard disk. You may have just installed a new hard disk

and need to partition it. Or you may decide to repartition your

existing hard drive.

Reasons for partitioning include:

• Organizing your work. You may want to keep certain

files in their own partition so you can find them easier.

• Keeping AmigaDOS separate from a new operating

system you've added [such as the UNIX operating

system).

• Reducing fragmentation of partitions for a more efficient

system.

The best time to partition the hard disk is before you begin

using it. Whenever you partition your hard disk, all

information stored on the altered partitions is erased. Before

you begin, back up your entire hard disk with the

HDBackup program (described earlier in this chapter) or

with BRU [described in Appendix C). Your data can then be

easily restored when you're finished.

Advanced users can use HDToolbox's Advanced Options to

modify the number of sector cache buffers, change file systems

on the partitions and set boot priorities on bootable partitions.

The Advanced Options are described later in this section.

To partition, begin in the Hard Drive Preparation, Partitioning

and Formatting screen:

1. Select the hard disk that you want to partition by

clicking on its name in the list

The selected drive will be highlighted.

Using a Hard Disk 6-55

~

~

2. Select the Partition Drive gadget.

You will be taken to the Partitioning screen.

Part it toning ^^^^—^^^^^—^^^^^^

Cvl

= Unused

Partitioning Drive

SCSI Rddress i, LUH 8

= f) partition

.IE

2342

= Current partition

Size:
6 Meg

[Delete Partition! [New PartitTonl [Default Setup! [HeTp]|

[Rdvanced Optionsj Partition Device Nane File System Fast File Svsten
HB_2.x

Bootable? Ok

Cancel

As you see, the space on your hard drive is displayed as a

horizontal bar (the partitioning bar) with the number of the last

cylinder shown in the upper right corner of the screen. With

the default Workbench colors, the current (or selected)

partition is displayed in black, with the size of the partition

listed below it. Other partitions are shaded, with dark lines as

divisions. Unused areas are displayed in solid gray. You will

use the partitioning bar and your mouse to form your new

partitions.

Before you begin to partition, note the following on the

Partitioning screen:

Partition Displays the name of the selected

Device Name partition. To select a partition, click

on it within the partitioning bar.

6-56 Using a Hard Disk

File System: Displays the file system of the

selected partition. (For more

information on file systems, see

"Modifying File Systems" on page

6-87).

Bootable? Displays whether or not the selected

partition can be used to boot the

system. The Bootable? gadget

defaults to Yes for the first partition

and No for all other partitions.

Because partitioning is based on your personal choice of how

you want your system, we cannot provide a step-by-step

procedure. Instead, read the information below and form your

partitions in any way you'd like.

Adjusting the Size of a Partition

1. Click and hold the left mouse button on the blue

triangle under the partition bar.

2. Slide the triangle to the new position and release the

button.

You cannot expand the size of a partition over a

partition which already exists.

The new size of the current partition will be displayed under

the triangle.

Sliding a Partition within the Partitioning Bar

You will need to slide partitions to make room for a new

partition or to consolidate portions of unused space. Partitions

will only slide on unused space in the partitioning bar. They

will not slide over existing partitions.

1. Click and hold the selection button on the partition

you wish to move.

Using a Hard Disk 6-57

2. Still holding the button, slide the partition to where

you want it and release the mouse button.

If a partition is too small to conveniently click on, you

can also move left and right through the partitions by

using the left and right cursor keys, respectively.

Adding a New Partition

You cannot make a new partition over a partition which

already exists. If all of the space on your hard disk is in use (i.e.,

no unused space in the partitioning bar], you will first need to

make space for a new partition by making existing partitions

smaller (see "Adjusting the Size of a Partition"). Unused space

is shown as a gray block.

1. Slide existing partitions so you have a solid block of

unused space within the bar for your new partition.

2. Select the New Partition gadget.

The New Partition gadget will be highlighted.

3. Click on the unused portion of the partitioning bar

where you want your partition.

A new partition will fill the previously unused space.

The Partition Device Name text gadget will display

CHANGE_ME.

Renaming a Partition

1. In the partitioning bar, click on the partition you wish

to rename (making it the current partition).

2. Click in the Partition Device Name text gadget that

displays the name of the current partition.

3. Delete the existing name, type in the new name and

press Return.

6-58 Using a Hard Disk

Deleting a Partition

1. In the partitioning bar, click on the partition you wish

to delete (making it the current partition).

2. Select the Delete Partition gadget.

The selected partition will be deleted, and the leftmost

partition in the partitioning bar will now become the

selected partition.

Using HDToolbox's Default Setup for the Drive

HDToolbox contains a default setup if you decide not to form

your partitions manually: a single partition on 20 MB or

smaller drives, and two partitions of equal size on larger drives.

1. Select the Default Setup gadget.

The partitioning bar will form the appropriate default,

for example:

Cyl

= Unused

Partitioning Drive

SCSI flrfdress 6, LUN 8

= R partition

Cvl
234

= Current partition

!Delete PartitTonll |New Part it ion|| .Default Setup|| [Help]

jfldvanced Options! Partition Device Nane File System Fast File Systen
HURT

Bootable? Nts] Dk

Cancel

Using a Hard Disk 6-59

The first partition will be named QDHO: and the second

partition will be named QDH1:, where Q is the first

letter of the name of the drive manufacturer. You may

rename the partitions using the method described in

"Renaming Partitions".

Saving and Formatting Your New Partitions

When you are satisfied with your new partitions, you must

save them.

1. Select the Ok gadget.

You will be returned to the Hard Drive Preparation,

Partitioning and Formatting screen.

O2. Select the Save Changes to Drive gadget.

Your new partition information will be written to the

hard disk.

3. Wait ten seconds and reboot your system.

An icon will appear for each partition on the hard disk.

You must now format each partition to make it ready

for use.

4. Format the first new partition by clicking on the icon

and selecting the Format Disk item from the Icons

menu.

NOTE: If this is the first hard disk in the system, you

will need to install Workbench and Extras on one of the

partitions. See your Introducing the Amiga manual for

complete instructions.

5. Click on the first new partition. Select Rename from

the Icons menu and change the name of the partition

as desired.

Repeat steps 4 and 5 for each new partition.

6-60 Using a Hard Disk

Advanced Options with
Partitioning

Selecting the Advanced Options gadget on the Partitioning

screen provides you with control over more detailed features of

the hard disk environment.

Partitioning

Cyl
8

= Unused

Partitioning Drive

SCSI Hddress 6, LUN

= fl partition

Cyl
2342

= Current partition

Size:
6 Meg

[Delete Partition![Neu Partition)[Default Setup|| |Help I

fldvanced Options! Partition Device Nane File Systen: Fast File Systen

Start Cyl: I Z

End Cyl: I 35B

Total Cyl: I 555

Buffers:! 3S

MB 2.x

Bootable? [Yes]

Boot Priority: I 11

Change File Systen

for Partition

Rdd/Update

File Swstens

Ok

Cancel

This option was designed for advanced users who want more

precise control of their partitions. Advanced Options adds

more gadgets to the Partitioning screen:

(To change the following text gadgets, click in the gadget,

delete the existing number and type in the new value. Press

Return after each entry.)

Start Cyl: Displays the number of the first

cylinder of the selected partition.

This number can be any cylinder in

the current partition except for the

last cylinder, or any cylinder in the

unused area before the partition. The

Total Cyl number will be adjusted

accordingly.

Using a Hard Disk 6-61

~
End Cyl:

Total Cyl:

Buffers:

~

Bootable?

~

Displays the number of the last

cylinder of the selected partition.

This number can be any cylinder in

the partition except for the first

cylinder or any cylinder in the

unused area after the partition. The

Total Cyl number will be adjusted

accordingly.

Displays the total number of

cylinders of the selected partition.

The End Cyl number will be

adjusted accordingly.

Displays the number of sector cache

buffers being used in the selected

partition. Buffers improve disk

access time but use 512 bytes of

memory per buffer. You can use as

many buffers as you wish provided

you have enough free memory. As a

general rule, you may want to use 30

to 50 buffers for every megabyte of

RAM in your system.

Displays whether or not the selected

partition can be used to boot the

system. The Bootable gadget

defaults to Yes for the first partition

and No for all other partitions.

Simply click in the gadget to toggle

between Yes and No.

To use a partition as the boot

partition, you will first need to

prepare it by performing the

following steps: Format the

partition; copy your Workbench to

the partition; and then reboot your

system. Then you can run

6-62 Using a Hard Disk

Boot Priority:

Change File

System for

Partition

Add/Update

File Systems

HDToolbox, return to the

Partitioning screen, and set

Bootable? to Yes.

Allows you to determine which

drive or partition will boot your

system. This will only apply to

bootable partitions. If you use a hard

drive partition to boot, you should

copy your Workbench into that

partition.

The value of Boot Priority can range

from 127 to -128. A large value has

higher priority than a lower value.

The Amiga's floppy disk drive (DFO:)

has a Boot Priority of 5.

Never set a partition's boot priority

above 5. It is suggested that you set

your boot partition's priority to 1

and any other bootable partition to a

priority of 0.

Takes you to the File System

Characteristics screen. This screen

will allow you to change the filing

system on the selected partition.

(For information on this screen, see

the "Modifying File Systems"

section on page 6-86.)

Takes you to the File System

Maintenance screen. This screen

will allow you to add, delete, and

modify file systems. (For

information on this screen, see the

"File System Maintenance" section

on page 6-89.)

Using a Hard Disk 6-63

Preparing a New Hard Disk

When you feel you need an additional large amount of storage

space, you may purchase a new hard disk to mount to your

existing system. Once you have physically installed your new

hard disk according to the manufacturer's directions,

HDToolbox is used to configure your system with all of the

new hard disk's specifications.

Whenever you add a hard disk to your system, you must tell

your system what type of drive you added. HDToolbox

provides a list of possible drive types you may add from which

you can select. Occasionally, you may add a drive type that is

not on the list. In this case, HDToolbox provides a separate

1 screen for you to enter the specifications for that particular

drive. These specifications generally come with the drive you

purchased and include information on the manufacturer, size,

and set up of that particular drive.

NOTE: Consult your installation manual for more information

on installing and using your new SCSI device. The following is

a description of using the HDToolbox software and is not a

complete installation guide.

If you are replacing the main drive (the one that contains

Workbench), you will need to boot your system with your

Install disk. Do not boot from the hard disk. Then double-click

on the Install icon and follow the steps below.

To prepare your new hard drive:

1. Double-click on the HDToolbox icon.

You will see the Hard Drive Preparation, Partitioning

and Formatting screen. In the scroll gadget, the new

hard disk you installed is called Unknown.

6-64 Using a Hard Disk

2. Select the drive called Unknown.

This will highlight it.

3. Select the Change Drive Type gadget

Hard Drive Preparation

Interface flddress LUN

Modify Bad Block

Lou-level Fomat

Part it ionin and Formatting - Version

Hard Drives in Systen

Status Drive Type

List

Driv

1

J Help

Partition

Verify Data

Save Cttaiws

Exit

1.2

Drive

on Drive

nn

1

1

1

IB

1

You are now in the Set Drive Type screen. This is

where you will tell HDToolbox which type of hard disk

you just added. This screen provides you with a scroll

list containing a few different types of hard disks

available on the market.

Using a Hard Disk 6-65

~
Set Drive Type -■"■■■■

~

Select a drive type

Drive

lUflNTUn

lUflNTUM

1INSCRIB

Types: , XT

P48S 948-48-94xx

P48S 94B-4B-94xx
H8425 - SCSI

7.9

6.3
3B2B

Define neu
drive type drive type

Delete old

~

4. Select the SCSI gadget or the XT gadget, depending

on which type of hard disk you installed.

NOTE: Normally, you will select SCSI. XT is only

applicable to A590 users. If you select the XT gadget, a

new list of XT-type drives will appear.

5. Click on the drive type you installed if it is shown in

the list.

6. If the appropriate drive type is not listed, select the

Define New Drive Type gadget.

You can now type in the drive's specifications or you

can have the system try to read the drive's

specifications directly off the disk by selecting the

Read Configuration from Drive gadget. Remember to

6-66 Using a Hard Disk

click on the drive type you just created. When the

correct drive specifications have been read in, select

the OK gadget. You will be returned to the Set Drive

Type screen, The newly-defined drive type will appear

on the list. Click on it before proceeding.

NOTE: You may decide to set the configuration of the

drive manually rather than having the computer read

it off the drive. To do this, consult the following

section "Changing the Drive Type," and then return to

this section to complete the preparation.

7. Select the OK gadget on the Set Drive Type screen.

A warning requester will appear.

Set Drive Type if*

Select a drive type

Drive Ty pes: XT

pURHTUM P48S 948-48-94xx 7,9 Jt

flre you sure you uant to change
the drive type for the current drive?

(fill old partitions on the drive uill
be lost if you save these changes.)

Continue |

Define neu
drive type

Cancel

Edit old
drive type

Delete old
drive type

l

1 Ok

(Cancel

Using a Hard Disk 6-67

~ 8. Select Continue on the requester to save your

changes.

You are returned to the Hard Drive Preparation,

Partitioning and Formatting screen.

The next step m hard disk preparation is low-level

formatting.

Make sure that the correct drive {the one labeled

"Unknown") is selected (and thus highlighted) in the

scroll gadget.

9. Select the Low-level Format Drive gadget.

~
Hard Drive Preparation, Partitioning and Fornatting - Version 1.2

Interface Rddress LUN

Hard Drives in Systen

Status Drive Type

Change Drive Type Partition Drive

Modify Bad Block List Help Verify Data on Drive

: Save . t?

Exit

6-68 Using a Hard Disk

A requester will appear:

Hard Drive Preparation, Partitioning and Formatting - Version 1.2

Hard Drives in Systen

Interface Rddress LUN Status Drive Type

fire you sure vou uant to Lou-level fornat this drive?

Warning! Lou level fornat will destroy everything

stored on the drive!

iDon t Lou Level Fornat

Exit

If you are installing a new drive, you don't need to

worry about losing any information, lust make sure

the correct drive is highlighted in the list.

You will receive a warning requester.

10. Select the Low Level Format Disk gadget in the

requester.

You will receive a warning requester telling you that

all information on that drive will be erased.

11. Select the Continue gadget in the requester.

The next step in preparing a new hard disk for use is

verifying the disk for bad blocks.

Using a Hard Disk 6-69

~

~

12. Select the Verify Data on Drive gadget

Hard Drive Preparation, Partitioning and Formatting - Version 1,2

Interface Rddress LUH

Hard Drives in Systen

Status Drive Type

Change Drive Type Partition Drive

Modify Bad Block List Help

Lou-Level Fomat Drive ■Saw? Chafes to km

Exit

A requester will appear:

Hard Drive Preparation, Partitioning and Formatting - Version 1.2

Interface Rddress LUtl

Hard Drives in Systen

Status Drive Type

Change Drivl
This operation can take a long tine.

in Drive

Modify Bad Bl
(No data on the drive will be changed)

Contin up
on Drive

Low-level Fornat Drive to Srive

Exit

6-70 Using a Hard Disk

13. Select Continue on the requester.

If HDToolbox reports bad blocks they will

automatically be recorded in the Bad Block List—a

separate screen on HDToolbox. If you have received a

list of bad blocks from the hard disk manufacturer, you

will need to record them in a different screen on

HDToolbox when you complete these preparation

steps. (For information on recording bad blocks, see the

section entitled "Locating Bad Blocks" on page 6-75.)

14. Select the OK gadget.

You will be returned to the Hard Drive Preparation,

Partitioning and Formatting screen.

15. Select the Partition Drive gadget.

You will be taken to the Partitioning screen, where you

should partition the new hard disk however you would

like. For complete instructions on partitioning, see

"Partitioning" on page 6-53. Then return to step 16, to

complete hard drive installation.

16. In the Hard Drive Preparation, Partitioning and

Formatting screen, select the Save Changes to Drive

gadget.

Using a Hard Disk 6-71

Hard Drive Preparation, Partitioning and Formatting - Version 1,2

Interface flddress LUN

Hard Drives in Systen

Status Drive Type

Change Drive Type Partition Drive

Modify Bad Block List Help Verify Data on Drive

Lou-level Fornat Drive

Exit

This gadget saves all changes made to the hard disk

configuration and overwrites the previous

configuration.

You will receive a warning requester:

Hard Drive Preparation, Partitioning and Formatting - Version 1.2 [fa

Interface flddress LUN

Hard Drives in Systen

Status Drive Type

■i n will

Change Dri

Conn it to Changes

data in the following partitions;
Drive

Modify Bad on Drive

Lou-level Ft to Drive

Exit

17. Select Continue on the requester to save your

changes.

6-72 Using a Hard Disk

After saving a change or writing to the disk, wait

at least ten seconds before turning off the power

to the computer or rebooting.

18. Wait ten seconds and reboot your system.

An icon will appear for each partition on the hard disk.

19. Format the first partition by clicking on its icon and

selecting the Format Disk item from the Icons menu.

NOTE: If this is the first hard disk in the system, you

will need to install Workbench and Extras on one of

the partitions. See your Introducing the Amiga

manual for complete instructions.

The next step renames the partitions.

20. Click on the first partition. Select Rename from the

Icons menu and change the name of the partition as

desired.

Repeat steps 19 and 20 for each partition.

Your hard disk is now ready for use.

Low Level Formatting

After you've added a new drive, you must low-level format it to

prepare it for operation. A low-level format must be done once

to prepare the drive for use with your Amiga. This is not the

same as the FORMAT command, which must also be

performed on each partition.

Using a Hard Disk 6-73

With HDToolbox, low level formatting is an easy one-step

procedure that is done within the Hard Drive Preparation,

Partitioning and Formatting screen.

To low level format a hard disk:

1. Select the drive you wish to low level format by

clicking on it in the scroll area.

The selecting drive will be highlighted.

2. Select the Low-level Format Drive gadget.

Hard Drive Preparation, Partitioning and Fornatting - Version 1.:

Interface flddress LUN

Hard Drives in Systen

Status Drive Type

Change Drive Type Partition Drive

Modify Bad Block List Help Verify Data on Drive

Saw Changes iU; Mug. |

Exit

6-74 Using a Hard Disk

A requester will appear:

Hard Drive Preparation, Partitioning and Formatting - Version 1.2

Interface Rddress LUH

Hard Drives in Systen

Status Drive Type

m Not Changed QUflNTliM P48S 948

fire you sure you uant to low-level fornat this drive?

Warning: Lou level fornat uill destroy everything

stored on the drive!

Don't Lou Level Fornat

Exit

Select the Low Level Format Disk gadget in the

requester.

At this point, you will receive a warning requester

telling you that all information on that drive will be

erased.

3. Select the Continue gadget on the requester.

This step may take as little as a few seconds or as much

as several minutes, depending on the type of hard drive

you are using.

4. Select the Save Changes to Drive gadget.

The low-level format is complete.

Using a Hard Disk 6-75

Locating Bad Blocks

A bad block is a portion of the hard disk which can no longer be

read. Just as floppy disks can develop errors and corruption

from being used over and over again, hard disks can also

develop errors. Hard disk errors, however, occur much less

frequently.

If you consistently find read/write errors on backups, it may be

because of bad blocks. Other symptoms of bad blocks include

frequent hardware and software failures and requesters. If

you've added a new hard disk and low level formatted it, you

should locate bad blocks before you begin to enter data.

With HDToolbox you can easily check your hard disk(s) for

errors. The program will search your hard disk[s) and report a

list of blocks which have developed errors. These locations are

then recorded on a separate screen known as the Bad Block

screen.

The computer will use the recorded blocks on the Bad Block

List (located on a separate screen) during initialization to avoid

using these areas. If HDToolbox finds errors in areas which

contain data, it will re-write the data to a different area on the

hard disk, if possible.

It is not unusual for a new hard disk to have a few bad blocks

before it is even used. Often, the company which made the

hard disk will provide you with a list of bad blocks. You must

enter these locations in the Bad Block list.

Just as regular backups are necessary for proper hard disk

maintenance, occasional data verification is also necessary.

Depending on how often you use your hard disk, you may want

to check the integrity of your hard disk from as often as once a

week to once a month.

6-76 Using a Hard Disk

To check a hard disk for bad blocks, start from the Hard Disk

Preparation, Partitioning and Formatting screen:

1. Select the hard disk you wish to verify hy clicking on

its name in the scrolling list

The selected drive will be highlighted.

2. Select the Verify Data on Drive gadget.

You will receive a warning requester.

Hard Driue Preparation, Partitioning and Formatting - Version 1.2 J3]

Interface Rddress LUN

Hard Drives in Systen

Status Drive Type

I
4-

Change Driv

Hodify Bad Bl

This operation can take a long tine,
fire you certain you wish to continue?

(No data on the drive uill be changed)

Continup

in Drive

;a on Drive

Lou-level Fornat Dnye

Exit

Verifying the data on a typical 40MB hard disk can take

as little as a few seconds or as much as several minutes,

depending on the type of hard drive you are using.

Using a Hard Disk 6-77

3. Select Continue to begin the process.

If HDToolbox finds no errors, you will receive the

following requester:

Hard Drive Preparation, Partitioning and Formatting - Version 1,2

Hard Drives in Systen

Interface flddress LUN Status Drive Type

Change D

Modify Bad~B1-:-: !

Lou-level Fornat Drive]

Exit

4. Select Continue and the verify is complete.

If HDToolbox finds errors, you will receive a requester

listing the bad blocks with their locations on the hard

disk. These bad blocks will be recorded on the Bad Block

List. To view this list, or to add bad blocks supplied to

you by the manufacturer, read the following section,

"Adding a Bad Block to the Bad Block List".

6-78 Using a Hard Disk

Adding a Bad Block to the Bad Block List

If the hard disk manufacturer has provided you with a list of

bad blocks you must enter them into HDToolbox on the Bad

Blocks screen. You may also choose to look at this screen to

make sure the bad blocks which were found by the Verify Data

on Drive function were recorded.

The Bad Blocks screen keeps a list of any blocks on the hard

disk that might develop read/write errors. The computer uses

this list to avoid using these areas.

To see the Bad Blocks List, start from the Hard Drive

Preparation, Partitioning and Formatting screen. To add a bad

block to the list:

1. Select the Modify Bad Block List gadget.

You will be taken to the Bad Blocks screen.

Bad Blocks [tPi

Bad Block Entry

(approximate)
Cylinder Head Bytes fron Index Sector

L
Bad Blocks napped out by drive! 6

| Rdd Bad Block

: E»*l»t# Barf Block'

Ok

Cancel

Using a Hard Disk 6-79

~

~

Notice the scroll gadget in the center of the screen. If you

have not previously located any bad areas on your hard

disk, the gadget will be empty. If bad blocks were found,

they will be listed here.

The list shows the location of the bad blocks by cylinder,

head, bytes from index and sector. Note that the system

will list a range for the approximate number of Bytes from

Index, and you will only be able to list one error per sector.

Once a sector has an error, the entire sector will be marked

as bad.

Most SCSI hard disks handle bad block errors internally—

they locate bad blocks themselves and avoid using these

areas without any user intervention. When you use the

Verify Data on Drive function, it locates bad blocks which

the hard disk itself did not find. At the bottom of the screen

is an informational message called Bad Blocks mapped out

by drive: which displays the number of bad blocks the hard

disk located internally.

2. Select the Add Bad Block gadget.

A requester will open.

Sad Blocks

Bad Block Entry

«
Cylinder Head By<

Bad Blocks napped

Enter Bad Block

Cylinder

Head

Sector Bytes fron Index

^^BL^^H or ^^K^^H

Ok

out by drive! 8

lancel

I

IB

Rdd Bad Block

Dk

Cancel

6-80 Using a Hard Disk

In this requester, enter the Cylinder, Head, Bytes from

Index or Sector of the block. To enter this information,

click on each text gadget and enter the proper number.

Press Return after each entry. Select OK to add this

block to the list or Cancel. You will be returned to the

Bad Blocks screen.

To delete a bad block from the list, click on it and select

the Delete Bad Block gadget.

3. Select OK on the Bad Blocks screen to save your

changes.

You will be returned to the Hard Disk Preparation,

Partitioning and Formatting screen.

4. Select the Save Changes to Drive gadget.

Changing the Drive Type

In order for your system to function properly with a hard disk,

it must be told which type of hard disk it is using. The

configuration of the hard disk that came with your computer is

already set. You will not need to change anything.

When you add a new hard disk, you supply your system with

the hard disk's specifications through HDTooIbox. HDTooIbox

can read the specifications directly from the new hard disk.

You may, however, decide to type them in manually from

the documentation that came with the hard disk. These

specifications include the manufacturer's name, the model

number, the storage size, and many other technical

specifications. The use of Read Configuration from Drive

is recommended.

HDTooIbox can also be used to change the drive type if you've

replaced a drive, or to change specifications if you need to edit

any specifications of an existing hard drive type.

Using a Hard Disk 6-81

*
To change or add a new drive type, start from the Hard Drive

Preparation, Partitioning and Formatting screen:

1. Select the Change Drive Type gadget.

This gadget takes you to the Set Drive Type screen.

Set Drive Type I^^^^^Hi^^^^^HHIBH^^^^^^HHHI

~

Select a drive

Drive

1UHNTUH
1URNTUM

1INSCRIB

Types:

type

I XT

P4BS 94B-48-94XX

P4BS 948-4B-94xx
H8425 - SCSI

7.9

6,3
3826

Define neu
drive type

Edit <Ud
drive type

Dele-fce o Id
dflve type I

I

Ok

Cancel

This screen lists the types of drives whose

specifications are stored on the disk. A sample list of

drives which you might add to your computer is

provided for your convenience. If the drive type you've

added is not on the list proceed to the following section,

"Defining a New Drive Type".

2. If you've added a drive type which is on the list, select

the correct drive then select OK.

You will be returned to the Hard Drive Preparation,

Partitioning and Formatting screen.

3. Select the Save Changes to Drive gadget.

4. Wait ten seconds and reboot.

6-82 Using a Hard Disk

Editing a Drive Type or Defining a New Drive Type

Start from the Hard Drive Partitioning and Formatting screen:

1, Select the Change Drive Type gadget

This gadget takes you to the Set Drive Type screen. This

screen lists the types of drives whose specifications are

stored on the disk.

2. If you are adding a new drive type, select the Define

New Drive Type gadget.

or

If you are editing an old drive type, click on the drive

type you will edit in the scrolling list, then select the

Edit Old Drive Type gadget.

Either of these selections will take you to the

Define/Edit Drive Type screen.

Define/Edit Drive Type

Define a Neu Drive Type

Fitenane: | drive definitions

Manufacturers nane: I

Drive Nane! [_

Drive Revision: F

Read Configuration
Fron Drive

Cylinders:

Heads:

Blocks per Track:

Blocks per Cylinder:

628

4

1/

6H

Reduced Write Current

Cylinder:

Write Preconp

Cylinder:

Size: 21846K (28 Meg)

Supports reselection?

Park head where (cylinder):

Yes

Ok

Cancel

Using a Hard Disk 6-83

NOTE: When creating a new drive type with the same name as

an existing drive type, the computer will only use the version

with the most recent date. In order to save the correct change,

make sure that your system clock shows the current date and

time.

If you wish, you may select the Read Configuration from Drive

gadget and HDToolbox will automatically record the drive

specifications. Then select the OK gadget to return to the main

screen.

If you wish to record the specifications manually, proceed with

the following steps. Use the specifications supplied by your

hard drive manufacturer to enter the required information

explained below.

When you are entering the specifications of a new drive type

you will need to click on the appropriate text gadget, delete the

existing information, type the correct information, and press

Return. Always press Return after typing in new information.

The specifications on the Define/Edit Drive Type screen are as

follows:

Filename: The file called drive definitions is

located on your hard disk and

contains all of the drive

specifications you have saved. This

is the list of sample drives you saw

on the Change Drive Type screen.

Since you can save multiple drive

types and their specifications in this

file, you do not need to change this

filename.

Manufacturer's Displays the name of the drive

name: manufacturer, using up to eight

characters.

6-84 Using a Hard Disk

Drive Name:

Drive

Revision:

Cylinders:

Heads:

Reduced Write

Current

Cylinder:

Write Precomp

Cylinder:

Displays the name of the drive,

using up to sixteen characters.

Displays the number of the drive

revision, using up to four characters.

Displays the number of drive

cylinders.

Displays the number of drive heads.

Blocks per

Track:

Blocks per

Cylinder:

Size:

Displays the number of blocks (512

bytes per block) on each track. Some

manufacturers may list this as

"sectors".

Displays the number of blocks in

each cylinder. This will normally be

the number of heads multiplied by

the number of blocks per track.

Displays the amount of memory

space on the drive in kilobytes (K) or

megabytes (MB).

After you have entered information

into the Cylinders:, Heads:, and

Blocks per Track: text gadgets and

pressed Return, the value listed after

Size will change. When you are

finished, compare the listed size to

the drive specification, to ensure

that it is close to the value given by

the drive manufacturer.

Not used with SCSI devices.

Not used with SCSI devices.

Using a Hard Disk 6-85

~

~

Supports

reselection?

Park head

where (cylinder):

Ok

Cancel

Refer to the manufacturer's

documentation to determine

whether or not a SCSI device

supports reselection. Click on this

gadget to change it.

Displays the number of the cylinder

recommended by the manufacturer.

This function is not needed with

drives that automatically park the

drive head. Refer to the

manufacturer's documentation. If

no value is given by the

manufacturer, use the number of the

last cylinder.

Saves the changes to this screen and

returns you to the Change Drive

Type screen.

Returns you to the Change Drive

Type screen without saving your

changes

When you have finished entering the specifications:

1. Select the Ok gadget on the Define/Edit Drive Type

screen.

You will be returned to the Set Drive Type screen.

2. Click on the newly defined drive in the drive type list.

3. Select the Ok gadget on the Set Drive Type screen.

This saves your changes and returns you to the Hard

Drive Preparation, Partitioning and Formatting screen.

4. Select the Save Changes to Drive gadget.

5. Wait ten seconds and reboot.

6-86 Using a Hard Disk

Modifying File Systems

NOTE: This function is intended for advanced users.

A file system is software that controls how data is organized on

a disk. Amiga systems use the FastFileSystem (FFS), which is

an efficient file system saving time and hard disk space.

You may decide to switch to a different filing system—perhaps

to an upgrade in AmigaDOS or to a file system you've produced

yourself. HDToolbox allows you to modify the list of available

filing systems by adding new file systems, deleting file

systems, and modifying existing file systems.

Changing the filesystem of a partition that contains

data is likely to make the data inaccessible.

Advanced users may choose to use the File System

Characteristics screen to modify a partition's file system. Most

users can safely ignore this screen.

To modify a partition's file system, start from the Hard Disk

Preparation, Partitioning and Formatting screen:

1. Select the Partition Drive gadget.

The Partitioning screen will be displayed.

2. Select the Advanced Options gadget.

The Advanced Options screen will be displayed. You

must next make the partition whose file system you

wish to modify the current partition. To do this, click

on that partition in the partitioning bar.

3. Select the Change File System for Partition gadget.

The File System Characteristics screen will be

displayed. At the top of the screen, it shows the name of

the selected partition.

Using a Hard Disk 6-87

~

File Systen Characteristics

Partition HBJ.x

Jl

Custon File Systen

Identifier =

Mask =

MaxTran; fer =

Old File Systen]

Reserved Partition

flutonount this part it ion? [Yes]

y>;R'4i'5:5Hr Reserved blocks at

8xfffffffc| beqinninq: 1 I 1

flxffffff end: 1 H 1

Use custon boot code?] No |

Nunber of custon boot blocks?QTTj

Ok

Cancel

You must next choose the file system for the selected partition

by clicking on one of the following gadgets:

Fast File System

Old File System

This is the default filing system.

This filing system trades speed

for recoverability. If part of the

disk were to become unreadable,

it might be easier to recover

information stored with this

filing system.

6-88 Using a Hard Disk

Custom File System This allows you to install your

own filing system.

Reserved Partition This will allow you to reserve an

area on the disk without a

partition. This area can be set

aside for some special use, such

as for a UNIX operating system.

After you have chosen a file system you must set the values for

the following:

(To change any of the following values, click on the box, delete

the existing information, type the new number and press

Return. Hex numbers must begin with Ox.)

Identifier = Displays the hex number (code)

that tells AmigaDOS what filing

system is being used. The

Identifier can only be modified

when using a Custom File

System.

Mask ■ Displays the hex number that

defines which areas of memory

can be used with Direct Memory

Access (DMA). Mask is available

when using Fast File System and

Custom File System.

MaxTransfer = Displays the hex number that

determines the maximum

number of bytes to be moved

during each DMA transfer.

MaxTransfer is only available

when using Fast File System and

Custom File System.

Using a Hard Disk 6-89

n Reserved blocks Displays the number of blocks

at beginning: reserved at the beginning of the

selected partition for DOS usage.

This value defaults to 2, and

normally should not be set to

less than 2.

Reserved blocks Displays the number of blocks

at end: reserved at the end of the

selected partition, for DOS

usage. This value defaults to 0.

To return to the Partitioning screen without saving your

changes, select the Cancel gadget.

To save your new file system characteristics:

1. Select the Ok gadget.

You will be returned to the Partitioning screen.

2. Select the Ok gadget in the Partitioning screen.

You will be returned to the Hard Drive Preparation,

Partitioning and Formatting screen.

3. Select the Save Changes to Drive gadget.

File System Maintenance

The File System Maintenance screen allows you to modify the

list of available filing systems. This section tells you how to:

• Add a new file system

• Delete a file system

• Modify an existing file system

6-90 Using a Hard Disk

To use this screen to perform any of the above, you must

start from the Hard Disk Preparation, Partitioning and

Formatting screen:

1. Select the Partitioning gadget.

The Partitioning screen will be displayed.

2. Select the Advanced Options gadget.

The Advanced Options will be displayed. You must next

make the partition whose file system you wish to

modify the current partition. To do this, click on that

partition in the partitioning bar.

3. Select the Add/Update File System for Partition

gadget.

You will be taken to the File System Maintenance

screen.

File Systen Haintainance

Identifier

fldd Neu File

File

Version

Systen]

Systens

Size

Delete

on SCSI flddress o,

File Systen Nane

File Systen | Update

LUN

File

6

Systen

r

1
4*

Ok

Cancel

■a

Using a Hard Disk 6-91

At the top of the screen, the selected drive is displayed by

address and LUN. Below, in the scrolling list each file system

stored on that drive is displayed, showing its Identifier hex

number, Version number, Size in bytes, and File System Name.

To Add a New File System

Start from the File System Maintenance screen:

1. Select the Add New File System gadget.

A small window will appear.

File Systen ttaintatnance

File Sustms on SCSI Rddress 6. LUN 8

2. Delete the contents of the first text gadget and type

in the full pathname to the location of the new file

system. Press Return.

3. Click on the second text gadget, delete the existing hex

number and type the hex number of the DosType of the

new file system.

The system defaults to FastFileSystem with DosType

0x44f5301.

4. Click on the third text gadget and type in the version

number of the new file system.

6-92 Using a Hard Disk

5. Select the Ok gadget to retain your changes.

You will be returned to the File System Maintenance

screen.

6. Select the Ok gadget in the File System Maintenance

screen.

You will be returned to the Partitioning screen.

7. Select the Ok gadget in the Partitioning screen.

You will be returned to the Hard Drive Preparation,

Partitioning and Formatting screen.

8. Select the Save Changes to Drive gadget.

To Delete a File System

Start from the File System Maintenance screen:

1. Select the file system you wish to delete.

The selected file system is highlighted. To select a

different file system, click on the desired file system.

2. Select the Delete File System gadget

The selected file system will disappear.

3. Select the Ok gadget in the File System Maintenance

screen.

You will be returned to the Partitioning screen.

4. Select the Ok gadget in the Partitioning screen.

You will be returned to the Hard Drive Preparation,

Partitioning and Formatting screen.

5. Select the Save Changes to Drive gadget.

Using a Hard Disk 6-93

To Update an Existing File System

Start from the File System Maintenance screen:

I. Select the Update File System gadget.

A small window will appear.

File Systen Raintainance M

2. Delete the contents of the boxes which must change

and type the new information. Press Return.

(See "To Add a New File System" on page 6-91 for more

information on these specifications.)

3. Select the Ok gadget to retain your changes.

You will be returned to the File System Maintenance

screen.

4. Select the Ok gadget in the File System Maintenance screen.

You will be returned to the Partitioning screen.

5. Select the Ok gadget in the Partitioning screen.

You will be returned to the Hard Drive Preparation,

Partitioning and Formatting screen.

6. Select the Save Changes to Drive gadget.

Chapter 7. Using AmigaDOS

This chapter introduces you to the basic concepts of

AmigaDOS, such as

• the hierarchical file system

• how to use the Shell and some basic AmigaDOS

commands

• the features of the Shell

• how to run programs through the Shell

• how to use and edit scripts, including the Startup-

sequence

• how to make the most of your system if you only have

one floppy drive

For full information on the AmigaDOS commands, see

Chapter 8, "AmigaDOS Reference."

Introduction to AmigaDOS

AmigaDOS is the Amiga Disk Operating System. A disk

operating system is software that controls the basic functions

of the Amiga, such as:

• providing a filing system which organizes the data

(information) programs use and produce.

• handling the storage and retrieval of information from

floppy and hard disks,

• letting you run more than one program at a time

(multitasking).

• providing an interface to peripheral devices like printers

and modems.

Even when you are using application programs like word

processors, paint packages, or music programs, AmigaDOS

is in control, making sure everything is available when you

need it.

7-2 Using AmigaDOS

You can communicate with the Amiga through typed

AmigaDOS commands. Some of these commands parallel

Workbench operations, such as COPY, RENAME, and

FORMAT. There are also advanced commands that allow you

to create scripts [text files) for performing repetitive tasks,

repair corrupt disks, monitor the use of memory, and perform

other tasks unavailable through the Workbench.

The commands are entered through a special window, known

as a Shell window. You can start a Shell by opening the Shell

icon in the Workbench2.0 disk window or by entering the

NEWSHELL command, either from within a Shell window or

in the Execute Command requester.

Before you can enter commands, you need to understand how

AmigaDOS stores information and how to reference the files

and devices used by AmigaDOS. This is explained in the

following section, "The File System."

The File System

AmigaDOS stores information on devices which are organized

according to a system of directories, subdirectories, and files.

This is known as a file system. Directories and files are

arranged in a hierarchical system often referred to as a tree

since one way to sketch out a directory structure is with a

branching diagram that looks like a family tree. The branches

are directories, any of which can include other directories.

At the ends of the branches are the files.

Using AmigaDOS 7-3

~
Device

Directory

File

File

~

Directory

Directory

File

The different components of the file system are explained in

this section.

^

Devices

You can store information on floppy disks, hard disks, or

magnetic tape. To gain access to a file on a particular disk, you

can refer to the disk by its volume name. The volume name is a

name given to a disk, such as WorkbenchLO, Extras2.0, or

Empty. When you refer to a disk by volume name, the system

will search all the available drives for the disk. If it cannot find

a disk of that name, a requester will appear asking you to insert

the disk. If there is more than one volume with the same name,

you will have to refer to them by device names, or the system

will randomly choose which disk to access.

7-4 Using AmigaDOS

Another way to refer to disks is by device name. A device name

refers to a particular device, such as a floppy disk drive or hard

disk partition. For instance, DFO: is the device name of the

Amiga's internal disk drive. If you save a file to DFO:, it will be

saved on whichever disk is inserted in DFO: at that time.

The Ram Disk represents another type of device, RAM:. The

RAM: device is a portion of the Amiga's internal memory that

can be used as a storage device. However, all information in

RAM: is lost if the Amiga is rebooted or powered off.

Device and volume names must be followed by a colon (:).

Peripheral Devices

Peripheral devices can also be accessed through AmigaDOS.

AmigaDOS has assigned standard names for devices that are

attached to the various ports as well as to the windows that

appear on the screen. These devices are typically used for

output, such as when you want to copy a file to the printer or

send information through a modem. The standard device

names are listed below:

PAR: Represents any device, usually a printer, that

is connected to the parallel port. If you copy a

file to PAR:, it will be sent to the device

attached to the parallel port.

SER: Represents any device connected to the serial

port, such as a printer or a modem.

PRT: Represents the printer selected with the

Printer editor in the Prefs drawer.

CON: Represents a console, which uses a window to

accept typed input and display output. The

Shell window is one kind of console window.

Represents the current window.

NIL: Represents a dummy device commonly used

to prevent output from appearing on the

screen. All output sent to NIL: is discarded.

Using AmigaDOS 7-5

~

Directories

Directories allow you to group and classify related files

together, making it easier to find and work with them. For

example, you can use two different directories to separate

letters from spreadsheets or to keep files belonging to one

person distinct from those belonging to another.

Each file on a disk is located in a directory. An empty,

formatted disk contains one directory, the root directory. If you

create a file on an empty disk, that file resides in the root

directory. (If the file had an icon attached to it, the icon would

appear in the disk window.) Any other directories you create

reside in the root directory.

Directories can contain files as well as other directories, called

subdirectories. Subdirectories are like drawers within drawers.

They are just one more way of organizing information.

For instance, suppose you had a disk named ArtDisk and you

needed to store animated files, screen shots, digitized art, and

paint files. You could create four directories: Animated,

Screens, Digitized, and Paintings. If you have several paint files

that are of animals and several that are of nature scenes, you

Directories are the

AmigaDOS version of

the Workbench draw

er*..

7-6 Using AmigaDOS

could create two subdirectories within the Paintings directory:

Animals and Nature. Your disk organization might look like

this:

ArtDisk

Animated Screens Digitized Paintings

Animals Nature

The whole purpose of the directory structure is to organize

your files.

Files

A file, the basic unit of storage on a computer, is an organized

collection of information referred to by a name. All the

programs you run and any permanent data that a program uses

or produces are files.

On the Workbench, files arc represented by tool and project

icons. Tool icons represent program files. This includes

application programs, such as word processors or CAD

programs, as well as the AmigaDOS commands. Project icons

represent data files. Data files contain the information created

or used by a program, such as text, graphic, and spreadsheet

files.

Using AmigaDOS 7-7

^ .info Files

Another type of file used by the Amiga is a info file

(pronounced "dot info"). The .info files correspond to the icons

that appear on the Workbench screen. Every file or directory

that has an icon also has a corresponding .info file. For

instance, the Workbench2.0 disk contains two files for the

Clock program: one called Clock which contains the Clock

program, and another called Clock.info which contains the

data needed to display the Clock icon.

In addition to storing the graphics and position data for the

icon image, a .info file also contains any Default Tool or Tool

Type information entered into the icon's Information window.

When you are working through the Shell, AmigaDOS does not

automatically associate .info files with the corresponding files

or directories. For instance, if you copy the Clock file from the

Utilities directory to the System directory (using the COPY

command], the Clock.info file will not be copied the way it

would if you had dragged the icon from one drawer to another.

If you want the Clock icon to appear in the System drawer, you

have to copy the Clock.info file as well.

If you copy .info files in order to change the icon images, be

sure you copy an icon of the same type as the item it

represents: Tool, Project, Drawer, Disk or Trashcan. If the

icon's type does not match the type of file it represents, you

may have problems when you try to open the icon from the

Workbench. (An icon's type is displayed in the icon's

Information window. You can change an icon's type with

-— the IconEdit program.)

NOTE: You cannot delete disk icons. (A disk.info file

corresponds to a disk icon.) If you delete the disk.info file, a

default disk icon will automatically replace the previous icon.

7-8 Using AmigaDOS

Paths

To specify a file (for example, to copy it or rename it) you must

specify the complete path that leads to that file along with the

name of the file. The path includes:

• The volume or device name. A volume name refers to a

specific disk, such as Workbench2.0:. A device name is

used as a general reference to the disk in a device at that

time, such as DFO:.

• All directories and subdirectories that contain the file.

• The filename.

For instance, the path to the file Readme in subdirectory

Fractals, directory Demos, on the disk called MyDisk in drive

DFO: would be:

DFO:Demos/Fractals/Readme

in

MyDisk:Demos/Fractals/Readme

The path starts at the volume level and moves down. The first

element of the path is always the device or volume name (to

the left of the colon), followed by the root directory (the colon),

then the names of any directories and subdirectories (separated

by slashes), and finally the filename. This gives the exact

location of the file.

Using AmigaDOS 7-9

Naming Files and Directories

File and directory names can be up to 30 characters long and

can contain capital letters and any punctuation marks that do

not have special meanings. You cannot use a colon (:),

semicolon (;), asterisk |*), slash (/), question mark (?), back

apostrophe ['}, number or pound sign (#), or a percent sign (%).

(These special characters are explained on page 7-29}.

Any capitalization you use in a filename will be preserved, but

AmigaDOS is case indifferent. This means that it will

recognize the name by the characters, not by the case — TextFile

is the same as textfile.

While you can insert spaces in names, you should avoid them

when working through AmigaDOS. When using names with

spaces, the entire path containing the name must be enclosed

in double quotes. For instance, you must type:

"DF0:TextFileM

It is generally better to use an underscore {_) or period (.) as a

separator. Be especially careful not to put a space at the

beginning or end of a name. The space will be invisible when

the name is displayed, but AmigaDOS will not recognize the

name without the space included.

If there is a conflict between a name and a command keyword,

enclosing the name in quotes will ensure that it is interpreted

correctly. For instance, if you have a directory named Files, you

would have a conflict with the LIST FILES command which lists

only the files in a directory excluding subdirectories. To get

around this, you would have to type:

LIST "Files"

You can have files with the same name so long as they are in

different directories.

A keyword is a special

word recognized by

an AmigaDOS com

mand to identify an

argument or specify

an option

7-10 Using AmigaDOS

Quick Review

A device refers to a physical device like a disk drive

or printer or a software device, like the Ram Disk or

a window.

A volume is another term for a floppy disk or hard

disk partition.

You can refer to disks by volume name, such as

MyDisk:, or a device name, such as DFO:. They can

be used interchangeably, but with either you must

always include the colon {:) at the end.

Directories are equivalent to Workbench drawers.

The root directory is at the top of the filing system

for a given disk—the one that contains all the other

directories.

A subdirectory is a directory that is contained

within another directory (a drawer within a drawer.)

Files are named collections of data.

A path is the series of device, directory and

subdirectory names used to reach a particular file.

Using AmigaDOS 7-11

Basic AmigaDOS Commands

This section provides an introduction to using the Shell and

some of the most basic AmigaDOS commands. It is not meant

to give full instructions on each and every command, but it

should help you become familiar with the basic capabilities of

AmigaDOS.

Types of Commands

There are two types of AmigaDOS commands: disk-based and

Internal.

Every time a disk-based command is invoked, the command

must be loaded from the disk before it can be executed. For

hard disk users, this is a fast process as the commands are

always accessible to the system. However, for floppy disk

users, the command must be read from the Workbench disk

used to boot the system. If the disk is not currently in the disk

drive, it must be inserted so that the command can be read.

The Internal commands are built into the Shell, which is in

ROM. When an Internal command is invoked, the system can

access it immediately. It does not have to be read from disk.

Many of the AmigaDOS commands parallel menu items or

programs on the Workbench. However, it is often quicker and

more convenient to perform these actions through typed

commands. Some people simply prefer typing to using the

mouse.

7-12 Using AmigaDOS

The commands included in this section and their Workbench

counterparts, if any, are shown below:

1

Command

DIR

LIST

INFO

MAKEDIR

COPY

CD

PATH

TYPE

RENAME

DELETE

DATE

SETCLOCK

FORMAT

RELABEL

DISKCOPY

NEWSHELL

ENDSHELL

)JMl ,\ 1 1 1 !'-,'! i-J Wo V—1> 1111111

Function

Show files on disk

Show files, with sizes, etc.

Show information on all disks

Make a new directory

Copy a file or directory

Change the current directory

Add a directory to the search

path

Display the contents of a file

Rename a file or directory

Delete a file or directory

Set the correct date and time

Save the date and time

Format a disk

Rename a disk

Copy a disk

Open a new Shell window

Close a Shell window

11U3

Workbench

Counterpart

Show All Files

View By Name

Title bars

New Drawer

Copy

Select another

window

More

Rename

Delete

Time editor

Time editor

Format Disk

Rename

Copy

Open Shell

icon

Select Shell

window close

gadget

Using AmigaDOS 7-13

~

~

If you have a hard disk, you may want to reboot your machine

with the Workbench2.0 disk so that the information shown on

your screen matches the information given in this section. If

you proceed from hard disk, you may see slightly different

output displayed on your screen, but the commands will work

in essentially the same way.

All the AmigaDOS commands arc shown in capital letters to

distinguish them from the rest of the text. It is not necessary to

type them in capital letters, as the Amiga ignores case

differences in commands or filenames.

In the following examples, if the command results in output by

the Amiga, that output is shown on the line underneath the

command.

The Shell

You communicate with AmigaDOS through a Shell, a special

window which accepts text input. Shell windows can be

dragged, resized, overlapped, and zoomed just like other

Workbench windows. However, you cannot drag icons into

the Shell or use the mouse to perform any Workbench-style

operations in it (except for cutting and pasting which is

described in the "Features of the Shell" section).

You enter AmigaDOS commands at a text prompt, usually

ending in a > symbol. After typing in the command and any

other necessary information, such as filenames or command

options, press Return. The command is then executed by the

Amiga. The information typed after the prompt up until you

press Return is known as the command line.

7-14 Using AmigaDOS

1. Open a Shell window by opening the Shell icon in the

Workbench2.0 disk window.

Workbench Screen

: Workbench

o| Horkbench2.9 96* full, 39K free, 839K in

Ran Disk

Ml
□| flnigaShell

Systen HBStartup Monitors

i.sts:>

When you see a prompt, such as l.SYS:>, you are ready to start

entering commands. The Shell prompt may vary depending on

your system. In this chapter, the prompt is represented by a 1 >.

You must press Return at the end of each command line to

execute the command. After the command is executed, the

Shell prompt will reappear.

You can also execute AmigaDOS commands from the

Workbench without opening a Shell window. The Execute

Command item of the Workbench menu opens a requester that

lets you enter a command. (This is described in Chapter 2,

"Basic Operations.") You can enter and execute commands the

same way as in a Shell. However, the Shell is more convenient

when more than one command must be executed.

Using AmigaDOS 7-15

Getting Information About Disks

The next three steps illustrate the DIR, LIST and INFO

commands, three common commands used to get information

about the contents of your disks.

The DIR command generates a list of all the files and

directories included on a disk or within a directory.

2. Type DIR at the Shell prompt, and you should see the

following output:

1>DIR

Trashcan (dir)

Rexxc (dir)

Expansion (dir)

Libs (dir)

Monitors (dir)

WBStartup (dir)

Prefs (dir)

Fonts (dir)

C (dir)

Devs (dir)

5 (dir)

L (dir)

Utilities (dir)

System (dir)

.info

Expansion.info

Shell.info

System.info

Utilities.info

disk.info

Monitors.info

Preis.info

Trashcan.info

WBStartup.info

When a name is followed by (dir), it is a directory. Notice that

there is a directory for each drawer that appears in the

Workbench2.0 disk window. If you choose the Show All Files

menu item, drawer icons for all the other directories will

appear in the disk window.

7-16 Using AmigaDOS

The files with the .info suffix contain the data used to create

the icons for the corresponding drawer or file. For instance, the

Utilities.info file corresponds to the Utilities drawer icon. The

.info files also contain any information entered in the icon's

Information window, such as Tool Types or Default Tools.

3. You can see a list of files included in a directory by

typing DIR followed by the directory name. For

instance:

1> DIR Utilities

.info

Clock.info

Display.into

Exchange, info

More.info

Say.info

Clock

Display

Exchange

More

Say

This generates a list of the files, and any subdirectories, stored

in the Utilities directory on the Workbench^.0 disk. You can

also specify a disk or drive name with DIR to look at the

contents of a specific disk, such as DIR DFO: or DIR

Workbench2.0:.

If you want more information about the files and directories on

the disk, use the LIST command. You'll see the same

information generated by the DIR command, but the output

will also contain the sizes of files, the protection bits for both

files and directories, and the date and time the files or

directories were created. The possible protection bits for a file

or directory are listed below:

s the file is a script

p the file is pure

a the file has been archived

r the file is readable

w the file can be written to

e the file can be executed

d the file can be deleted

Using AmigaDOS 7-17

If a protection bit is set, the appropriate letter is shown. This

means that the bit is "on" and being used by the file. If the d bit

is set, the file is deletable. If the bit is not set, a dash (-) appears.

This means the bit is clear, or "off." If the d bit is clear, the file

is not deletable. For more information on protection bits, see

the "Protect" section of Chapter 8.

4. To list the contents of the Workbench2.0 disk, type:

1 > LIST

Trashcan.info

Trashcan

Rexxc

WBStartup.info

Utilities.info

System, info

1144

Dir

Dir

824

824

824

rwed

rwed

rwed

rwed

rwed

rwed

20-Jun-90

20-Jun-9fl

20-Jun-9O

20-Jun-90

Thursday

20-Jun-90

17:22:48

04:35:07

04:35:18

17:22:47

16:03:05

17:22:47

A shortened version of the typical output is shown

above.

Just as with the DIR command, you can specify a directory or

drive name after LIST, and the contents of that directory or

drive will be listed.

5. Type:

1 ■ LIST Utilities

Say. info

Say

More-info

More

Display.info

486

7124

454

11060

563

rwed

rwed

rwed

p-rwed

rwed

12-Jul-90

20-Jun-90

12-Jul-90

20-Jun-90

12-Jul-90

16:03:00

17:21:47

16:02:59

17:21:46

16:02:57

A shortened version of the output is shown.

You can also use LIST to get information about a specific file.

For instance:

6. Type:

1> LIST System/Setmap

setmap 4112 rwed- 20-Jun-90 17:21:41

7-18 Using AmigaDOS

To get more general information about your system, you can

use the INFO command. INFO displays a list of all the disks

that are currently available to the system. Some of this

information is similar to what is displayed in a disk window

title bar, such as how much space is used and left on the disk.

However, the INFO output also shows if there are any errors on

the disk and whether or not the disk is write-protected.

7. Type INFO at the Shell prompt. Typical output will

look like this:

1 > INFO

Unit Size

RAM:

DFO:

17K

879K

Used

17

1723

Free Full

0 100%

35 98%

Errs

0

0

Status

Read/Write

Read/Write

Name

Ram Disk

Workbench2.0

Volumes Available:

Ram Disk [Mounted]

Workbench2.G [Mounted]

Creating A New Directory

The MAKEDIR command creates a new directory on the disk.

This is similar to choosing the New Drawer menu item,

however a directory created with MAKEDIR does not

automatically have an icon associated with it. You have to

create the icon separately (see step 9).

8. To create a directory called Testdir on your

Workbench2.0 disk, type:

1> MAKEDIR Testdir

A new directory is created, but you will not see a drawer

icon for Testdir unless you choose the Show All Files

menu item.

To create an icon for Testdir, you can make a copy of the .info

file for any existing drawer icon. For instance, you can copy the

Using AmigaDOS 7-19

icon for the Expansion drawer by copying the expansion.info

file. To do this you use the COPY command. You must be sure

to specify both the name of the file you are copying (the source

file) and a name for the copy (the destination file).

9. Type:

1 > COPY Expansion.info Testdir.info

This makes a copy of the Expansion.info file and calls it

Testdir.info. This file will be associated with the Testdir

directory, and there will now be a Testdir drawer icon in

the Workbench!.0 disk window.

When you copied the Expansion.info file, you also copied the

position of the icon. Therefore, the TestDir and Expansion

icons will be on top of each other. Use the Clean Up and

Snapshot menu items to rearrange your window.

When creating icons for new files or directories, be sure to copy

an icon of the same type (drawer, project, or tool). Otherwise,

you could have problems when you try to open the file from

the Workbench.

Changing the Current Directory

Very often there are times when you want to perform several

operations within a directory, such as copying, renaming and

deleting files. Instead of typing the full path, including the

directory name, with each command, you can change your

Shell's current directory.

The current directory is AmigaDOS's reference point for that

Shell, similar to the Workbench's selected drawer window. At

any given time in any Shell, there is always one directory that

is the current directory.

7-20 Using AmigaDOS

There are two ways to think about the current directory:

• The path up to and including the current directory is

assumed and does not need to be included in the path to

a particular file.

• The current directory is the default directory—the

directory AmigaDOS will work within if no directory is

specified.

The current directory is the one in which the Shell will look for

information first, before checking other places on the disk.

When you open a Shell, the current directory is usually the root

directory of your boot disk, known as SYS:.

To make another directory the current directory, use the CD

command.

10. To make Testdir the current directory, type:

1>CDTestdir

Now, if you enter the DIR or LIST commands, the output will

show the contents of the Testdir directory. When you want to

work with files in Testdir, you simply have to type the file

name instead of the complete path.

The current directory is part of the standard Shell prompt, such

as:

1.Workbench2.0:Testdir>

This way you can always see what the current directory is

before you issue any commands.

Regardless of the current directory setting, you can still refer to

a file in any other directory by giving the full path. The current

directory will not change unless you enter the CD command.

You can change the current directory at any time according to

what seems most convenient for the task at hand. Each Shell

has its own independent current directory.

Using AmigaDOS 7-21

The Shell also supports the concept of an implied CD. You can

CD to a directory by typing the name of the directory at the

prompt. The Shell will look through the search path for a

command of that name. (The search path is an ordered set of

paths that AmigaDOS examines in order to find a command.)

If it does not find a command of that name to execute, it

will automatically CD to that directory.

When typing the directory name, be sure to specify it relative

to the existing current directory. For instance, if the current

directory is the root directory, WorkbenchLO:, and you type:

1> Utilities

The Shell will search for a command called Utilities. When it

does not find one, it will change the current directory to the

Utilities directory. However, if you try to change back to the

root directory by typing:

1> Workbench2.0

AmigaDOS will search forward in the directory structure for a

directory called Workbench2.0. When it does not find one, it

will respond with an Unknown command message. To CD to a

higher directory, type the appropriate number of slashes or the

full path. For instance, to CD back to the root directory, type:

1>Workbench2.Q:

or, simply

Search paths are more

fully explained in the

next section.

If the current directory is Work:Program/Documents/Letters,

typing:

\>n

will move you back to the Work:Program directory. You could

also type:

1: ■ Work:Program

7-22 Using AmigaDOS

Changing the Search Path

Just as changing the current directory can save you from having

to type the full path to a command, so can adding directories

to the search path. The current directory is always at the

beginning of the search path, and the C: directory is always

at the end.

Several other directories are usually added to the search path in

the Startup-sequence, the file that is executed each time the

Amiga is booted. The standard Startup-sequence adds the

System, Utilities, Prefs, and S directories, as well as the Ram

Disk, to the default search path. AmigaDOS will automatically

look in these directories, in sequence, to locate a program to

execute. If the file is not in any of those directories, the Object

Not Found message will be displayed.

You can add any directory you like to the search path with the

PATH command. Adding a directory to the search path

eliminates the need to supply a path to the program. You

simply need to enter the filename, and AmigaDOS will find it

as if you had typed the complete path.

For instance, if you frequently use a program called Spell, in

the directory Words, on a disk called English, you could add the

English:Words directory to your search path. Normally, when

you wanted to use the Spell file, you would have to specify the

complete path: EngHsh:Words/Spell. If you have an extra disk

drive added to your system, you could keep the English disk in

that drive and add the Words directory to your search path. To

do so you would type:

1>PATH EnglishiWords ADD

Now when you wanted to access the Spell program, you could

simply type Spell on the command line.

Using AmigaDOS 7-23

If you enter the PATH command in a Shell window, the new

search path only applies to that Shell and any Shells opened

from that Shell. Any other open Shell windows will still use

the default path (unless you entered different PATH commands

in those windows). To permanently add a directory to the

search path, you must modify the User-startup or Shell-startup

files. This is fully explained later in this chapter.

If you have two or more commands with the same name

in different directories in your search path, AmigaDOS

will always execute the first one found. This is based on

the order of the search path. You can access the other

command of the same name by specifying the full path to

the command.

^

Working with Files

So far, your Testdir directory is empty. To get a file to work

with, you're going to copy the Startup-sequence file in the S

directory into your Testdir directory.

11. To copy the Startup-sequence file, type:

1 > COPY S:Startup-sequence to Testdir/Textfile

This command makes a copy of the Startup-sequence

file, in the S directory, in a file called Textfile in the

Testdir directory. The original Startup-sequence stays

in the S directory.

12. To make sure that the COPY command worked, type:

1 > DIR Testdir

The output should show that Textfile is in the

directory.

7-24 Using AmigaDOS

Some common commands you can use when working with

files are COPY, TYPE, RENAME and DELETE. You've already

used the COPY command when you copied the Startup-

sequence file into the Testdir directory. The following steps

show you how to use the other commands.

13. The TYPE command lets you look at the contents of a

file. Type:

1>TYPETextIile

and the contents of Textfile will appear on the screen.

The text may scroll rather quickly. If you press the

Space Bar the text will pause. To start the text scrolling

again, press Backspace.

14. To change the name of a file, use the RENAME

command. You must specify both the old name and

the new name.

1 > RENAME Textfiie Document

This command will change the name of the file called

Textfile to Document. The contents of the file will not

be affected.

15. To delete a file from the disk, use the DELETE

command. Type:

1> DELETE Document

The Document file will be deleted. The Testdir

directory still exists even though it is empty.

You cannot delete the Testdir directory while you are working

in that directory. You have to change directories (CD) to a

higher-level directory in this case the original Workbench^.0

root directory.

Using AmigaDOS 7-25

16. A slash tells the CD command to move up one level in

the directory hierarchy. Since you are working in the

Testdir directory, type:

i > co /

The current directory will become the Workbench2.0

root directory.

If you were in a directory such as NewDisk:Testdir/Files,

typing CD / would return you to the NewDisk:Testdir

directory.

17. To delete the Testdir directory, type:

1> DELETE Testdir

The directory will be deleted, but the Testdir.info file

will still remain in the Workbench2.0 disk's root

directory.

18. To delete the Testdir.info file, type:

1> DELETE Testdir.info

Your Workbench2.0 disk will now have the same

contents as when you started.

Working with Disks

There are several AmigaDOS commands that pertain solely to

disks. When working through the Workbench, you can use the

Format Disk menu item when you want to format a floppy

disk or hard disk partition. The AmigaDOS command to allow

you to do this through a Shell is called FORMAT. With

FORMAT you must specify the location of the blank disk and

a new name for the formatted disk.

7-26 Using AmigaDOS

19. Leave the Workbench2.0 disk in the disk drive, and

type:

1 > FORMAT DRIVE DF0: NAME EmptyDisk

Insert disk to be formatted in drive DF0:

and press RETURN

Remove the Workbench^.0 disk, and insert the disk to

be formatted into the drive.

Do not press Return until you remove the Workbcnchl.O

disk and insert a blank disk. Otherwise, you could

accidentally format your Workbench^.0 disk.

You must enter the DRIVE and NAME keywords with the

FORMAT command. The DRIVE keyword specifies the disk

drive that the disk is in, and the NAME keyword specifies a

new name for the formatted disk.

To change the name of a disk, use the RELABEL command.

RENAME only works with directories or files.

20. To change the name of the newly formatted disk

called EmptyDisk to NewDisk, type:

1> RELABEL EmptyDisk; NewDisk

NOTE: If you have a floppy disk system with only one floppy

drive, you should specify the disk by its volume name, not

DFO: Using the drive name tells the Amiga to rename

whatever disk is in that drive, and you could accidentally

rename your Workbench disk.

If you have two disk drives or a hard drive, you could use the

drive name instead of the volume name. For instance,

1> RELABEL DF2: NewDisk

To copy a disk through the Shell, use the DISKCOPY

command. If you have one floppy drive, you will be prompted

to swap disks just as if you had chosen the Copy menu item.

However, the prompts will appear as messages in the Shell

Using AmigaDOS 7-27

window, not as system requesters with Cancel and Continue

gadgets. The next step shows you how to make a copy of your

Workbench disk.

21 Type:

1> DISKCOPY DFO: to DF0:

Place SOURCE disk (FROM disk) in drive DFO:

Press <RETURN> to continue

With the DISKCOPY command, you must type the word "to"

between the name of the disk drives. If you have two disk

drives, you could type:

1> DISKCOPY DF0: to DF2:

You can also use volume names, such as:

1 > DISKCOPY Workbench2.0: to NewDisk:

Setting the Clock

Instead of using the Time editor to set the date and time, you

can also use the AmigaDOS DATE command.

22. To see the currently saved date and time, type:

1 > DATE

Tuesday 17-Apr-90 11:34:58

If the output is incorrect, you can change it by specifying the

correct date and/or time after the command. The acceptable

format is DD-MMM-YY (date-month-year) for the date, and

HH:MM:SS (hour:minute:second) for the time.

23. For instance, to set the date and time to July 22,1992,

12:34 AM, type:

1> DATE 22-JUL-92 12:34:00

7-28 Using AmigaDOS

The DATE command alone does not save the time to the

battery backed-up clock, If you were to reboot or power off, the

date and time would be lost. To save the time to the system

clock, you must use the SETCLOCK command.

24. Type:

1> SETCLOCK SAVE

Opening/Closing Shell Windows

Finally, two other commands that you should know are

NEWSHELL and ENDSHELL. These commands let you open

and close Shell windows.

25. Type:

1 > NEWSHELL

A second Shell window will appear on the screen.

26. To exit that window, make sure it is active, and type

1> ENDSHELL.

The window will close.

Two other ways to close the Shell are by selecting the close

gadget in the upper left corner or typing Ctrl-\. Use one of

these methods to close your first Shell.

This section only touched upon the basic commands you can

use while in the Shell. Be sure to read Chapter 8 to learn the

full capabilities of the commands discussed in this section.

Many of them have more advanced options that were not

covered here.

Using AmigaDOS 7-29

Special AmigaDOS Characters

AmigaDOS has reserved several characters for special

functions, such as adding comments to command lines,

pattern matching, and redirecting the output of a command.

These special characters are explained in this section.

Command Line Characters

The following characters can be used on the command line or

in scripts.

Colon :

The colon is reserved for use after any device name (DFO:),

volume name (Workbench2.0:), or assigned directory (SYS:). Do

not put a space before the colon, or between the colon and any

subsequent file or directory names.

If you did not type the colon, the system would look for a file or

directory of that name. If you included a colon after a file or

directory name, a requester would appear asking you to insert a

volume of that name into any drive.

Slash /

A slash is used to separate directory and filenames in a path.

For example:

1> LIST Reports/Salesreps/Eastern

The slashes separate the three directory levels, and specify that

the subdirectory to be listed is Eastern.

A slash is also used to move up one level in the current

directory structure. For example:

1>CD/

Using two slashes moves up two levels, and so on.

7-30 Using AmigaDOS

Redirection is ex

plained on page 7-33.

Semicolon

A semicolon is used to add comments to command lines.

Anything to the right of a semicolon is ignored hy AmigaDOS.

This allows you to place descriptive comments on the same

line with AmigaDOS commands. This is commonly used in

documenting and debugging script files.

For example:

ASSIGN T: RAM:t ;set up T: directory for scripts

If the comment is too long to fit on one line, it can be

continued on a second line. However, the new line must begin

with a semicolon and is usually indented to the same level as

the previous comment for readability.

Asterisk

An asterisk is a convenient way to refer to the current window.

It can be used as a FROM or TO argument or as a redirection

filename — the source of input or the output destination.

Pressing Ctrl-\ will restore input/output to the default source.

For example:

1>C0PY ■ TOScreenfile

copies whatever is typed into the current window to the file

called Screenfile. To stop the copy, press Ctrl-\. ,

Ctrl-\ is also used to close a Shell window. Be careful not to

press this key combination twice.

Back Apostrophe

A back apostrophe can be used to execute commands from

within a string. When a string containing a command enclosed

in back quotes is printed, the command will be executed. For

example:

1> ECHO "DFO: contains *DIR DFO: ALL1."

prints DFO: contains followed by a directory of the disk in DFO:

Using AmigaDOS 7-31

Commands that refer to the current directory will not work

correctly when invoked this way. The use of the back

apostrophe automatically sets up a temporary sub-shell just for

that command. Any reference to a current directory will be to

the sub-shell's directory.

Pattern Matching

Pattern matching allows you to specify filenames by using

special wildcard characters to match characters in the

filenames. This lets you work on multiple files with one

command. For instance, you can copy or rename all the files

that begin with a specific letter, end with the same prefix, or

reside in the same directory with one command.

Several different wildcards allow you to specify the type of

match. In order to remove the special effect of these characters

and search for a wildcard character, preface the character with

an apostrophe ('). For instance,'? will match ?, and " will match

'. In the list below, a <p> indicates that either a single or

multiple character string immediately adjacent to the wildcard

will be matched. The wildcards are listed below:

Matches any single character.

#<p> Matches zero or more occurrences of

<pl>|<p2> Matches if either <pl> or <p2>

matches.

"<p> Matches everything but <p>.

(<plxp2>...) Groups items together.

% Matches the null string.

[<p>-<p>] Delimits a character range.

7-32 Using AmigaDOS

#} is equivalent to the

* wildcard used by

some other computer

systems.

For example:

A?B

A#BC

A#(BC)

A(B|C)D

ABC#?

#?XYZ

[A-D]#?

"(XYZ)

"(#?XYZ)

A(B|D|%]#C

Matches any three letter name beginning

with A and ending with B, such as AcB, AzB,

and alb.

Matches any name beginning with A, ending

with C, and having any number of Bs in

between, such as AC, ABC, ABBC, ABBBC,

and so on.

Matches any name beginning with A and

followed by any number of BC

combinations, such as ABC, ABCBC, and

ABCBCBC.

Matches ABD or ACD

Matches any name beginning with ABC,

regardless of what follows, such as ABCD,

ABCDEF.info, or ABCXYZ.

Matches any name ending in XYZ,

regardless of what precedes it, such as

ABCXYZ and ABCDEFXYZ.

Matches any name beginning with A, B,

CorD.

Matches anything but XYZ.

Matches anything not ending in XYZ.

Matches ABC, ADC, AC (% is the null

string), ABCC, ADCC, ACCC, and so on.

The most frequently used combination is #? (matches any

characters). This makes it simple to work with an entire group

of related files, such as .info files. For example, to delete all the

.info files in the Picture directory, you would type:

1> DELETE Picture/#?.tnfo

Be careful when using #?. You could accidentally delete the

contents of a disk,

Using AmigaDOS 7-33

Redirection

You can use the angle bracket characters (<) and (>) to redirect

command input and output to a different destination.

Typically, the keyboard is used for command input, and the

current Shell window is used for output. The redirection

characters allow you to change the input/output to a specific

file or device (printer, modem, etc.).

The redirection argument consists of the < (change input) or

> (change output) symbol followed by a filename or device

name. For instance, console output usually goes to the current

Shell window. If you typed:

1>DIR>TestfileDF0:

the output will be sent to a file called Testfile. The output

will not be shown on the screen. Notice that the redirection

argument must come before any of the command's arguments.

The angle bracket must be preceded by a space, but need not be

followed by a space.

Similarly, you can change the source of the input from the

keyboard to a file with the < symbol. For example:

1>DATE<Datefile?

uses the contents of the Datefile file as the arguments for the

DATE command. The command responds as if the contents of

Datefile were typed at the keyboard.

It is only the console output of a command that is redirected,

not the data the command works on. For example:

1> COPY >Log Picdirto PicsArchive: ALL

still copies all the files in the Picdir directory to the

PicsArchive disk. However, the list of files being copied is sent

to the Log file. Notice that the redirection argument appears

immediately after the command and before the other

arguments.

7-34 Using AmigaDOS

You can also redirect output and append material to an existing

file. To do this, you must use two output symbols together

[>>) with no spaces between them. For example:

1> Postscript >>Laser/Letter

executes the program Postscript, adding its output to the end of

the Laser/Letter file.

The proper use of the redirection arguments depends on the

syntax of the command involved. In some cases, > or < could

replace the keywords TO or FROM.

Redirection only applies to the command line in which the

redirection characters arc used. AmigaDOS reverts to the

default input and output sources for any subsequent

commands.

Features of the Shell

As shown in the previous section, the Shell allows you to

communicate directly with AmigaDOS. It uses a special type

of window called a console window. A console window is a

text-only interface, which means that it accepts typed input

from the keyboard. You cannot use icons in a console window.

Special features of the console window are described below:

• All of the standard Workbench window gadgets can be

used on the Shell window except for the scroll gadgets.

• When you select the Shell window's zoom gadget, the

window expands to fill the entire screen.

• The System Default Text font, as specified by the Font

editor, is used in the Shell window. This must be a

nonproportional font, such as Topaz or Courier.

• Workbench background patterns do not appear.

• The WBConfig option of double-clicking to bring a

window to the front docs not apply.

You can have several Shell windows open at once. Each

window is independent. While commands entered in one Shell

are being executed, you can enter and execute different

commands in another Shell window.

The Shell environment offers command-line editing and

command history. These features allow you to use the cursor

keys to fix typing mistakes or repeat commands typed earlier.

Using AmigaDOS 7-35

Editing

There are several keys and key combinations you can use to

edit the current command line. They include standard text-

editing keys, plus several Control-key sequences summarized

below:

left cursor

right cursor

Moves cursor one character to the

left.

Moves cursor one character to the

right.

Shift-left cursor Moves cursor to the beginning of the

line.

Shift-right cursor Moves cursor to the end of the line.

Backspace

Del

Ctrl-H

Ctrl-M

Ctrl-J

Deletes the character to the left of

the cursor.

Deletes the character highlighted by

the cursor.

Deletes the last character (same as

Backspace).

Processes the command line (same

as Return).

Adds a line feed.

7-36 Using AmigaDOS

Ctrl-W Deletes the word to the left of the

cursor.

Ctrl-X Deletes the current line.

Ctrl-K Deletes everything from the cursor

forward to the end of the line.

Ctrl-Y Replaces the characters deleted with

Ctrl-K.

Ctrl-U Deletes everything from the cursor

backward to the start of the line.

In addition to command line editing, the Shell also provides

command history, which allows you to recall previously-

entered command lines, edit them, and re-enter them. This is

useful when you want to repeat a command or enter several

very similar commands.

The Shell uses a 2K command-line buffer to retain command

lines. The exact number of lines varies depending on lengths of

the lines actually stored. When the buffer fills up, the oldest

lines are lost. You access lines in the buffer through the up and

down cursor keys:

up cursor Moves backward in the history

buffer (earlier lines),

down cursor Moves forward in the history buffer

(later lines).

For example, if you wanted to copy several .info files from one

directory to another, you could enter the full line with the

complete path once, then recall the line as many times as

necessary changing only the filename portions of the line.

You can also search for the most recent occurrence of a specific

command by typing the command line, or the beginning of it,

then pressing Shift-up cursor (or Ctrl-R). For instance, if you

type DIR and press Shift-up cursor, you will be returned to the

last command to perform a DIR of any directory. Pressing Shift-

down cursor moves you to the bottom of the history buffer,

leaving the cursor on a blank line.

Using AmigaDOS 7-37

Some additional keystrokes you can use in the Shell are:

Space bar (or any Suspends output (stops scrolling).

printable character]

Backspace Resumes output [continues

scrolling).

Ctrl-C Sends a BREAK command to the

current process (halts the process).

Ctrl-D Sends a BREAK command to the

current script (halts the script).

Ctrl-S Suspends output.

Ctrl-Q Resumes output if it was suspended

with Ctrl-S.

Ctrl-\ Closes the Shell window.

Another feature of the Shell is the ability to type ahead. If you

begin typing while output is occurring in a Shell window, the

output will pause. If you press Return, the output will resume,

and the recently typed line will be used as the next line of

input. To resume the output without executing the typed line,

delete your input. The text will resume scrolling as soon as the

last character is erased.

Copying and Pasting

A new feature of the Shell is the ability to copy and paste

information from one console window, such as a Shell or ED

window, to the same or another window. For instance, if you

are using a text editor to write a script file, you can generate a

DIR listing in a Shell, then transfer it to the editor. This saves

having to retype all the information.

7-38 Using AmigaDOS

To copy and paste information, you use the mouse to highlight

the area of text to be copied. This is the only Workbench-style

mouse operation performed in Shell windows. To highlight the

text, move the pointer to the beginning of the text area, hold

down the selection button, and drag the pointer to the end of

the area to be copied. The text will be highlighted in the

window as you drag the mouse. Release the selection button,

and the area you have indicated will remain highlighted. Press

right Amiga-C to copy the highlighted text into memory.

Now move the pointer to the other console window, and click

inside it to activate it. Move the cursor to the point where you

want to insert the text. Press right Amiga-V, and the text will

be copied to the second window. You can paste the text

repeatedly by moving the cursor to the desired location and

pressing right Amiga-V.

The WINDOW Tool

Type is also supported

byEDandlCONX.

Customizing the Window

The Shell supports a WINDOW Tool Type that allows you to

specify the size, position, and features of the Shell window.

The Tool Type is in the form of:

WINDOW = CON:x/y/width/height/title/option

where:

x Is the number of pixels from the left

edge of the screen to the left border

of the window.

y Is the number of pixels from the

top of the screen to the top of the

window.

width

height

title

Is the width of the window, in pixels.

Is the height of the window, in

pixels.

Is the text that appears in the

window title bar.

Using AmigaDOS 7-39

^ The permissible options are:

AUTO

CLOSE

BACKDROP

NOBORDER

NODRAG

NOSIZE

SCREEN

The window automatically appears

when the program needs input or

produces output. With the Shell

window, it will open for input

immediately. The window can only

be closed with the ENDSHELL

command. Selecting the Shell's

close gadget will close the window,

but it will re-open immediately

since it is expecting input.

The window has all the standard

gadgets, including a close gadget.

The window appears on the

backdrop, behind all the Workbench

windows. The only gadget in the

window border is the zoom gadget.

This Shell window cannot be

brought to the front of the screen;

you have to resize the Workbench

windows to see it.

The window opens without any left

or bottom window border. Only the

zoom, depth, and sizing gadgets are

available.

The window cannot be dragged. It

has a zoom, depth and sizing gadget,

but no close gadget.

The window only has a depth

The window will open on a public

screen. The screen must already

exist. You must specify the name

of the screen after the SCREEN

keyword.

7-40 Using AmigaDOS

SIMPLE If you enlarge the window, the text

will expand to fill the newly

available space, allowing you to see

text that had been scrolled out of the

window.

SMART If you enlarge the window, the text

does not expand to fill the newly

available space.

WAIT The window can only be closed by

selecting the close gadget. (An

example of this is the Execute

Command Workbench Output

Window.)

WINDOW NOTE: THIS IS FOR

PROGRAMMERS ONLY. You can

specify the hex address of an already

open Intuition window for the

console handler to use instead of

opening a new window. The correct

format is WINDOWOxhhhhhh.

For instance, if you were working with a Hires screen, and you

wanted your Shell window to fill the entire screen, have a close

gadget, include your name in the title, you would use the

following Tool Type:

WINDOW = CON:0/0/640/200/Ralph'sSheIl/CLOSE

Remember, if you add the x and width numbers, they cannot be

greater than the width of the screen. Likewise, the sum of the y

and height numbers cannot be greater than the height of the

screen.

Using AmigaDOS 7-41

~

~

Closing the Shell

When you have finished your work in a Shell window, close it.

Any open window, even a small one, takes up a certain amount

of memory, including Chip RAM.

Before you can close a Shell window, any programs that were

run from the Shell must have finished. If a program is still

running, the text cursor will have moved down a line, but there

will be no prompt string to its left. You can still type into the

window, but there will be no response.

There are three ways to close a Shell window:

• select the close gadget

• type the ENDSHELL command

• press Ctrl-\

The Shell-startup File

Whenever you open a new Shell, the S:Shell-startup file is

executed. The Shell-startup file allows you to customize your

Shell environment. You can edit Shell-startup to set up

command aliases and to change the Shell prompt.

Using Aliases

An alias is an abbreviation for a long and/or frequently used

command. An alias can be either local or global. Local aliases

are entered in a Shell window and are only recognized in that

Shell. Global aliases are entered into the Shell-startup file and

are recognized by all Shells.

7-42 Using AmigaDOS

The angle brackets, <

>, indicate that infor

mation must be sub

stituted. For instance,

<name> means that

you must enter a name

after the alias com

mand. Do not type the

brackets.

An alias takes the form of:

ALIAS <name> <string>

where <name> is the alias, the name you want to type at the

Shell prompt to execute a command. The <string> is the

command line you want to execute. Some example ALIAS

commands are shown below:

ALIAS d0 DIR DF0:

ALIAS d! DIRDF1:

ALIAS ecfus ED S:User-starlup

ALIAS edsh ED S:Shell-startup

ALIAS del DELETE

ALIAS cp COPY

ALIAS ren RENAME

Whenever you use the <name> at a Shell prompt, the

<string> will be substituted, as if you had entered it instead.

For instance:

ALIAS d0 DIR DF0:

lets you type d0 to display the contents of the disk in DFO:

The <string> can include arguments as well as a command,

but it must begin with an AmigaDOS command. The alias

must be entered immediately after the prompt, but you can

include further arguments on the line after the alias.

For instance, if you are using the alias shown above,

ALIAS dQ DIR DFO:

typing:

dB System

would generate a directory of the System directory on the disk

in DFO:.

See the "ALIAS" section of Chapter 8 for more information.

Using AmigaDOS 7-43

^ Changing The Prompt

The PROMPT command lets you customize the Shell prompt.

By default, it shows the process number, a period, the current

directory, a right angle bracket (>), plus a space:

1.SYS:>

This is represented in the Shell-startup file by:

M%N.%s>"

where %N represents the current Shell number and %S

represents the current directory. The entire string is enclosed in

quotes to maintain the final space after the >.

You can have the prompt display almost anything you want,

with or without the process number and directory information.

The prompt can contain escape sequences, which allow you to

change text color and style in the prompt string or clear the

screen. (Escape sequences are explained in the following

section.) You can even embed complete AmigaDOS commands

in the prompt by using the back apostrophe character (v).

See the "PROMPT" section of Chapter 8 for more information.

Using Escape Sequences

Escape sequences can control how the text appears in a console

window, such as the text color, style (bold, italics, underline]

and margins. AmigaDOS recognizes standard ANSI X3.64

sequences when they arc typed on the command line or

embedded in strings. Escape sequences consist of one or more

characters, sometimes with a numerical argument, prefaced by

the escape character. Spaces are not normally used in the

sequence of characters.

7-44 Using AmigaDOS

The table on page 7-45 shows the most common escape

sequences used in a Shell. The escape sequence is shown using

the following format:

Esc[#X

where:

ESC Represents the Escape key. Simply press Esc. Do not

type the letters e, s, and c. When you press Esc, a

reversed open bracket Ilappears in the console

window.

Represents the open bracket key.

Represents a numerical argument.

X Represents an alphabetic key. Escape codes are case-

sensitive. If an uppercase letter is shown, press Shift

and the key. If a lowercase letter is shown, just press

the appropriate key.

If your country's keyboard does not have an open bracket key,

you must press Alt plus the key shown below, regardless of

what is shown on the keycap:

,1 F10

*-

A An

4

Using AmigaDOS 7-45

= Standard Escape Sequences for Console Windows =

Sequence

Escc

Esc[0m

Esc[1 m

Esc(3m

Esc[4m

Esc[7m

Esc|8m

Esc(22m

Esc[23m

Esc[24m

Esc[27m

Esc(28m

Esc(30m

Esc|31m

Esc[32m

Esc(33m

Esc[3#m

Esc(39m

Esc(40m

Esc(41m

Esc|42m

Esc[43m

Esc[4#m

Esc|49m

Esc(#u

Esc|#t

Esc(#x

Escj#y

Action

Clears the window and resets all modes to

defaults

Resets graphics modes to defaults

Makes text boldface

Makes text italic

Underlines text

Makes the text reverse video

Makes text match background color

Turns off boldface

Turns off italics

Turns off underlining

Turns off reverse video

Returns the text color to normal

Makes text colorO (background, default grey)

Makes text colorl (shadow, default black]

Makes text color2 (shine, default white)

Makes text color3 (accent, default blue)

Makes text color# (4-8)

Makes text default color (colorl)

Makes text background colorO (default

Makes text background colorl (default

black)

Makes text background color2 (default white)

Makes text background color3 (default blue)

Makes text background color# (4-8)

Makes text background the default color

(colorl)

Sets maximum length of lines in window to #

Sets maximum number of lines in window

to #

Starts text # pixels from left window border

Starts text # pixels from top of window

7-46 Using AmigaDOS

The escape sequence is executed when you press Return or

when the string containing the sequence is printed. When

entering escape sequences in a string, you can use the character

combination *E to represent the pressing of Esc. For example,

you can add the following line to your Shell-startup file to give

all Shell windows a boldface, color3 prompt string:

PROMPT ■■•E[1m*E[33m%n.%s> •e[0m11

Notice the use of "E to represent Esc. A space is entered after

the %S> to allow a space between the prompt and your input.

The final sequence, *E[0m, turns off the previous modes so that

only the prompt is affected by the boldface and color3 codes.

The Shell-startup file contains several examples of escape

sequences.

Running Programs

Most programs can be run both from the Workbench and from

the Shell. To run a program from the Shell, you usually type the

program name at the Shell prompt. (If the program file is not in

the current directory or search path, you will have to specify

the complete path to the file.) This tells AmigaDOS to load and

execute the program.

Using AmigaDOS 7-47

^

When using application software, be sure to read the license

agreement enclosed with the software to determine if you

can make a backup copy of the program disk(s). If it is

allowed, use the backup(s) as your working disk(s) and store

the originals in a safe place. Store your data files on different

disks. Leaving the program disk write-protected helps

prevent disk corruption by errors or software viruses. If you

must store data and programs on the same floppy, it is vital

that you keep backup copies of the unmodified, original

program disks.

Most programs allow you to specify additional information on

the command line after the program name, such as the name of

a file to load or startup options. This is called argument passing

(giving a command parameters to follow).

For example:

1> MEmacs

loads and runs MEmacs.

1> MEmacs S:User-startup

loads and runs MEmacs, automatically opening the User-

startup file in the S; directory as the file to begin editing.

1> SYS:Utilities/Clock WIDTH 200 HEIGHT 100 SECONDS

loads the Clock with a specified size of 200 pixels by 100 pixels

and the Seconds option turned on.

Often this argument-passing ability is provided as a

convenience, allowing you to specify right on the command

line what might otherwise be accomplished from within the

program with a menu operation or two. However many

programs, especially those which can only be run from a Shell,

require that filenames or other arguments be specified on the

command line with the program name.

7-48 Using AmigaDOS

Another way to enter a program name is with the RUN

command which loads and runs a program in the background

without opening a Shell window. This means that the Shell

prompt will return after the program is opened.

For instance, if you type:

1> MEmacs

the MEmacs editor will open, but you will not be able to enter

any additional commands or close the Shell window until you

exit MEmacs.

But, if you type:

1> RUN MEmacs

the MEmacs editor will open, and the Shell prompt will return.

You can now enter additional commands.

When a program is invoked with RUN, a message indicating

the new process number will be displayed, such as [CLI 2].

Any output that the program generates will appear in the

originating Shell window.

You cannot close the Shell window if any programs launched

from that window arc still running. For instance, if you had

opened MEmacs through the Shell, you could not close the

Shell window until you had exited MEmacs. One way to avoid

this situation is by typing:

1> RUN >NIL: MEmacs

You'll learn more about the NIL: device in "The Startup-

Sequence" section on page 7-55.

Using AmigaDOS 7-49

~ Scripts

~

A script file, also called a command file, is a text file

containing a list of commands, typed on separate lines much as

they would be typed at successive Shell prompts. A script can

be created with any text editor that saves files in ASCII format,

such as ED or MEmacs.

Scripts are used for repetitive and/or complex tasks. For

instance, it is sometimes necessary to perform the same

operation on a large number of files. Instead of entering each

command individually, you could create a script that repeats

the same command, but substitutes a different filename in

each command line.

For instance, if you had several files that you needed to

rename, you could use a script like this:

RENAME

RENAME

RENAME

RENAME

RENAME

RENAME

RENAME

RENAME

section 1

section2

section3

section4

section5

sections

seclion7

sectionB

chapi.1

chapi.2

chapi.3

chapi .4

chapi .5

chapi .6

chapi.7

chapi.8

This example assumes that the files are in the Shell's current

directory. If not, you would have to specify the complete path

to the file.

Once a script file has been created, it is run via the EXECUTE

command. Typing EXECUTE <script> at a Shell prompt, tells the

system to read the script and execute each line.

// the s (script) protec

tion bit is set, you can

enter the script name

without preceding it

with EXECUTE.

7-50 Using AmigaDOS

Scripts can even halt and request information from the user

before continuing, so that variable conditions can be

accommodated with a single script. For instance, the following

script could be used to copy files from a hard drive to a floppy

disk. In this instance, only 6 files fit on a floppy disk. After 6

files are copied, the user is asked whether to continue the copy.

This also allows time to put a new disk into the disk drive.

COPY 2k.eps DF0:

COPY 2m.eps DFO:

COPY 2n.eps DFO:

COPY 2o.eps DFO:

COPY 2t.eps DF0:

COPY 2v.eps DFO:

ASK "Continue Copy?"

IF WARN

COPY 3a.eps DFO:

COPY 3c.eps DF0:

COPY 3g.eps DF0: *—'

COPY 3aa.eps OF0:

COPY 3bb.eps DFO:

COPY 3ff.eps DF0:

ENDIF

If Yis pressed at the Continue Copy? prompt, the script will go on

to copy the remaining files to a disk in DFO:. If N is pressed, the

script will be terminated.

Several AmigaDOS commands are specifically for use in

scripts. These are listed below:

ASK Asks for user input.

ECHO Prints a string.

ELSE Allows an alternative in a conditional block.

ENDIF Terminates an IF block.

ENDSKIP Terminates a SKIP block.

FAILAT Sets the failure condition of the script.

IF Handles conditional operations.

Using AmigaDOS 7-51

LAB Specifies a label; used in conjunction with

SKIP.

QUIT Specifics a return code that will cause a

command to exit.

SKIP Execution of the script skips ahead to the

specified label.

By including special characters known as dot characters in

your script, you can specify places for parameter substitution.

These parameters can be entered as arguments to the

EXECUTE command. Please read the appropriate sections of

Chapter 8 for more information on these commands.

Condition Flags

Every command sets a certain condition flag, a condition upon

which the command will fail. When a command is executed, a

return code indicates if a command was successful or if it

failed. The standard return codes are:

0 The command was successful.

5 Represents a caution and indicates that some type

of error occurred, even though it was not serious

enough to abort the command. If the command is

part of a script, subsequent commands will be

carried out. Several commands set the condition

flag to WARN to specify the outcome of a

command. For example:

1> INSTALL DF0: CHECK

checks the disk in DFO: to see if it is bootable or

not. If it is, the condition flag is set to 0; if not, it

is set to 5.

7-52 Using AmigaDOS

10 Represents an error. In scripts a return code of 10

will abort the script, unless a higher limit has

been set with the FAILATcommand.

20 Represents a failure.

Several commands, such as INSTALL and SEARCH

specifically use the WARN flag to signal certain conditions for

testing in scripts.

For instance, in the example Copy script on page 7-50 the ASK

command prompts the user as to whether they want to

continue the copy:

ASK "Continue Copy?"

IF WARN

COPY 3a.eps DF0:

If Y is pressed, the condition flag is set to 5 (WARN), and the

IF block will be carried out. If N or Return is pressed, the

condition flag is set to 0 (NO ERROR), and the script will be

aborted, since the IF statement did not receive the specified

return code.

Other values may be returned by different software. In these

cases, the values listed above are considered lower limits of the

specified condition. You can interpret the values as:

0-4 No Error

5-9 Warn

10-19 Error
i

20 or above Failure

Environment Variables

Environment variables are variables that are maintained by

AmigaDOS itself, rather than individual applications, which

means that the variables can be accessed and used by different

Using AmigaDOS 7-53

programs or scripts. For instance, AmigaDOS maintains

Workbench and Kickstart variables that track the current

version numbers of your Workbench and Kickstart software.

The following line, executed in the Startup-sequence script,

causes the Workbench version number to be printed on the

opening screen:

ECHO "Amiga Workbench Disk. 2.0 Release Version SWorkbench"

When a variable preceded by a dollar sign(S) is encountered in a

script, the variable name is replaced by the value assigned to

the variable. Then the line is executed as if you had originally

entered the value.

You can create environment variables with the SET and

SETENV commands. SET lets you create local variables. A

local variable is only recognized by the Shell in which it is

created and any Shells created by that original Shell. For

instance, if you are creating an environment variable in your

Shell window, then execute the NEWSHELL command

through the Execute Command menu item, the new Shell will

not recognize any of the variables created in your original

Shell. However, if you had opened a second Shell by typing the

NEWSHELL command in your original Shell, the new Shell

will recognize any variables created in its parent Shell. You can

use the GET command to display the value associated with a

variable, and the UNSET command to remove a variable.

SETENV creates global variables which are recognized by all

Shells. Global variables are stored in the ENV: directory. You

can use GETENV to display the value associated with a

variable, and UNSETENV to remove a global variable. It is

generally safest to use global variables only when you

specifically need certain values to be available to other

processes.

7-54 Using AmigaDOS

EVAL is an Amiga-

DOS command that

evaluates simple ex

pressions. It is ex

plained in Chapter 8.

A common reason for using an environment variable in a script

is to hold string information. The string might be long and

tedious to type, making it easier to substitute a variable for it.

Or the value for the string may change, making it easier to

change the value of the variable than to continuously re-edit

the script.

When given a numerical value, an environment variable can be

used in calculations and expressions just as if it were the

number it represents. For instance, you could assign the value

3.14159 to a variable called pi, then use Spi in EVAL

expressions. For instance:

1> EVAL5.8 * Spi

15

A few applications support the use of environment variables.

For instance, the More program in the Utilities directory

supports an Editor environment variable. You can use SETENV

to specify MEmacs as your editor of choice:

1 > SETENV Editor Extras2.0:Tools/MEmacs

Be sure to specify the complete path to MEmacs. If you have a

hard disk system, this will be Sys:Tools/MEmacs.

If you were using More to look at the contents of the Startup-

sequence file, you could press Shift-E, and you would

automatically be transferred to an MEmacs screen with the

Startup-sequence loaded and ready for editing.

Some variables, like the Workbench and Kickstart variables

explained above, have already been created. The Shell responds

to the Echo variable and maintains the Process, RC, and

Result2 local variables automatically. These are explained

below:

ECHO Controls whether commands are echoed

to the screen before being executed.

PROCESS The process number.

~

~

Using AmigaDOS 7-55

RC The return code of the last command

executed, 0, 5, 10, or 20. This is often used

in scripts.

RESULT2 The secondary return code, or error

number, that explains why a command

failed. For instance, an error number of

205 indicates an Object not found error.

You can use the FAULT command to

interpret the error number. This is also

used in scripts.

For instance, if you include the SET ECHO ON command at

the beginning of a script, each line of the script will be echoed

to the screen as it is executed.

The Startup-Sequence

Whenever you boot your Amiga, the Startup-sequence script is

executed. This file is located in the S: directory. The Startup-

sequence file can allocate disk buffers, make device

assignments, set command aliases, and perform any other

functions that can be accomplished with AmigaDOS

commands.

The Startup-sequence, and the other startup files in the S:

directory, can easily be modified to customize many aspects of

your system. In addition to more technical system matters, the

startup files can run programs at startup, print special

introductory messages, or automatically open a Shell window

on the Workbench screen.

There are several levels of importance to the items you will

find in the Startup-sequence. Some are not necessary to the

It is recommended

that you create a User-

startup file in the S

directory. You can

then make additions

and changes to the

startup procedure in

the User-startup file

instead of to the Start

up-sequence file.

7-56 Using AmigaDOS

functioning of the Amiga. Some are only needed if you will be

using certain resources, and some must appear for the system

to function properly.

An example of a typical Startup-sequence file is shown below.

The line numbers have been added to help you reference the

explanatory paragraphs that follow.

yirilon >N1L:

.. -i i .. i. !•:: - lo
d| N(C

rsldrnt -HtL: tlRssiin pun add
opv SfllLI EHUflRC: rjm.ni alT quirt nong
i 'if - -- : ! n . - c 1 . i ■ u-irdi

•ilin T: ran:t ;s»t up I: directory for tt

lit ><:non-5t
l-start

■ f i >M t L :

-«ut. (M

si Ian EMW:
ur> --Hit: I
all >NlL: S
fldbuT firs >H 1L : dfB: 1?
: ■,., Km.., > U, ■• -I '.:-,. I. £t>k. -■" RX>>1> U-r-.,,... IHnrkUfnch-
IndUrIvtri
• l>w HorH

Unv Ki.k

K|fehH
ount ipnk

aunt pip*:
ath ran:
f Illiltl t
th t

nuh lUorkbimh
irl tk.ckilirl

mcu<< purr add
!: r . - : . i .,■,.,.■

&y±:uti
itODl!

l* add

Before examining each command line, there are some basic

elements of the Startup-sequence with which you should be

familiar.

Many of the commands end in >NIL:. This is an example of

the use of the redirection operator, >, to send the output of a

command to the NIL: device. The NIL: device is a dummy

destination used to eliminate the output of a command when

it is not needed. Redirecting output to NIL: does not prevent

the command from being executed or operating normally. It

only inhibits the display of any text a command's execution

may produce in the Shell window. It is commonly used in the

Startup-sequence to prevent the appearance of messages and

requesters on the opening screen.

A common use of the Startup-sequence is to assign directories.

The ASSIGN command assigns a logical device name to a

directory. Most of the basic system directories are assigned to

device names, such as G, LIBS:, DEVS:. This is necessary since

Using AmigaDOS 7-57

~

~

many software applications assume that they will be able to

find the system files via the assigned device names.

For instance, if you use a desktop publishing program, it

probably looks for the various fonts it supports in the FONTS:

directory. The actual directory containing the fonts could be

Workbench2.0:Fonts, System2.0:Fonts, even MyDisk:Fonts.

However, by using ASSIGN to assign the directory to the

logical name FONTS:, the desktop publishing program will be

able to locate the necessary files.

Some applications expect you to make certain assignments in

your Startup-sequence to allow the program to run and access

specific files. This is especially common if you are installing

the program on a hard disk. If this is the case, please see

Chapter 6, "Using a Hard Disk," for more detailed instructions

on how to do this.

The paragraphs below contain brief explanations of each of the

lines in the standard Startup-sequence. For more information

on the individual commands, see Chapter 8, "AmigaDOS

Reference."

1 The VERSION command checks the internal version numbers

of both Workbench and Kickstart. This ensures that a

Workbench2.0 disk boots on a Version 2.0 system only.

2 FAILAT specifies the fail level for the script. In this case, the

fail level is 21 which means that the script will continue even

if an individual command cannot be executed.

3 The SETCLOCK command sets the date and time from the

hardware clock. The Amiga has two clocks; the battery

backed-up hardware clock and the software clock. The

hardware clock runs all the time, even when the Amiga is

turned off. However, it is the software clock that tells

applications the current time.

The SETCLOCK LOAD command reads the time from the

hardware clock and loads it into the software clock. It also

displays the currently set date and time on the opening screen.

AH Amigas have soft

ware clocks. Some

A500s do not have

battery-backed hard

ware clocks.

7-58 Using AmigaDOS

Internal commands

are already in ROM

and do not have to be

made resident.

NOTE: If you have a system that does not have a built-in

hardware clock, you may wish to insert an ECHO statement

into your Startup-sequence to remind you to set the correct

time with the Time editor. When a SETCLOCK command is

run on a machine without a hardware clock, the message

Battery Backed-up Clock not found is displayed.

4-6 The RESIDENT command loads an AmigaDOS command into

memory so that it does not have to be loaded from disk again.

In this case, it is making the LIST, COPY and ASSIGN

commands resident. This makes execution of the command

much faster as it does not have to be read from either floppy or

hard disk before execution. Making a command resident is

different from just copying a command to RAM:. If you simply

copied the command to RAM:, disk routines would still have

to be used to access the files, and the commands would still be

copied to another place in memory before execution. Making

commands resident is usually reserved for commands that are

executed repeatedly.

NOTE: Only those commands with the p (pure) protection bit

set should be made resident.

7 This line copies the Preferences settings saved in ENVARC: to

the RAM:Env directory. RAM:Env is where programs will look

for the current Preferences settings.

8 Directories in RAM: must be created every time the Amiga is

booted. The MAKEDIR command creates the Tand Clipboards

directories. The T directory is used for temporary storage of

scripts, including backup files created by many programs. The

Clipboards directory is used to hold information that is being

exchanged between programs.

9 Certain directories, such as the T directory, should be

ASSIGNed. The command ASSIGN T: RAM:t assigns the RAM:t

directory to the logical device T:. This makes it easy for

programs that use the T directory to find it. Instead of looking

for RAM:t or SYS:t, the programs just look for T:.

Using AmigaDOS 7-59

•10-13 This is an example of the use of a conditional operation in a

script. The IF statement, IF exists sys:monitors, tells the system

to look for the SYS:Monitors directory. If it exists, the

subsequent commands will be carried out. If not, the script

will skip ahead to the line following the ENDIF command.

If SYS:Monitors exists, the LISTcommand is used to generate a

short script which automatically runs the AddMonitor

program for any monitor icons found in the Monitors drawer.

14 This is another example of an ASSIGN statement. The

RAM:Env directory, which contains the Preferences settings, is

being assigned to ENV:. This assignment is necessary for

Preferences to work properly.

15 IPrefs is a program that communicates certain Preferences

information, stored in the ENV:sys directory, to the system.

16 The WAIT command tells the system to wait the specified

amount of time to allow the previous command to finish. The

script will wait 5 seconds to give IPrefs time to tell the system

what screen resolution you want before opening the first

window.

17 Every floppy and hard drive must have a certain number of

memory buffers allocated to it in order to function. The A buffer is a tempo-

iADDBUFFERS command can be used to speed up disk related "^ stora*e area in
RAM

activity within the system. ADDBUFFERS allows you add

additional buffers to a drive. (The default is 5.) In this instance,

15 buffers are added, resulting in a total of 20.

The more buffers allocated to a drive, the faster the response

time when accessing data on the disks. However, if you add too

many buffers, you may consume too much free memory.

For most floppy drives, 15-30 buffers is adequate. You can add

more if you have extra memory. Using too few buffers will slow

disk performance noticeably. ADDBUFFERS is most useful

early in the startup sequence so that subsequent commands

loaded from disk can be accessed faster.

7-60 Using AmigaDOS

18 The ECHO command is used to display a message on the

screen. In this case, the opening screen message and

Workbench version are displayed.

ECHO commands can be placed anywhere within a script.

For instance, if you want the computer to remind you of

something each time you boot, you can insert an ECHO

statement into the User-startup file, and the message will be

displayed on the screen. If you have several different boot

floppies, you can insert an ECHO statement into each disk's

User-startup file to remind you of which one you are using.

19 BINDDRIVERS is used to load and run device driver software

for any expansion devices, such as hard disk controllers,

attached to your system. The device drivers are supplied by the

manufacturer of your device and must be copied into your

Expansion drawer. If you do not have any expansion devices,

BINDDRIVERS has no effect. However, if the BINDDRIVERS

command is not given and you do have expansion devices, your

system won't recognize the presence of any devices that do not

auto-configure. The BINDDRIVERS command must appear

before any other commands referencing the expansion devices.

20-21 The SETENV command creates the global environment

variables specifying which versions of the Workbench and

Kickstart software you are using.

22 This is another example of the RESIDENT command. In this

case, the EXECUTE command is being made resident.

23-24 This is another example of the ASSIGN command. In this case,

RAM:Clipboards is being assigned to the logical volume

CLIPS: This is a common directory used by applications for

exchanging data with other programs. The S: directory is being

assigned to the logical volume REXXC: for programs that use

AREXX.

Using AmigaDOS 7-61

25-27 The MOUNT command is used to inform the Amiga that an

additional device has been added to the system. The device

name, such as AUX: or SPEAK:, must be entered with the

command, and an entry for that device must exist in the

MountList file in the DEVS: directory. MOUNT commands

must appear before any other commands that reference that

device.

28 The PATH command specifies the default search path that the

system will follow when looking for a command or filename.

Any directory names that are in the search path do not have to

be typed at the Shell prompt. The RAM: directory and all of the

Workbench directories are added to the search path. If you

wanted to run the Clock from the Shell, you could just type

Clock instead of SYS:Utilities/Clock.

29-31 This IF-ENDIF statement checks to see if the Tools directory is

in the SYS: directory, as it is for hard disk users. If it finds

Tools, the directory is added to the search path.

32 Rexxmast is a background program used by AREXX. It must be

active before any AREXX programs can be run.

33-35 This IF-ENDIF conditional checks for the existence of a script

called User-startup in the S: directory. If such a script exists, it

is executed. This is an easy way for you to add additional

commands to your Startup-sequence, such as making more

commands resident, assigning application programs to a hard

disk drive, and adding frequently used directories to the search

path.

36 LOADWB loads the Workbench into the Amiga's memory.

Without this command, the Workbench screen and window

would not appear. LOADWB should always be at the end of the

Startup-sequence since it depends on the preceding commands

having set up the proper search path, directory assignments,

Preferences settings, etc.

7-62 Using AmigaDOS

37 Endcli >NIL: closes the initial Shell window, leaving the

Workbench screen displayed.

Any AmigaDOS command, not just those mentioned above,

can appear in a startup script. Be sure to read Chapter 8 for

complete specifications about the individual commands so

that you understand how to use them.

Editing the Startup-Sequence

In most cases, it is strongly suggested that you do not alter

the original Startup-sequence file. Instead, create a new file

called User-startup that contains any additional commands

you want to add to the startup process.

If you do make changes to your Startup-sequence file, make

sure you are working on a copy of your Workbench disk, not

the original. If you make a mistake, the execution of the

Startup-sequence is aborted, and you will be left with only a

Shell prompt. Depending on whether the error occurred before

or after LOADWB, you may not be able to access any menus or

icons. Normally, the FAILAT 21 command ensures that the

Startup-sequence will complete execution.

If you have a hard disk, be sure to copy your original, unaltered

Startup-sequence file to a backup floppy. If you make a fatal

error editing your Startup-sequence, you will be able to recover

by copying the original file back onto your hard disk.

Using AmigaDOS 7-63

If an error occurs before the PATH command is executed, only

the C: and SYS: directories will be in the search path. You will

have to specify the complete path to any other directories you

want to access. If this occurs, reboot with a good Workbench

disk, and return to the edited Startup-sequence to try and

discover the error. Be sure to keep the original Workbench disk

write-protected at all times so you do not alter it by mistake.

There are some things you should keep in mind when editing

your User-startup or Startup-sequence file:

• Be sure you understand the correct command syntax as

shown in Chapter 8. Try out any commands you plan to

insert into the Startup-sequence in a Shell window first.

If a command works properly in the Shell, it will

probably work as expected in the Startup-sequence.

• Pay attention to the order of commands in the script.

Some commands, like ECHO and SETCLOCK, can be

put anywhere. However, when inserting commands that

refer to directories and files, be sure you aren't

referencing something that has not yet been created,

assigned, or given a valid path. For instance, if you insert

a command copying something to the T: directory, and

the T: directory has not yet been created or assigned, you

will receive an error message.

• Feel free to add comments to your scripts. If you insert a

semicolon at the end of a command line, anything to the

right of the semicolon is ignored by AmigaDOS, It just

appears in the script as a comment to remind you of

what you are trying to accomplish. For instance:

ASSIGN T: RAM:T ; set up T directory for scripts

is a quick reminder of why you inserted that command

and what you wanted it to do. Be sure to include a space

after the command line and before the semicolon.

7-64 Using AmigaDOS

If you make a mistake, you may see one of the following error

messages:

Unknown command <command>

This occurs when you have entered a command that is

unrecognizable.

■'command ■■ failed relurncode 20

This occurs if you've entered the command's arguments

incorrectly. Use the WHY command to get a better explanation

of the error. (Type WHYat the prompt after the error appears.)

If an error appears, use your text editor (ED, MEmacs or a

word processor which can save ASCII files) to correct the line

containing that command. Depending on where the error

occurred, you may have to reboot with a different Workbench

disk before being able to access the error. If you have a hard

disk, you may have to reboot with a floppy disk.

You can use a special Shell function to try to pinpoint the exact

location of an error, Entering SET ECHO ON within a script

will cause all command lines to be ECHOed to the screen as

they are executed. The error message will be printed after the

system tries to execute the incorrect command. To disable SET

ECHO, enter SET ECHO OFF or delete the SET ECHO ON

line.

Common Additions to the

Startup Files

This section describes some simple additions that can be made

to your startup files. Be sure to make any changes on a backup

copy of the Workbench disk.

Using AmigaDOS 7-65

To automatically open a Shell window:

Add the following lines to the User-startup file:

cd SYS: ; You could also make this cd RAM:

NewShellCON:0/0/640/2O0/AmigaShell/CLOSE

You could substitute any name you like for AmigaShell.

To set up additional paths and logical device

names:

If you always boot with a specific floppy disk in your external

disk drive, you can add additional paths and logical device

names to your User-startup file. For instance, if you always

boot with the Extras2.0 disk in DF2:, you could add the

following line:

~ PATH Extras2.0: ADD

If you always boot with a C source, Includes, and Lib disk in

DF2:, you might find it convenient to assign logical names to

these directories. If your scripts always refer to these logical

names, you will only have to change these ASSIGN statements

when you change your system or configuration. For instance, if

the disk is named MySrc, you could add the following lines:

ASSIGN SRC: MySrc:

ASSIGN INCLUDE: MySrc:lnclude

ASSIGN LIB: MySrclib

To make additional commands resident:

All of the C directory commands, the RexxC commands,

DiskCopy, Format, ,MEmacs and More can be made resident,

provided you have the necessary RAM. (If the pure protection

bit of a command is set, you can make the command resident.)

Resident commands arc extremely fast, reduce memory usage

7-66 Using AmigaDOS

when multitasking, and generally make using the Shell more

convenient, especially on a floppy-based system. These

commands should be added to your User-startup file.

RESIDENT C:DELETE

RESIDENT C:ED

RESIDENT SYS:Utilities/More

When the Startup-sequence checks for the existence of the

User-startup file (lines 33 to 35 in the previous example), these

commands will be executed.

For more information on working around the limitations of a

single floppy-based system, please read the next section, "For

Single Floppy Disk Systems."

For Single Floppy Disk Systems

If your system has only one floppy drive and no hard disk, you

must be prepared for a certain amount of disk swapping in the

course of your work. AmigaDOS is a disk-based system and

needs to load many of its commands from the Workbench disk

before it can execute them.

If you need a file on another disk, such as a data disk

containing text files, you will have to swap disks frequently.

You need to insert the Workbench disk so that the Amiga can

read the command information, then insert the data disk so the

Amiga can execute the command. For instance, if you want to

rename a file on your data disk, the system will need to read

the RENAME program from the Workbench disk, then you'll

have to insert the data disk so that it can actually rename the

file.

Using AmigaDOS 7-67

There are a few AmigaDOS commands, such as RESIDENT and

ASSIGN, that you can use to minimize the amount of disk

swapping you have to do. These commands are explained in

the following sections.

You can also minimize disk swapping by using the Ram Disk.

This is explained in "The Ram Disk" section on page 7-72.

Making Commands Resident

A number of important AmigaDOS commands arc Internal and

do not need to be loaded from disk. While you cannot make

commands Internal, you can make other commands resident

so that you do not need to have the Workbench disk in the

drive when you use them. Making commands resident

essentially copies the program into the Amiga's free memory.

When the command is invoked, the program information is

used in memory instead of being read from disk. This is also

faster than loading the command from disk.

Making commands resident uses memory. Ideally, you should

only make resident the commands that you use most often.

Otherwise, you may be taking valuable RAM away from other

programs. To determine approximately how much memory

will be used if you make a command resident, use the LIST

command. For instance,

1 ■ LIST C:COPY

Directory "Sys:C" on Monday 25-Jun-90

copy 3552 — p-rwed 20-Jun-9O 17:22:02

The size of the file is shown to the right of the filename. In this

case, the COPY command is 3552 bytes. If it is made resident,

it will consume approximately 3552 bytes of RAM.

7-68 Using AmigaDOS

On a system with minimal RAM (512K), you may want to

make DELETE, INFO and ASSIGN resident. If you have

additional memory, you might also want to make ED,

MAKEDIR, RENAME, DISKCOPYand FORMAT resident.

When making commands resident, think about the commands

you use most often. Some commands, such as ADDBUFFERS,

BINDDRIVERS, and LOADWB should not be made resident as

they are usually executed only during the startup sequence.

To see the correct format and the available options of the

RESIDENT command, refer to the "Resident" section of

Chapter 8.

Using ASSIGN'S PATH Option £

Another way to reduce the frequence of disk swaps is with the

PATH option of the ASSIGN command. Normally, AmigaDOS

will look on the original boot disk for any commands, device

drivers, libraries, and other system software it needs.

If another disk is in the disk drive, you will get a requester

asking for the original boot disk. This requester will appear

even if the disk currently in the drive contains the file the

system needs. The PATH option of the ASSIGN command

allows you to direct AmigaDOS to look for the files it needs on

any disk inserted in the designated drive.

To use the PATH option, you should add the following

commands to your User-startup script:

ASSIGN C: DF0:C PATH

ASSIGN L: DF01 PATH

ASSIGN UBS: OF0:Libs PATH

ASSIGN DEVS: DF0:Devs PATH

ASSIGN FONTS: DF0:Fonts PATH

This makes using several different disks more convenient. You

can also copy system directories onto application disks that

may require them. You will no longer need to keep reinserting

the original boot volume.

For the correct format and other options of the ASSIGN

command, see the "Assign" section of Chapter 8.

Using AmigaDOS 7-69

~

Making Room on Your

Workbench Disk

If you try to add programs to your Workbench disk, such as

fonts or printer drivers, you will find that the disk is very full.

You can try to eliminate some files from the Workbench disk

to make room for other files you may need.

This involves deleting system software from your

Workbench disk. If you decide to try this, be sure you are

working with a copy of the Workbench disk, not the

original. The original, unchanged Workbench disk should

always be kept safe in case you need to restore a deleted file.

Any deletion of system software results in some limitation of

your Amiga's capabilities. Depending on which Amiga features

you use, you may not notice the limitation. However, some

application may eventually attempt to use a file you have

deleted, leading to an unexpected requester or error. It may not

be obvious that the problem is the missing file.

7-70 Using AmigaDOS

If this happens, try the same operation with your original

Workbench disk. If the error does not appear, you will know

that it was caused by the absence of the deleted filc(s).

Be sure to document any changes you make to your system

disks. You may also want to add a statement in the disk's

User-startup file to remind you that you are working with

a non-standard Workbench.

When deleting files from your Workbcnch2.0 disk, you should

start with the least crucial files first, such as the Clock and

Exchange programs in the Utilities directory. Also, if you do

not change your Preferences settings very often, you can delete

the individual Preferences editors in the Prefs directory. By

moving these programs, and their icons, to a different disk you

can delete approximately 200K of data from the Workbench^.0

disk.

Do not delete Display, More, the Env-Archive

subdirectory of Prefs, or the entire Prefs directory as other

applications may call upon these programs or directories.

If the program cannot be found, the application may fail

inexplicably.

If you only use one of the AmigaDOS editors, ED, EDIT, or

MEmacs, you can delete the editors you do not use. Do not

delete all three editors, however. You should always have at

least one editor on the disk in case you need to modify your

User-startup file or perform some other quick editing function.

MEmacs is the largest editor taking up over 50K. ED takes up

approximately 24K, while EDIT only consumes 14K.

If after deleting these programs you still need additional room,

you may want to delete the programs that control the Amiga's

speech capability: DEVS:Narrator.device, LIBS:TransIator.

library, and L:Speak-handler, However, this is not

recommended, as it may not be obvious which application

Using AmigaDOS 7-71

programs use these files, and you could experience

unexplained software failures. Deleting these programs will

make approximately 75K of disk space available.

Finally, if you absolutely must have more space, you can delete

the files pertaining to the AREXX programming language:

REXXC:, System/RexxMast, System/RexxMast.info,

LIBS:rexxsyslib.library, and LIBS:rexxsupport.library. This will

make almost 50K of disk space available. Again, this is not

recommended as many application programs may call upon

these files.

Files that you should not delete under any circumstances are

listed below.

• C:IPrefs

• DEVS:MountList

• DEVS:parallel.device

• DEVS: printer, device

• DEVS:serial.device

t LIBS:asl.library

• LIBS:Commodities.library

• LIBS:Diskfont.library

• LIBS:lffparse.library

• S:Startup-sequence

• S:Shcll-startup

• L:Port-handlcr

Be careful when deciding what to eliminate. Don't delete any

more than you have to in order to get the new material to fit. If

you don't know the purpose of a file, leave it alone.

You may end up with several Workbench disks, each

customized to allow the Amiga to work optimally with

different programs.

7-72 Using AmigaDOS

The Ram Disk

RAM: and the Ram

Disk are the same de

vice. RAM: is the

device name, while

Ram Disk is the vol

ume name shown un

der the disk icon.

RAM:, represented on the Workbench screen by the Ram Disk

icon, is an area of the Amiga's internal memory that is set up

as a file storage device like a disk. Files, directories, and

(available memory permitting) entire floppy disks can be

copied to RAM: for temporary storage.

The size of RAM: is dynamic. It is never any larger than

necessary to hold its contents. Therefore, it is always 100%

full. Its maximum size is limited by the amount of free

memory.

The primary advantage of RAM: is speed. Since it is electronic,

rather than mechanical, storage and retrieval are almost

instantaneous. The disadvantage of RAM; is that data stored in

RAM: does not survive when the computer is powered down or

rebooted.

Applications commonly use RAM: for the storage of temporary

files created during the use of the program or backup files

created when the program is exited. This way they do not force

the user to have a floppy disk available. RAM: can also be used

for the storage of experimental script files, as a destination for

testing command output, and whenever the creation of a file

on an actual disk would be too slow, risky or inconvenient.

Advantages for Floppy Disk

Systems

For floppy disk systems, RAM: is particularly useful when you

arc doing something that requires repeated disk accesses to a

group of related files. If you can load the group of files into

Using AmigaDOS 7-73

RAM:, work with them individually while they are in RAM:,

then copy them back to the floppy disk when the operation is

finished, you only have to access the floppy disk twice. All the

other file operations would take place internally in RAM:. This

would speed up the process considerably.

For instance, suppose you have a directory called Brushes

which contains two dozen IFF files, and you need to modify

each file with a graphic program called Paint. If you worked

solely from your floppy disk, you would have to run Paint, load

each brush individually, change it, and save it back to disk. If

you had to do this for each of the twenty-four files, it could

take a considerable amount of time.

However, if you copied the IFF files into RAM:, you could run

Paint, load each brush directly from RAM:, change it, then save

it back to RAM:. After you were finished with the files, you

could copy the entire group back to the floppy disk. The

following commands illustrate how this could be

accomplished through the Shell:

1 > COPY DFO:Brushes TO RAM:Brushes ALL

This both creates a Brushes directory in RAM: and copies the

contents of the Brushes directory on DFO: to the new directory

in RAM:.

1> RUN PAINT

This command loads the Paint program. You could then load

each IFF file into Paint, change it, then save it. The only

difference is instead of specifying the path to the files as

DFO:Brushes, you would use RAM:Brushcs.

After you have changed and saved all of the IFF files, you could

copy them back to your floppy disk.

1> COPY RAM:Brushes TO DF9:Brushes ALL

On a single-floppy system, RAM: can be used to reduce the

amount of disk swapping required for floppy-to-floppy

7-74 Using AmigaDOS

transfers. By making your temporary, incremental saves to

RAM:, you can keep the Workbench or program disk in the

drive until you need to save data to disk.

Be careful when using RAM: for storage of important files. If

the Amiga loses power, has a software failure, or you reboot,

everything stored in RAM: will be lost. Be sure when working

with RAM: to regularly back up any important files on a floppy

disk.

NOTE: You cannot copy a disk to RAM: by dragging the source

disk icon over the Ram Disk icon. To copy a disk to RAM:, you

should open the Ram Disk icon, and drag the floppy disk icon

into the Ram Disk window. This will create a drawer with the

name and contents of the floppy disk.

The Recoverable Ram Disk

AmigaDOS also provides a recoverable Ram Disk, usually

mounted as RAD:. The contents of RAD: will survive a reboot

and most software failures, making it a safer place for work

files. [Data in RAD: will still be lost when the computer is

turned off.]

Unlike RAM:, RAD: is not automatically created. However,

there is an entry for RAD: supplied in the MountList file in

DEVS:. To activate a recoverable Ram Disk, you simply add the

following line to your User-startup file:

MOUNT RAD;

Unlike RAM:, the size of RAD: is not dynamic. It is fixed in

the MountList. You can change its size by entering a different

value in the HighCyl parameter of the RAD: MountList entry.

Using AmigaDOS 7-75

A HighCyl entry of 79 results in a RAD: with the same

capacity as a normal 88OK floppy disk.

Properly set up, RAD: can also make working with a floppy

disk system much faster. On a 1MB Amiga with no hard drive,

a small RAD: can be used to hold your S: directory and some

common AmigaDOS commands. If you have more than 2MB

of RAM, you may want to create a floppy-size RAD:. The

Workbench disk can then be copied to RAD: for a recoverable

Workbench-in-RAM. You could then reboot from RAD: instead

of from the Workbcnch2.0 disk. Instructions for setting up

sample RAD: devices are given below.

You can also set up multiple RAD: devices of different sizes by

copying the RAD: MountList entry and changing the name and

unit number.

For a 1MB Amiga

A small RAD: is not suitable for rebooting because it cannot

hold all of the commands and handlers required during startup.

However, it is useful for freeing up DFO: since it can hold some

commonly-used commands, the S directory, and the Expansion

directory.

1. Use an editor to change the Devs/MountList file. In the

RAD: entry, set the HighCyl value to 14, and add this

line:

BootPri = -129

This specifies a non-bootable RAD:.

2. Remove the following line from the Startup-sequence:

path ram: c: sys:utilities sys:rexxc sys:system s: sys:prefs sys:wbstartup add

7-76 Using AmigaDOS

3. Insert the following lines in your User-startup file:

failat 30 ^s

assign >NIL: RAD: exists

if warn

echo "Mounting RAD:..."

mount RAD:

if not exists

echo "Setting up RamDrive..."

relabel RAD: RamDrive

resident cxopy

resident c:makedir

makedir rad:c rad:utilities rad:expansion rad:system rad:s

copy ciassign c:info c:loadwb cxopy c:dir c:ed c:iprefs to rad:c quiet

copy crmakedir c:rename to rad:c quiet

copy s: rad:s all quiet

copy sys:system/cli sys:system/format rad:system quiet

copy sys:system/diskcopy rad:system quiet

copy sys:expansion rad:expansion quiet

copy sys:utilities/more rad:utiiities quiet

end if s s

endif

failat 10

assign s: rad:s

path reset rad:c rad:system rad:utilities sys:utilities sys:rexxc sys:system

path sys:prefs sys:wbstartup add

echo "Done"

You may wish to modify the COPY lines of the above example

to place some different commands in RAD:. The directories are

required, and some of the commands, such as Format and

DiskCopy, are strongly recommended.

4. Add these two lines to the Startup-sequence before the

LOADWB line:

path C: RAD: add

assign C: RADx

Using AmigaDOS 7-77

For Amigas with more than 2MB

A rebootablc RAD: is extremely useful if you have a megabyte

of RAM to spare and no hard drive. On powerup, this will

mount an 88OK RAD: and copy your boot disk to it. This takes

about 30 seconds and is not repeated when you reboot. All

system directories are assigned to RAD: so that the rest of the

Startup-sequence is executed very quickly. DFO: is left free for

use as a work drive.

To do this, follow the steps below, then turn your Amiga off for

at least 30 seconds. Turn it back on, and boot with your

modified Workbench2.0 disk. When the DiskCopy of DFO: to

RAD: is complete, a requester will flash twice.

1. Insert the following lines into your User-startup file:

failat 30

assign >NIL: RAD: exists

if warn

echo "Mounting RAD:..."

mount RAD:

if not exists RAD:c

echo "Copying DFO: to RAD:"

sys:system/diskcopy ■ NIL: DFO: to RAD: name "RamWB"

endif

endif

echo "Transferring control to RAD:..."

assign C: RAD:c

assign S: RAD:s

assign L: RAD:I

assign LIBS: RAD:libs

assign DEVS: RAD:devs

assign FONTS: RAD:fonts

assign SYS: RAD:

echo "Done"

7-78 Using AmigaDOS

Other Workbench Directories

In addition to the AmigaDOS commands explained in the

"AmigaDOS Reference" chapter, there are many other files and

directories on your Workbench disk. This section discusses the

S:, L:, DEVS:, FONTS:, and LIBS: directories. Some of the files

are new, while others have been revised with the release of

Version 2.0. The standard contents of these directories may

change as resources are added, changed, or removed.

It is not necessary for most Amiga users to have a detailed

understanding of the contents of these directories. However,

you may run into problems if you should inadvertently delete

or rename a file in a directory or fail to copy something to the

appropriate directory.

Each of these directories is automatically assigned to the SYS:

volume, which is the Workbench disk or hard disk partition

that the Amiga boots from. You may ASSIGN these directories

to different volumes if you wish.

For instance, you can assign FONTS: to a particular disk, such

as FontDisk:. Many applications automatically look for the

fonts that they need in the FONTS: directory regardless of

which disk it is assigned to. If the application can't find

FONTS: you may get an error message or have a problem using

the program.

The S: Directory

The S: directory is generally reserved for scripts. In addition to

the Startup-sequence and Shell-startup files explained earlier

in this chapter, the S: directory also contains several other

scripts which are explained below.

Using AmigaDOS 7-79

— ED-Startup

This file contains a scries of ED commands used to configure

the ED text editor, assigning the default function key options.

It can be edited to customize the key assignments.

Other files containing ED commands may be stored in S: for

use by the WITH keyword of ED, allowing ED command files

to perform custom editing operations.

HDBackup.config

This file is used with the HDBackup hard disk backup and

restore utility.

SPat, DPat

These scripts add pattern matching to commands which don't

naturally support it. When run with a command, SPat and

DPat use the LIST command to create temporary script files in

the T: directory, then execute the scripts. SPat and DPat can be

used within command aliases.

SPat adds pattern matching to single-argument commands. For

example, to use the More utility to display all the files in the S:

directory that begin with the letter "s", you would enter:

1> SPat More S:s#?

A script would be generated, similar to this:

more "'s:Shell-startup"

more "s:SPat"

more "SiStartup-sequence"

SPat would then execute the script, invoking More three times

to display the files.

DPat adds pattern matching to double-argument commands.

After DPat and the command name, enter the two arguments,

separated by a space, using the wildcards required to produce

the desired matches.

7-80 Using AmigaDOS

PCD

Similar to the CD command, PCD also remembers the last

directory. For example, typing:

1> PCD RAM:

1 > PCD

will change the current directory to RAM:, then return you to

the starting directory.

TheDEVS: Directory

The DEVS: directory contains several files and subdirectories

pertaining to the different devices that can be used with the

Amiga. DEVS: contains several .device files, some of which

correspond to actual physical devices, such as peripherals

attached to the Amiga's ports. The .device files and their

functions are listed below:

clipboard.device Controls writing and reading clips tc

CLIPS:.

narrator.device Controls access to the speech synthesizer.

parallel.device Controls access to the parallel port.

printer.device Controls access to the printer device.

serial.device Controls access to the serial port.

This section does not explore the .device files. They are

explained in other reference works, such as the ROM Kernel

Manuals published by Addis on-Wesley.

This section does cover the MountList, which many users need

to become familiar with when they install expansion devices

in their Amiga, and the Kcymaps and Printers subdirectories.

Using AmigaDOS

MountList

The MountList file contains the descriptions of devices that

are to be mounted with the AmigaDOS MOUNTcommand.

You may need a MountList entry for a device, handler, or file

system. When you add a new device to your Amiga system,

such as a hard disk or even some external disk drives, you must

make the Amiga aware of the existence of the device. Some

devices automount using the expansion directory. For others,

you must use the MOUNTcommand. The MOUNTcommand

must read a MountList entry in order to determine the

characteristics of the device.

Several sample MountList entries are already included in the

MountList file in the DEVS: directory. Some of these can be

used without changes, but it is always a good idea to verify the

file to make sure it accurately corresponds with your device.

A MountList entry consists of a number of keywords

describing the device, handler, or file system, as well as values

for those keywords. Some keywords may only apply to a file

system or a handler. If a keyword is omitted, a default value is

used. You should always check the default value in case it is

not appropriate for whatever you are mounting.

There are certain rules for creating a MountList entry:

• Each entry in the MountList must start with the name of

the device.

• Keywords are followed by an equals sign (-).

• Keywords must be separated by a semicolon or by

placing them on a separate line.

• Comments are allowed in standard C style (i.e.,

comments start with /* and end with '/].

• Each entry must end with the # symbol, on a line of its

own.

The keywords supported by the Mountlist are shown in the

tables on pages 7-82 and 7-83.

.

7-82 Using AmigaDOS

Keyword

Handler =

EHandlcr =

FileSystcm =

Device =

Priority =

Unit=

Flags=

Surfaces =

BlocksPerTrack =

Reserved «

PreAlloc-

Interleave =

LowCyl =

HighCyl =

Stacksize =

Buffers =

BufMemTypc =

MountiisT FtiTries

Function

A handler entry (i.e., Handler =

L:Speak-Handler).

An environment handler entry.

A file system entry (i.e., FilcSystem =

L:FastFileSystcm|.

A device entry (i.e., Device =

ramdrive. device].

The priority of the process; 5 is good for

handlers, 10 for file systems.

The unit number of the device.

Flags for OpcnDcvice [usually 0).

The number of surfaces.

The number of blocks per track.

The number of blocks reserved for the

boot block; should be 2.

The number of blocks reserved from the

end of a partition; used with a few hard

drives that store information in the last

few blocks of a drive. This is usually set

to 0 and probably will not need to be

changed. Please refer to the

documentation packaged with your hard

drive and hard drive controller.

Interleave value; varies with the device.

Starting cylinder to use.

Ending cylinder to use.

Amount of stack allocated to the

process.

Number of initial cache buffers.

Memory type used for buffers;

(0 and 1 = Any, 2 and 3 = Chip,

4 and 5 = Fast).

Using AmigaDOS 7-83

Mountlist Entries

Keyword

Mount =

MaxTransfcr =

Mask =

GlohVcc-

Startup =

BootPri =

DosType =

~

Baud =

Control =

Function

If a positive value, MOUNT loads the

device or handler immediately rather

than waiting for first access.

The maximum number of bytes

transferred; used with the

FastFileSystem.

Address Mask to specify memory range

that DMA transfers can use; used with

the FastFileSystem.

A global vector for the process; - 1 is no

Global Vector (for C and assembler

programs), 0 sets up a private GV; if the

keyword is absent, the shared Global

Vector is used.

A string passed to the device, handler, or

filcsystem on startup as a BPTR to a

BSTR.

A value which sets the boot priority of a

bootable and mountable device. This

value can range from - 129 to 127. By

convention, - 129 indicates that the

device is not bootable and is not

automatically mounted.

Indicates the type of file system. If the

FastFileSystem is used, DosType should

be set to Ox444F5301. Otherwise, the

DosTypc should be 0x444F5300. Or, you

could simply omit it altogether. It is

possible that other values may be used

in the future.

Serial device baud rate.

Serial device word length, parity, and

stop bits.

7-84 Using AmigaDOS

Sample MountList entries arc included in the MountList file.

Usually if you need to create a new MountList, you will he

given instructions in the documentation that accompanies the

device you arc mounting. There arc also several MountList

examples in this chapter accompanying the descriptions of the

various handlers in the L: directory.

Keymaps

Keymaps is a subdirectory of DEVS: (Devs/Kcymaps).

International keymaps are available in the Devs/Kcymaps

directory of the Extras2,0 disk. If you have a hard disk, they are

in the DEVS:Keymaps directory.

Keymap

cdn

chl

ch2

d

dk

c

f

gb

i

is

n

s

usaO

usa2

Availnhle Kcymnps

Keyboard it represents

French-Canadian

Swiss-French

Swiss-German

German

Danish

Spanish

French

British

Italian

Icelandic

Norwegian

Swedish

For V 1.0 programs

Dvorak

To use an international keymap:

1. Copy the keymap file to the DEVS:Keymaps directory.

For example:

1 ■ COPY Extras2.0;Devs/Keymaps'D TO DEVS:Keymaps

Using AmigaDOS 7-85

2. Use the SetMap program (in the System drawer) to

inform the system of the change.

1 > System/SETMAP D

If you want to use a different keymap on a regular basis, copy

the file to DEVS:Kcymaps and insert the SetMap assignment

in your User-startup file.

The standard United States keymap (usal) is built into ROM.

Printers

If you have a floppy disk system, the Printers subdirectory

of the Workbench!.0 disk is empty. In order to use a printer

with your Amiga, you must copy the appropriate printer

driver from the Extras2.0:Dcvs/Printcrs subdirectory to your

Workbench2.0:Devs/Printers subdirectory. This is explained

in Chapters, "Preferences."

If you have a hard disk system, all the available printer drivers

will be in your DEVS:Printers directory. For complete

specifications on the available drivers, see Appendix B.

The L: Directory

This directory contains the device handlers, software modules

that act as intermediate stages between AmigaDOS and the

devices used by the Amiga. However, most handlers arc treated

as if they arc actual physical devices and are referred to by their

device name. For instance, SPEAK: represents the Speak-

Handler which provides speech output for the Amiga.

Handlers must be named in the MountList entry for their

respective devices. Handlers generally are not called or

manipulated directly by users, but by programs. New handlers

may be supplied with some devices or programs and should be

added to the L: directory.

7-86 Using AmigaDOS

AUX: is mounted

during the standard

Startup-sequence.

Aux-Handler

The Aux-Handlcr provides unbuffered serial input and output.

It is essentially a console handler that uses the serial port

rather than the Amiga screen and keyboard.

The MountList entry is:

AUX:

Handler = LAux-handler

Stacksize = 1000

Priority = 5

PIPE: is mounted

during the standard

Startup-sequen ce.

A sample entry is already in the MountList file.

You can use Aux-Handler to use another terminal with your

computer. For example:

1>NEWSHELLAUX:

Pipe-Handler

The Pipe-Handler is an I/O mechanism used to provide

input/output communication between programs. It essentially

creates an interprocess communication channel. When the

information is directed to PIPE: up to 4K of data are buffered

before the writing process is blocked. After you write to a

PIPE:, another process can read the data.

The MountList entry is:

PIPE:

Handler = L:Pipe-handler

Stacksize = 6000

Priority = 5

GlobVec = -1

#

PIPE: may be used from other programs, like a word processor

(as a filename during a save operation) or a terminal program

(as a capture buffer filename}. You can use any pipe-name you

wish. PIPE: uses a 4K internal buffer per name, but its optimal

Using AmigaDOS 7-87

situation is one in which one program is reading while one

program is writing. When using PIPE:, the source and

destination processes must be distinct (not the same process).

The buffer is transparent. This means that data written, no

matter how little it is, is immediately available to be read by

the other process.

The PIPE: device can be useful when you're using two

programs and want to transfer large amounts of data from one

(write) to the other |read) without using a temporary file in

RAM: or on disk. Assuming the application docs not attempt

to read the file non-sequentially, you simply specify

PIPE:<name> and it looks like an ordinary file to the

application.

You can also copy information from one PIPE: to another. For

example:

Shell window 1: COPY Hugefile PlPE:a

Shell window 2: COPY PiPE:a PlPE:b

Shell window 3: COPY PiPE:b pipex

Shell window 4: copy pipex PiPE:d

Shell window 5: COPY PlPE:d PlPE:e

Shell window 6: TYPE PIPE:e ;Hugefiie will be TYPEd

Port-Handler

The Port-Handler is the AmigaDOS interface for the SER:,

PAR:, and PRT: devices.

Speak-Handler

The Speak-Handlcr provides speech output for the Amiga.

With SPEAK: you can literally have the Amiga say the

contents of a file.

7-88 Using AmigaDOS

SPEAK: is mounted

during the standard

Startup-sequence.

The options must be

separated by a slash (/)

and there should be

no space between the

colon and OPT.

The MountList entry is:

SPEAK:

Handler = L:Speak-handler

Stacksize = 4000

Priority ■ 5

GlobVec = -1

#

In addition to the MountList entry, SPEAK: also requires the

narrator.devicc and translator.library. They must be in DEVS:

and LIBS: respectively. (These files are included on

Workbench2.0 in the appropriate directories.)

The format for using SPEAK: is:

SPEAK:OPT/K

After the OPT keyword, the following options may be used:

p### Pitch (where ### is from 65-320)

s### Speed (where ### is from 30-400)

m Male voice

f Female voice

r Robot inflection

n Natural inflection

00 Do not allow these options in the input

stream.

01 Allow these options in the input stream.

a0 Turn off direct phoneme mode.

al Turn on direct phoneme mode (do not use

translator, library).

d0 Break up sentences on punctuation alone,

dl Break up sentences on punctuation, Return,

and line feed.

SPEAK: may be used from other programs, like a word

processor (as a filename during a save operation) or a terminal

program (as a capture buffer filename) to get spoken output.

Using AmigaDOS 7-89

For example, to listen to the contents of your Startup-sequence

file, type:

1 - COPY S:Startup-sequence to SPEAK:OPT,f s160

The contents of the Startup-sequence will be read in a female

voice at a moderate speed.

The FONTS: Directory

The FONTS: directory contains the information for all of the

different styles of fonts available to the Amiga. For each font,

there is a subdirectory and a .font file.

For instance, for the Emerald font, there is an Emerald

directory and an Emerald.font file. The font directory contains

files for the different point sizes that are available. The

Emerald directory contains two files: 17 and 20. The files

contain the data needed for the 17 point Emerald font and the

20 point Emerald font. The Emerald.font file contains the list

of point sizes and any available styles, such as bold, italics,

etc., for the font.

Many word processor or desktop publishing programs contain

additional fonts that you should copy to your FONTS:

directory. Whenever you add a new font to FONTS: you should

run the FixFonts program to create the .font file for the new

addition.

The Topaz font is the default font used by the Amiga. In

addition to existing in the FONTS: directory, it is built into

ROM. Even if you deleted the entire FONTS: directory, the

Amiga would still be able to display text.

7-90 Using AmigaDOS

The LIBS: Directory

LIBS: contains a variety of software routines and math

functions commonly-used by the operating system and

applications.

— T IRS". JjllJ Jt

.library File

asl.library

commodities.library

diskfont. library

iffparse. library

mathieeedoubbas.library

mathiceedoubtrans. library

mathieeesingtrans.library

mathtrans. library

rexxsupport.library

rexxsyslib.library

translator.library

version.library

Function

File and font requester

modules

iModules used by

Commodities Exchange

programs

Library modules for finding

and loading font tiles

Modules to parse IFF files

Double-precision IEEE math

routine modules for basic

functions (addition,

subtraction, etc.)

Double-precision IEEE math

routine modules tor

transcendental functions

[sine, cosine, etc.)

Fast single-precision IEEE

math routine modules

FFP transcendental function

math routine modules

Modules used by AREXX

Main AREXX modules

Speech-synthesis modules

for translating English text

into phonemes suitable for

narrator.device

Contains current software

version and revision

information

Chapter 8. AmigaDOS Reference

This chapter gives complete specifications of all the

AmigaDOS 2.0 commands, All the AmigaDOS commands

have been improved, and several new commands have been

added. Many commands are now Internal (built into the Shell)

for speed, convenience, and reduced memory usage.

This chapter includes:

• command conventions, an explanation of the symbols and

abbreviations used in the command descriptions

• specifications for each command, including the

Workbench and Preferences programs

• a table of error messages

A Quick Reference list of the AmigaDOS commands is

included at the back of this manual.

Command Conventions

When you invoke an AmigaDOS command, you usually do

more than type the command name at a Shell prompt. Many

commands require arguments or support options that send the

Amiga additional information as to what you want to do. For

example, if you type:

1> DlR Utilities

8-2 AmigaDOS Reference

you are telling the Amiga to generate a list of files and

subdirectories stored in the Utilities directory. In this

command line, Utilities is an argument. However, if you typed:

1>DIR Utilities FILES

only a list of the files in the Utilities directory would be

shown; subdirectories would not be listed. Here, FILES is an

option.

In the "Command Specifications" section, the AmigaDOS

commands are explained following a standard outline:

Format All the arguments and options accepted

by a command.

Template A built-in reminder of the command's

format. The template is embedded in the

program's code. If you type a command

followed by a question mark (DIR ?], the

template will appear on the screen.

Purpose A short explanation of the command's

function.

Path The directory where the command is

normally stored. For most commands this

will be the C: directory. The exceptions arc

the Internal commands which are copied

into memory and the Workbench programs.

Specification A description of the command and all of its

arguments.

Examples When examples are given, the command and

any screen output are indented from the

main text. A generic 1> prompt indicates

what should be typed at the Shell prompt.

All command names and arguments are

capitalized for clarity. Case does not matter

when entering commands. To execute the

command line, you must press Return.

AmigaDOS Reference 8-3

Remember, commands and arguments should be separated by

spaces. [It does not have to be just one space; multiple spaces

are acceptable.! No other punctuation should be used unless it

is called for in the syntax of the specific command.

Format

In Format listings, arguments are enclosed in different kinds of

brackets to indicate the type of argument. The brackets are not

to be typed as part of the command.

< > Angle brackets enclose arguments that must

be provided. For instance, <filename>

means that you must enter the appropriate

filename in that position. Unless square

brackets surround the argument (see below),

the argument is required. The command will

not work unless it is specified.

Square brackets enclose arguments and

keywords that are optional. They will be

accepted by the command but arc not

required.

Braces enclose items that can be given once

or repeated any number of times. For

example, {<args>} means that several items

may be given for this argument.

A vertical bar is used to separate options of

which you can choose only one. For

example, (OPT R|S|RS] means that you can

choose the R option, the S option, or both

(RSI options.

8-4 AmigaDOS Reference

The format for the COPY command is shown below:

COPY [FROM] {<name|pattern>} [TO] <name|pattern> [ALL]
iQUIET] [BUF|BUFFER = <n>] [CLONE] [DATE] [NOPRO] [COM]

The [FROM] keyword is optional. If it is not specified, the

command reads the filename or pattern to copy by its position

on the command line.

The {<name|pattcrn>} argument must be provided, You must

substitute either a filename or pattern. The braces indicate

that more than one argument can be given.

The [TO] keyword is optional. If it is not specified, the

command reads the filename or device to copy to by its

position on the command line.

The <name|pattern> argument must be provided. You can

only specify one destination.

The [ALL], [QUIET], (CLONE], [DATE], [NOPRO], and [COM]

arguments are optional.

The [BUF|BUFFER = <n>] argument is optional. If given, you

can use either BUF or BUFFER and a numerical argument. For

instance, both BUF = 5 and BUFFER = 5 arc acceptable.

Template

The Template is more condensed than the Format and is built

into the system. If you type a question mark (?) after a

command, the Template will appear to remind you of the

proper syntax.

AmigaDOS Reference 8-5

In Template listings, arguments are separated by commas and

followed by a slash {/) and a capital letter which indicates the

type of argument. The slash/letter combinations, which are

not to be typed as part of the command, are explained below:

argument/A The argument must always be given.

option/K The option's keyword must be used if

the argument is given.

option/S The option works as a switch. You

must type the name of the option in

order to specify that option. Most

options are switches.

value/N

argument/M

string/F

The argument is numeric.

Multiple arguments are accepted. This

is the Template equivalent of braces.

The /M replaces the previous multiple-

comma method of indicating how

many elements the command could

operate upon. There is no limit on the

number of possible arguments.

However, the multiple arguments

must be given before any other

argument or option.

The string must be the final argument

on the command line. The remainder

of the command line is taken as the

desired string. Quotation marks are not

needed around the string, even if it

contains spaces. If you type quotation

marks, they will be passed to the

command. If you specify the keyword,

you can pass leading and trailing

spaces.

8-6 AmigaDOS Reference

An equals sign indicates that two

different forms of the keyword are

equivalent. Either will be accepted.

The equals sign is not typed as part of

the command.

The Template for the COPY command is shown below:

FR0M/A/M,T0/A.ALUS,QUIET/S,BUF = 8UFFER/K/N,CL0NE/S,DATES/S,

NOPRO/S.COM/S

FROM/A/M indicates that the argument must be given and

multiple arguments are acceptable.

TO/A indicates that the argument must be given.

ALL/S, QUIET/S, CLONE/S, DATES/S, NOPRO/S, COM/S

indicate that the keywords act as switches. If the keyword is

present in the line, the option will be used.

BUF = BUFFER/K/N indicates that a numerical (/N) argument

is optional (/K). Both BUF and BUFFER are acceptable

keywords.

AmigaDOS Reference 8-7

^ Command Specifications

ADDBUFFERS

Format: ADDBUFFERS <drive> [<n>]

Template; DRIVE/A,BUFFERS/N

Purpose: To command the file system to add cache buffers.

Path: C:ADDBUFFERS

Specification:

ADDBUFFERS adds <n> buffers to the list of buffers available

for <drive>. Allocating additional buffers makes disk access

significantly faster. However, each additional buffer reduces

free memory by approximately 500 bytes. The default buffer

allocation is 5 for floppy drives and usually 30 for hard disks.

The number of buffers you should add depends on the amount

of extra memory available. There is no fixed upper limit, but

adding too many buffers can actually reduce overall system

performance by taking RAM away from other system

functions. If a negative number is specified, that many buffers

are subtracted from the current allocation. The minimum

number of buffers is one,- however, using only one is not

recommended.

Thirty buffers are generally recommended for a floppy drive in

a 512K system. The optimal number for a hard disk depends on

^^ the type and size of your drive. Usually you should use the

default value recommended by the HDToolbox program

explained in Chapter 6. (This value can be displayed by

selecting the Advanced Options gadget on the Partitioning

screen.) As a general rule, you can use 30 to 50 buffers for every

megabyte of RAM in your system.

If only the <drive> argument is specified, ADDBUFFERS

displays the number of buffers currently allocated for that

drive.

A buffer is a tempo

rary storage area in

memory.

8-8 AmigaDOS Reference

Examples:

1> ADDBUFFERS DF1: 25

DF1: has 30 buffers

Adds 25 buffers to drive DF1:.

1> ADDBUFFERS OF0:

DF0: has 20 buffers

Displays the number of buffers currently allocated to drive

DFO:.

ADDMONITOR

Format: ADDMONITOR NUM=%d NAME = %s

Template: NUM/N/A,NAME/A,HBSTRT/K,HBSTOP/K,

HSSTRT/K,HSSTOP/K,VBSTRT/K,VBSTOP/K,

VSSTRT/K,VSSTOP/K,MINROW/K,MINCOL/K,

TOTROWS/K,TOTCOLS/K,BEAMCONO/K

Purpose: To inform the Amiga that a non-RGB style

monitor has been added to your system.

Path: SYS:System/AddMonitor

Specification:

ADDMONITOR must be run if you have attached an A2024 or

Multiscan monitor or a monitor that is different from your

country's video standard (PAL for NTSC countries, and vice

versa). The acceptable values for NUM and NAME are listed

below:

NUM- NAME =

For an NTSC monitor 1 NTSC

For a PAL monitor 2 PAL

For a Multiscan monitor 3 Multiscan

For an A2024 monitor 4 A2024

AmigaDOS Reference 8-9

The additional options control special hardware features of the

Amiga and are primarily of use to hardware developers. Certain

graphics hardware may require these options in order to

function correctly. If so, the options should be explained in the

documentation accompanying the hardware.

After using AddMonitor, you must use the ScreenMode editor

to select the new display mode. To have the system recognize

your monitor upon booting, drag the appropriate icon from the

MonitorStore drawer to the Monitors drawer.

Examples:

If you've attached a Multiscan monitor, type:

1 > ADDMONITOR NUM = 3 NAME = Multiscan

If you've attached an A2024 monitor, type:

1 > ADDMONITOR NUM - 4 NAME - A2024

You must then use the ScreenMode Preferences editor to select

the appropriate display mode for your monitor.

ALIAS

Format: ALIAS [<name>| [<string>]

Template: NAME,STRING/F

Purpose: To set or display command aliases.

Path: Internal

Specification:

ALIAS permits you to create aliases, or alternative names, for

AmigaDOS commands. Using an alias is like replacing a

sentence with a single word. With ALIAS, you can abbreviate

frequently used commands or replace a standard command

name with a different name.

When AmigaDOS encounters <name>, it replaces it with

the defined <string>, integrates the result with the rest

of the command line, and attempts to interpret and execute the

resulting line as an AmigaDOS command. So <name> is the

8-10 AmigaDOS Reference

alias (whatever you want to call the command), and <string>

is the command to be substituted for the alias.

An alias must be at the beginning of the command line, and

you can specify arguments on the command line after the alias.

However, you cannot use an alias for a series of command

arguments. For instance, you cannot create a script using the

LFORMAT option of the LIST command by creating an alias to

represent the LFORMAT argument.

You can substitute a filename or other instruction within an

alias by placing square brackets (|]) in the <string>. Any

argument typed after the alias will be inserted at the brackets.

ALIAS <name> displays the <string> for that alias. ALIAS

alone lists all current aliases.

Aliases are local to the Shell in which they are defined. If you

create another Shell with the NEWSHELL command, it will

share the same aliases as its parent Shell. However, if you

create another Shell with the Execute Command menu item, it

will not recognize aliases created in your original Shell. To

create a global alias that will be recognized by all Shells, insert

the alias in the Shell-startup file.

To remove an ALIAS, use the UNALIAS command.

Examples:

1> ALIAS d1 0IRDF1:

Typing d1 results in a directory of the contents of the disk in

DF1:, just as if you had typed DIR DF1:.

1 > ALIAS hex TYPE [] HEX NUMBER

creates an alias called hex that displays the contents of a

specified file in hexadecimal format. The brackets indicate

where the filename will be inserted. If you then typed:

1> hex Myfile

the contents of Myfile would be displayed in hexadecimal

format with line numbers.

AmigaDOS Reference 8-11

ASK

Format: ASK <prompt>

Template: PROMPT/A

Purpose: To obtain user input when executing a script file.

Path: Internal

Specification:

ASK is used in scripts to write the <prompt> to the current

window, then wait for keyboard input. Valid responses are

Y (yes), N (no), and Return (no). If Y is pressed, ASK sets the

condition flag to 5 (WARN). If N is pressed, the condition flag is

set to 0. To check the response, an IF statement can be used.

If the <prompt> contains spaces, it must be enclosed in

quotation marks.

Example:

Assume a script contained the following commands:

ASK Continue?

IF WARN

ECHO Yes

ELSE

ECHO No

ENDIF

When the ASK command is reached, Continue? will appear on

the screen. If Y is pressed, Yes will be displayed on the screen. If

N is pressed, No will be displayed.

See also: IF, ELSE, ENDIF, WARN

8-12 AmigaDOS Reference

ASSIGN

Format: ASSIGN [<name>:{dlr}] [LIST] [EXISTS]

[DISMOUNT] [DEFER] [PATH] [ADD] [REMOVE]

[VOLS] [DIRS] [DEVICES]

Template: NAME,TARGET/M,LIST/S,EXISTS/S,

DISMOUNT/S,DEFER/S,PATH/S,ADD/S,

REMOVE/S,VOLS/S,DIRS/S,DEVICES/S

Purpose: To control assignment of logical device names to

file system directories.

Path: OASSIGN

Specification:

ASSIGN allows directories to be referenced via short,

convenient logical device names rather than their usual names

or complete paths. ASSIGN gives an alternative directory

name, much as ALIAS permits alternative command names.

The ASSIGN command can create assignments, remove

assignments, or list some or all current assignments.

If the <name> and {dir} arguments are given, ASSIGN will

assign the given name to the specified directory. Each time the

assigned logical device name is referred to, AmigaDOS will

access the specified directory. If the <name> given is already

assigned to a directory, the new directory will replace the

previous directory. (Always be sure to include a colon after the

<name> argument.]

If only the <name> argument is given, any existing ASSIGN

of a directory to that logical device will be cancelled.

You can assign several logical device names to the same

directory by using multiple ASSIGN commands.

You can assign one logical device name to several directories

by specifying each directory after the <namc> argument or

by using the ADD option. When the ADD option is specified,

AmigaDOS Reference 8-13

any existing directory assigned to <name> is not cancelled.

Instead, the newly specified directory is added to the assign

list, and the system will search for both directories when

<name> is encountered. If the original directory is not

available, ASSIGN will be satisfied with the newly added

directory.

To delete a name from the assign list, use the REMOVE option.

If no arguments are given with ASSIGN, or if the LIST keyword

is used, a list of all current assignments will be displayed. If the

VOLS, DIRS, or DEVICES switch is specified, ASSIGN will

limit the display to volumes, directories, or devices,

respectively.

When the EXIST keyword is given along with a logical device

name, AmigaDOS will search the ASSIGN list for that name

and display the volume and directory assigned to that device. If

the device name is not found, the condition flag is set to 5

(WARN). This is commonly used in scripts.

Normally, when the {dir} argument is given, AmigaDOS

immediately looks for that directory. If the ASSIGN

commands are part of the startup-sequence, the directories

need to be present on a mounted disk during the boot

procedure. If an assigned directory cannot be found, a requester

appears asking for the volume containing that directory.

However, two new options, DEFER and PATH, will wait until

the directory is actually needed before searching for it.

The DEFER option creates a "late-binding" ASSIGN. This

assign only takes effect when the assigned object is first

referenced, rather than when the assignment is made. This

eliminates the need to insert disks during the boot procedure

that contain the directories that are assigned during the

startup-sequence. When the DEFER option is used, the disk

containing the assigned directory is not needed until the object

is actually called upon. The assignment remains in force until

explicitly changed.

8-14 AmigaDOS Reference

It is not necessary for

the assigned name to

retain the name of the

directory nor for it to

be uppercase.

For example, if you assign FONTS: to DF0:Fonts with the

DEFER option, the system will associate FONTS: with

whatever disk is in DFO: at the time FONTS: is called. If you

have a Workbench disk in DFO: at the time the FONTS:

directory is needed, the system will associate FONTS: with

that particular Workbench disk. If you later remove that

Workbench disk and insert another disk containing a Fonts

directory, the system will specifically request the original

Workbench disk the next time FONTS: is needed.

The PATH option creates a "non-binding" ASSIGN. A non-

binding ASSIGN acts like a DEFERred ASSIGN except that it

is recvaluated each time the assigned name is referenced. This

prevents the system from expecting a particular volume in

order to use a particular directory (such as the situation

described in the example above). For instance, if you assign

FONTS: to DF0:Fonts with the PATH option, any disk in DFO:

will be searched when FONTS: is referenced. As long as the

disk contains a Fonts directory, it will satisfy the ASSIGN. You

cannot assign multiple directories with the PATH option.

The PATH option is especially useful to users with floppy disk

systems as it eliminates the need to reinsert the original

Workbench disk used to boot the system. As long as the drive

you have assigned with the PATH option contains a disk with

the assigned directory name, the system will use that disk.

The DISMOUNT option (called REMOVE in V1.3)

disconnects a volume or device from the list of mounted

devices. It does not free up resources; it merely removes the

name from the list. There is no way to cancel a DISMOUNT

without rebooting. DISMOUNT is primarily for use during

software development. Careless use of this option may

cause a software failure.

AmigaDOS Reference 8-15

Examples:

1> ASSIGN FONTS: MyFonts:Fontdir

assigns the system FONTS: directory to Fontdir on MyFonts:.

1> ASSIGN

Volumes:

LIST

Ram Disk [Mounted]

Workbench2 1.0 [Mounted]

MyFonts [Mounted]

Directories:

REXX

CLIPS

ENV

T

ENVARC

SYS

C

5

L

FONTS

DEVS

LIBS

Devices:

Workbench2.0:

Ram Disk:ClipboartJs

Ram Disk:Env

Ram Disk:T

Workbench2.0:Prefs/Env-Archive

Workbench2.0:

Workbench2.0:C

Workbencfi2.0:S

Workbencfi2.0:L

MyFonts:Fontdir

Workbench.0:Devs

Workbench2.0:Libs

PIPE AUX SPEAK RAM CON

RAW PAR SER PRT DF0 DF1

shows a list of all current assignments.

1> ASSIGN FONTS: EXISTS

FONTS MyFonts:FontDir

is an inquiry into the assignment of FONTS:. AmigaDOS

responds by showing that FONTS: is assigned to the FontDir

directory of the MyFonts volume.

1> ASSIGN UBS: SYSlibs BigAssemlibs PDAssemlibs

is a multiple-directory assignment that creates a search path

containing three Libs directories. These directories will be

searched in sequence each time LIBS: is invoked.

1> ASSIGN DEVS: DISMOUNT

removes the DEVS: assignment from the system.

8-16 AmigaDOS Reference

1> ASSIGN WorkDisk: DFO: DEFER

1> ASSIGN WorkDisk: EXISTS

WorkDisk <DF0:> ^—'

sets up a late-binding assignment of the logical device

WorkDisk:. The disk does not have to be inserted in DFO: until

the first time you refer to the name WorkDisk:. Notice that

ASSIGN shows DFO: enclosed in angle brackets to indicate

that it is DEFERred. After the first reference to WorkDisk:, the

volume name of the disk that was in DFO: at the time will

replace <DF0:>.

1> ASSIGN C: DF0:C PATH

1> ASSIGN C: EXISTS

C [DF0:C]

will reference the C directory of whatever disk is in DFO: at the

time a command is searched for. Notice that ASSIGN shows

DF0:C in square brackets to indicate that is a non-binding

ASSIGN. s->
1> ASSIGN LIBS: ZCadlibs ADO

adds ZCad:Libs to the list of directories assigned as LIBS:.

1> ASSIGN LIBS: ZCad:Libs REMOVE

removes ZCad:Libs from the list of directories assign as LIBS:.

AUTOPOINT

Format: AUTOPOINT |CX_PRIORITY = <n>

Template: CX.PRIORITY/K/N

Purpose: To automatically select any window the pointer

is over.

Path: Extras2.0:Tools/Commodities/AutoPoint

Specification: s

When AUTOPOINT is run, any window that the pointer is

over is automatically selected. You do not need to click the

selection button to activate it.

AmigaDOS Reference

^

~

~

The CX_PRIORITY = <n> argument sets the priority of

AutoPoint in relation to all the other Commodity Exchange

programs. (This is the same as entering a CX_PRIORITY = <n>

Tool Type in the icon's Information window.) All the

Commodity Exchange programs are set to a default priority of

0. If you specify an <n> value higher than 0, AutoPoint will

take priority over any other Commodity Exchange program.

To exit AutoPoint when it has been started from a Shell, type

Ctrl-E or use the BREAK command.

Example:

1> AUTOPOINT

starts the AutoPoint program.

AVAIL

Format: AVAIL [CHIP|FAST|TOTAL] [FLUSH)

Template: CHIP/S,FAST/S,TOTAL/S,FLUSH/S

Purpose: To report the amount of Chip and Fast memory

available.

Path: C:AVAIL

Specification:

AVAIL gives a summary of the system RAM, both Chip and

Fast. For each memory type, AVAIL reports the total amount,

how much is available, how much is currently in use, and the

largest contiguous memory block not yet allocated.

By using the CHIP, FAST and/or TOTAL options, you can have

AVAIL display only the number of free bytes of Chip, Fast or

total RAM available, instead of the complete summary. This

value can be used for comparisons in scripts.

The Amiga uses two

different types of

RAM. Chip RAM is

used for graphics and

sound data. Fast RAM

is general purpose

RAM used by all types

of programs.

8-18 AmigaDOS Reference

The FLUSH option causes all unused libraries and device

modules to be expunged from memory.

Examples:

1 > AVAIL

Type

chip

fasl

total

Available In-Use

233592 282272

341384 182896

574976 465168

1> AVAIL CHIP

233592

Format:

Template:

Purpose:

Path:

Maximum

515864

524280

1040144

BINDDRIVERS

BINDDRIVERS

(none)

To bind device drivers to hardware.

C:BINDDRIVERS

Largest

76792

197360

197360

Specification:

BINDDRIVERS is used to load and run device drivers for

add-on hardware that is configured by the expansion library.

These device drivers must be in the SYS:Expansion directory

for BINDDRIVERS to find them.

BINDDRIVERS is normally placed in the Startup-sequence

file. If drivers for expansion hardware are in the Expansion

directory, you must have a BINDDRIVERS command in your

Startup-sequence or the hardware will not be configured when

the system is booted.

AmigaDOS Reference 8-19

^

BINDMONITOR

Format: BINDMONITOR <MONITORID>

<MONITORNAME>

Template: MONITORID/A,MONITORNAME/A

Purpose: To assign names to the different display modes.

Path: SYS:System/BindMonitor

Specification:

BINDMONITOR assigns names to the different display modes

currently supported by the graphics library. The acceptable

arguments match the Tool Types of the Mode_Names icon.

Acceptable BINDMONITOR Arguments |

0 x 00000 Lores

0 x 08000 Hires

Ox08020 SuperHires

0x11000 NTSC:Lores

Ox 19000 NTSCHires

Ox 19020 NTSC:SuperHiies

0x21000 PAL:Lores

Ox29000 PALHires

Ox29020 PALSuperHires

0x31004 VGA-ExtraLores

Ox 39004 VGA-Lores

Ox39024 Productivity

0x41000 A2024_10Hz

0 x 00004 Lores-Interlaced

0 x 08004 Hires-Interlaced

0x08024 SuperHires-Interlaced

0 x 11004 NTSCLores-Interlaced

Ox 19004 NTSC:Hires-Interlaced

Ox 19024 NTSC:SuperHires-Interlaced

0x21004 PAL:Lores-Interlaced

0 x 29004 PAL:Hires-Interlaced

0x29024 PAL:SuperHires-Interlaced

0x31005 VGA-ExtraLores-Interlaced

0x39005 VGA-Lores-Interlaced

0 x 39025 Productivity Interlaced

0x49000 A2024_15Hz

For instance, ROM recognizes 0 x 08000 as a 640 x 200 line

display. However, BindMonitor links 0 x 08000 with the name

Hires. The names associated with the display modes appear in

the Choose Display Mode gadget of the ScreenMode editor.

Example:

1 > BINDMONITOR 0 x 08000 MyDisplay

MyDisplay would appear in the Choose Display Mode gadget

of the ScreenMode editor instead of Hires.

8-20 AmigaDOS Reference

A list of acceptable

key combinations can

be found on page 5-29.

BLANKER

Format: BLANKER [SECONDS = <n>]

(CX_POPKEY=<key(s)>

[CX_POPUP = <yes|no>]

[CX_PRIORITY = <n>]

Template: SECONDS/K/N,CX_POPKEY/K,CX_POPUP/K,

CX_PRIORITY/K/N

Purpose: To cause the monitor screen to go blank if no

input has been received within a specified period

of time.

Path: Extras2.0:Tools/Commodities/Blanker

Specification:

BLANKER is a Commodity Exchange program that causes the

screen to go blank if no mouse or keyboard input has been

received in the specified number of seconds. The

SECONDS = <n> argument allows you to specify the number

of seconds that must pass. The acceptable range is from 1 to

9999. Default is 60 seconds.

CX_POPKEY = <key(s)> allows you to specify the hot key for

the program. If more than one key is specified, be sure to

enclose the entire argument in double-quotes (i.e.,

"CX_POPKEY = ShiftFl").

CX_POPUP = no will prevent the Blanker window from

opening. (By default the program window opens when the

command is invoked.)

CX_PRIORITY= <n> sets the priority of Blanker in relation

to all other Commodity Exchange programs. All the

Commodity Exchange programs are set to a default priority

ofO.

AmigaDOS Reference 8-21

~
To kill Blanker when it is run through the Shell, press Ctrl-E.

Examples:

1> BLANKER SEC0NDS=45

The Blanker window will open, and 45 will be displayed inside

its text gadget. If no mouse or keyboard input is received during

a 45 second interval, the screen will go blank.

1> BLANKER CX_POPUP = no

The Blanker program will start. If no input is received within

60 seconds (the default), the screen will go blank. The Blanker

window will not open.

BREAK

Format: BREAK <process> [ALL|C|D|E|F]

Template: PROCESS/A/N,ALL/S,C/S,D/S,E/S,F/S

Purpose: To set attention flags in the specified process.

Path: CBREAK

Specification:

BREAK sets the specified attention flags in the <process>

indicated. C sets the Ctrl-C flag, D sets the Ctrl-D flag, and so

on. ALL sets all the flags from Ctrl-C to Ctrl-E By default,

AmigaDOS only sets the Ctrl-C flag.

The action of BREAK is identical to selecting the relevant

process by clicking in its window and pressing the appropriate

Ctrl-key combination(s).

Ctrl-C is used as the default for sending a BREAK signal to halt

a process. A process that has been aborted this way will display

***BREAK in the Shell window. Ctrl-D is used to halt execution

of a script file. Ctrl-E is used to exit Commodity Exchange

programs. Ctrl-F is not currently used.

Use the STATUS com

mand to display the

current process num

bers.

8-22 AmigaDOS Reference

Examples:

1> BREAK 7

sets the Ctrl-C attention flag of process 7. This is identical to

selecting process 7 and pressing Ctrl-C.

1 > BREAK 5 D

sets the Ctrl-D attention flag of process 5.

See also: STATUS

CALCULATOR

Format: CALCULATOR

Template: (none)

Purpose: To provide an on-screen calculator.

Path: SYS:Utilities/Calculator

Specification:

CALCULATOR starts the Calculator program. You can cut-

and-paste the output of the Calculator into any console

window, like the Shell or ED.

To exit the program, select the window's close gadget.

Example:

1> CALCULATOR

CD

Format: CD |<dir|pattem>]

Template: DIR

Purpose: To set, change, or display the current directory.

Path: Internal

Specification:

CD with no arguments displays the name of the current

directory. When a valid directory name is given, CD makes the

named directory the current directory.

AmigaDOS Reference 8-23

CD does not search through the disk for the specified directory.

It expects it to be in the current directory. If it is not, you must

give a complete path to the directory. If CD cannot find the

specified directory in the current directory or in the given path,

a Can't find <directory> error message is displayed.

If you want to move up a level in the filing hierarchy to the

parent directory of the current directory, type CD followed by a

space and a single slash (/). Moving to another directory in the

parent can be done at the same time by including its name after

the slash. If the current directory is a root directory, CD / will

have no effect. Multiple slashes are allowed; each slash refers

to an additional higher level. When using multiple slashes,

leave no spaces between them.

To move directly to the root directory of the current device, use

CD followed by a space and a colon.

CD also supports pattern matching. If more than one directory

matches the given pattern, an error message is displayed.

Examples:

1>CDDF1:Work

sets the current directory to the Work directory on the disk in

drive DM:.

1>CDSYS:Com'Basic

makes the subdirectory Basic in the Com directory the current

directory.

1 > co //

moves up two levels in the directory structure and makes SYS:

the current directory.

1>CDSYS:Li#?

uses the #? pattern to match with the Libs directory.

8-24 AmigaDOS Reference

Use the STATUS com

mand to display the

current process num

bers.

CHANGETASKPRI

Format: CHANGETASKPRI <priority> [<process>]

Template: PRI = PRIORITY/A/N,PROCESS/K/N

Purpose: To change the priority of a currently-running

Path:

process.

C:CHANGETASKPRI

Specification:

Since the Amiga is multitasking, it uses priority numbers to

determine the order in which current tasks should be serviced.

Normally, most tasks have a priority of 0, and the time and

instruction cycles of the CPU are divided equally among them.

CHANGETASKPRI changes the priority of the specified Shell

process. (If no process is specified, the current Shell process is

assumed.) Any tasks started from <process> inherit its

priority.

The range of acceptable values for <priority> is the integers

from -128 to 127, with higher values yielding a higher priority

(a greater proportion of CPU time is allocated). However, do

not enter values above + 10, or you may disrupt important

system tasks. Too low a priority (less than 0) can result in a

process taking unreasonably long to execute.

Example:

1 > CHANGETASKPRI 4 Process 2

The priority of Process 2 is changed to 4. Any tasks started

from this Shell will also have a priority of 4. They will have

priority over any other user tasks created without using

CHANGETASKPRI (those tasks will have a priority of 0).

See also: STATUS

AmigaDOS Reference 8-25

*> CLOCK

Format: CLOCK (DIGITAL] ([LEFT] <n>] [[TOP <n>]

[|WIDTH| <n>] [[HEIGHT <n>] [24HOUR]

[SECONDS] [DATE)

Template: DIGITAL/S,LEFT/N,TOP/N,WIDTH/N,

HEIGHT/N,24HOUR/S,SECONDS/S,DATE/S

Purpose: To provide an on-screen clock.

Path: SYS:Utilities/Clock

Specification:

The DIGITAL option opens a digital clock.

The LEFT, TOP, WIDTH, and HEIGHT options allow you to

specify the size and position of the clock. The keywords are

optional; however, the clock understands numerical

arguments by their position, as outlined below:

1st number The clock will open <n> pixels from the

left edge of the screen.

2nd number The clock will open <n> pixels from the top

of the screen.

3rd number The clock will be <n> pixels wide.

4th number The clock will be <n> pixels high.

For instance, if you only wanted to specify the width and

height of the Clock, you would have to use the WIDTH and

HEIGHT keywords. If you only typed two numbers, the clock

would interpret them as the LEFT and TOP positions.

NOTE: WIDTH and HEIGHT are not available if you use the

DIGITAL option. You cannot change the size of the digital

clock, although you can specify its position.

The 24HOUR option opens the clock in 24-hour mode. If not

specified, the clock opens in 12-hour mode.

8-26 AmigaDOS Reference

If the SECONDS option is specified, the seconds are displayed.

If the DATE option is specified, the date is displayed.

Examples:

To open a clock that is 75 pixels from the left edge of the

screen, 75 pixels from the top edge of the screen, 300 pixels

wide and 100 pixels high, type:

1> CLOCK 75 75 300 100

To use the SECONDS, DATE and 24HOUR options, type:

1 > CLOCK SECONDS DATE 24HOUR

To open a digital clock that is 320 pixels from the left edge of

the screen and in the screen's title bar (0 pixels from the top),

type:

1> CLOCK DIGITAL 328 0

CMD

Format: CMD <devicename> <filename> [OPTs|m|n]

Template: DEVICENAME/A,FILENAME/A,OPT/K

Purpose: To redirect printer output to a file.

Path: Extras2.0:Tools/CMD

Specification:

The <devicename> can be serial, parallel or printer, and

should be the same device as specified in the Printer editor.

<Filename> is the name of the file to which the redirected

output should be sent.

The CMD options are as follows:

s Skip any short initial write (usually a reset if

redirecting a screen dump).

m Intercept multiple files until a BREAK command

or Ctrl-C is typed.

n Notify user of progress (messages are displayed on

the screen).

AmigaDOS Reference 8-27

~

Example:

1> CMD parallel ram:cmd_file

Any output sent to the parallel port will be rerouted to a file in

RAM: called cmd_file.

COLORS

Format: COLORS j<bitplanes> <screentype>]

Template: BITPLANES,SCREENTYPE

Purpose: To change the colors of the frontmost screen.

Path: Extras2.0:Tools/Colors

Specification:

COLORS lets you change the colors of the frontmost screen. By

specifying values for the <bitplanes> and <screentype>

options you can open a custom test screen. The acceptable

values for <bitplanes> and <screentype> are listed below:

<bitplanes> Specifies the depth of the test screen:

<screentype>

1

2

3

4

5

Specifies the

screen:

0

1

2

3

2 colors

4 colors

8 colors

16 colors

32 colors

resolution of the test

320 x 200 pixels

320 x 400 pixels

640 x 200 pixels

640 x 400 pixels

The value for <bitplanes> is restricted to 4 or less if the value

for <screentype> is equal to either 2 or 3.

8-28 AmigaDOS Reference

Example:

1> COLORS 3 2

A new custom screen will be opened, and it will display a

window for the color program. The screen will have 8 colors

and a 640 x 200 pixel (Hires| resolution.

CONCLIP

Format: CONCLIP [UNIT <n>] [OFF]

Template: UNIT/N,OFF/S

Path: CCONCLIP

Purpose: To move data between the console.device, the

clipboard.device and CON:.

Specification:

CONCLIP is called from the standard Startup-sequence. When

it is run, the user can copy text from standard Shell windows

by drag selecting text with the mouse, as explained in the

"Copying and Pasting" section of Chapter 7. Once the text is

highlighted, it can then be copied to the clipboard by pressing

right Amiga-C. In addition, some other console.device

windows may support the ability to drag select text, such as

ED and MEmacs. The copied text can then be pasted into any

application window which supports reading text from the

clipboard, such as the Shell, ED, and MEmacs. To paste text,

press right-Amiga V.

CONCLIP requires iffparse.library and the clipboard.device

and opens the first time that you copy or paste text. Because of

this, users with floppy-based systems may notice some delay

as iffparse.library and the clipboard.device are loaded from disk

(assuming that they have not already been loaded by some

other application).

AmigaDOS Reference 8-28.2

The UNIT option allows you to specify the clipboard.device

unit number to use. You can specify any unit from 0 to 255.

The default unit number is 0. This option is primarily for

advanced users or programmers who may want to use different

units for different data, such as one for text and another for

graphics. You do not need to turn CONCLIP off to change the

UNIT number. Simply, run the command from the Shell

specifying the new unit number. The next time you copy and

paste, that clipboard unit will be used.

The OFF option allows the more advanced user or programmer

to turn off CONCLIP. When turned off, text is not copied to the

clipboard, and pasting is transparently managed by the

console.device. In general, there is not reason to turn

CONCLIP off.

8-28.3 AmigaDOS Reference

Format:

Template:

Purpose:

Path:

COPY

COPY [FROM] {<name|pattern>} [TO]

<name|pattern> [ALL] (QUIET]

[BUF|BUFFER= <n>] [CLONE] [DATES]

[NOPRO] [COM] [NOREQ]

FROM/A/M,TO/A,ALL/S,QUIET/S,

BUF = BUFFERS/K/N,CLONE/S,DATES/S,

NOPRO/S,COM/S,NOREQ/S

To copy files or directories.

C:COPY

Specification:

COPY copies the file or directory specified with the FROM

argument to the file or directory specified by the TO argument.

You can copy several items at once by giving more than one

FROM argument; each argument should be separated by

spaces. You can use pattern matching to copy or exclude items

whose names share a common set of characters or symbols.

If a TO filename already exists, COPY overwrites the TO file

with the FROM file. If you name a destination directory that

does not exist, COPY will create a directory with that name.

You can also use a pair of double quotes ("") to refer to the

current directory when specifying a destination. (Do not put

any spaces between the double quotes.)

AmigaDOS Reference 8-29

"
If the FROM argument is a directory, only the directory's files

will be copied; its subdirectories will not be copied. Use the

ALL option to copy the complete directory, including its files,

subdirectories; and the subdirectories' files. If you want to copy

a directory and you want the copy to have the same name as

the original, you must include the directory name in the TO

argument.

COPYprints to the screen the name of each file as it is copied.

This can be overridden by the QUIET option.

The BUF = option is used to set the number of 512-byte buffers

used during the copy. (Default is 200 buffers, approximately

100K of RAM.) It is often useful to limit the number of buffers

when copying to RAM:. BUF = 0 uses a buffer the same size as

the file to be copied.

Normally, copy gives the TO file the date and time the copy

was made. Any comments attached to the original FROM file

are ignored. The protection bits of the FROM file are copied to

the TO file. Several options allow you to override these

defaults:

DATES The creation date of the FROM file is copied

to the TO file.

COM Any comment attached to the FROM file is

copied to the TO file.

NOPRO The protection bits of the FROM file are not

copied to the TO file. The TO file will be given

standard protection bits of r, w, e and d.

CLONE The date, comments and protection bits of the

FROM file are copied to the TO file.

8-30 AmigaDOS Reference

Normally, COPY displays a requester if the COPY cannot

continue for some reason. When the NOREQ option is given,

all requesters are suppressed. This is useful in scripts and can

prevent a COPY failure from stopping the script while it waits

for a response. For instance, if a script calls for a certain file to

be copied and the system cannot find that file, normally the

script would display a requester and would wait until a

response was given. With the NOREQ option, the COPY

command would be aborted and the script would continue.

Examples:

1> COPY Filei TO :Work/File2

copies Filel in the current directory to File2 in the Work

directory.

1>C0PY ~(#?.info) TO DF1:Backup

copies all the files not ending in info in the current directory to

the Backup directory on the disk in DF1:. This is a convenient

use of pattern matching to save storage space when icons are

not necessary.

1>C0PY Work:Test TO ""

copies the files in the Test directory on Work to the current

directory; subdirectories in Test will not be copied.

1>C0PY Work:Test TO DF0:Test ALL

copies all the files and any subdirectories of the Test directory

on Work to the Test directory on DFO:. If a Test directory does

not already exist on DFO:, AmigaDOS will create one.

1>C0PY DF0: TO DF1: ALL QUIET

copies all files and directories on the disk in DFO: to DF1:,

without displaying on the screen any file/directory names as

they are copied. (This is quite slow in comparison to

DiskCopy.)

AmigaDOS Reference 8-31

CPU

Format: CPU [CACHE] [BURST] jNOBURST]

[DATACACHE] [DATABURSTj

[NODATACACHE] [NODATABURST]

[INSTCACHE] [INSTBURST] [NOINSTCACHE]

[NOINSTBURST] [FASTROM] [NOFASTROM]

[NOMMUTEST] |CHECK 68010|68020|68030|

68881168882|68851 |MMU|FPU]

Template: CACHE/S,BURST/S,NOCACHE/S,NOBURST/S,

DATACACHE/S,DATABURST/S,

NODATACACHE/S,NODATABURST/S,

INSTCACHE/S,INSTBURST/S,

NOINSTCACHE/S,NOINSTBURST/S,

FASTROM/S,NOFASTROM/S,

NOMMUTEST/S,CHECK/K

Purpose: To set or clear the CPU caches, check for a

particular processor, load the ROM image into

fast, 32-bit memory, or set an illegal memory

access handler which will output information

over the serial port at 9600 baud if a task accesses

page zero (lower 256 bytes) or memory above

16M.

Path: C:CPU

Specification:

CPU allows you to adjust various options of the

microprocessor installed in your Amiga. CPU will also show

the processor and options that are currently enabled.

NOTE: Many options only work with certain members of the

680XO processor family. The 68020 has a special type of

memory known as instruction cache. When instruction cache

is used, instructions are executed more quickly. The 68030 has

two types of cache memory: instruction and data. If you have

8-32 AmigaDOS Reference

Static Column Dynamic RAM (SCRAM) installed, you can

also use a special access mode for both instruction and data

cache, known as burst mode. This may further improve access

speed in some cases. The CPU options, outlined below, specify

the types of memory to be used. If mutually exclusive options

are specified, the safest option is used.

CACHE Turns on both data and instruction

cache (only for 68030).

NOCACHE Turns off data and instruction cache.

BURST Turns on burst mode for both data and

instructions (only for 68030 with

SCRAM).

NOBURST Turns off burst mode for data and

instructions.

DATACACHE Turns on data cache (only for 68030).

NODATACACHE Turns off data cache.

DATABURST Turns on burst mode for data (only for

68030 with SCRAM).

Turns off burst mode for data.

Turns on instruction cache.

Turns on burst mode for instructions

(if SCRAM installed).

Turns off instruction cache.

Turns off burst mode for instructions.

Copies data from ROM into 32-bit RAM,

making access to this data significantly

faster. CPU then write-protects the

RAM area so that the data cannot be

changed.

Turns off FASTROM.

NODATABURST

INSTCACHE

INSTBURST

NOINSTCACHE

NOINSTBURST

FASTROM

NOFASTROM

AmigaDOS Reference 8-33

NOMMUTEST Allows the MMU to be changed without

checking to see if it is currently in use.

The CHECK option, when given with a keyword (68010,

68020, 68030, 68881, 68882, or 68851) checks for the presence

of the keyword.

Examples;

1> CPU

System: 68030 68881 (INST: NoCache Burst) (DATA: Cache NoBurst)

1> CPU Burst Cache Check MMU

System: 68030 68881 (INST: Cache Burst) (DATA: Cache Burst)

1> CPU NoBurst DataCache NolnstCache

System: 68030 68881 (INST: NoCache NoBurst) (DATA: Cache NoBurst)

1> CPU Burst Cache FastROM

System: 68030 68881 FastROM (INST: Cache Burst) (DATA: Cache Burst)

1> CPU NoFastRom NoDataCache

System: 68030 68881 (INST: Cache Burst) (DATA: NoCache Burst)

DATE

Format: DATE(<day>] |<date>] [<time>]

[TO|VER <filename>]

Template: DAY, DATE, TIME, TO = VER/K

Purpose: To display or set the system date and/or time.

Path: C:DATE

Specification:

DATE with no argument displays the currently set system

time and date, including the day of the week. Time is displayed

using a 24-hour clock.

DATE <date> sets just the date. The format for <date> is

DD-MMM-YY (day-month-year). The hyphens between the

arguments are required. A leading zero in the date is not

necessary. The first 3 letters of the month (in English) must be

used, as well as the last two digits of the year.

S- 54 AmigaDOS Reference

If the date is already set, you can reset it by specifying a day

name (this sets the date forward to that day of the week). You

can also use tomorrow or yesterday as the <day> argument.

DATE <time> sets the time. The format for <time> is

HH:MM:SS (hours:minutes:seconds). Seconds are optional.

If your Amiga does not have a battery backed-up hardware

clock and you do not set the date, the system, upon booting,

will set the date to the date of the most recently created file on

the boot disk.

If you specify the TO or VER option, followed by a filename,

the output of the DATE command will be sent to that file,

overwriting any existing contents.

NOTE: Adjustments made with DATE only change the

software clock. They will not survive past power-down. To set

the battery backed-up hardware clock from the Shell, you must

set the date then use SETCLOCK SAVE.

Examples:

1 > DATE

displays the current date and time.

1 > DATE 6-sep-82

sets the date to the 6th of September, 1982. The time is not

reset.

1 > DATE tomorrow

resets the date to one day ahead.

1 > DATE TO Fred

sends the current date to the file Fred.

1> DATE 23:00

sets the current time to 11:00 p.m.

1>DATE1-jan-02

sets the date to January 1st, 2002. (The earliest date you can set

is January 1, 1978.)

AmigaDOS Reference 8-35

DELETE

Format:

Template:

Purpose:

Path:

Specification

DELETE {<name pattern>} [ALL] [Q|QUIET

(FORCEj

FILE/M/A,ALL/S,QUIET/S,FORCE/S

To delete files or directories.

ODELETE

DELETE attempts to delete (erase) the specified file(s). If more

than one file was specified, AmigaDOS continues to the next

file in the list.

You can use pattern matching to delete files. The pattern may

specify directory levels as well as filenames. All files that

match the pattern arc deleted. To abort a multiple-file

DELETE, press Ctrl-C.

AmigaDOS does not request confirmation of deletions.

An error in a pattern-matching DELETE can have

severe consequences, as deleted files are

unrecoverable. Be sure you understand pattern

matching before you use this feature, and keep backups

of important files.

If you try to delete a directory that contains files, you will

receive a message stating that the directory could not be

deleted as it is not empty. To override this, use the ALL option.

DELETE ALL deletes the named directory, its subdirectories,

and all files.

Filenames are displayed on the screen as they are deleted. To

suppress the screen output, use the QUIET option.

If the d (deletable) protection bit of a file has been cleared, that

file cannot be deleted unless the FORCE option is used.

8-36 AmigaDOS Reference

Examples:

1> DELETE Old-file

deletes the Old-file file in the current directory.

1> DELETE Work/Prog1 Work/Prog2 Work

deletes the files Progl and Prog2 in the Work directory, and

then deletes the Work directory (if there are no other files left

in it).

1> DELETE T#?/#?(1|2)

deletes all the files that end in 1 or 2 in directories that start

with T.

1> DELETE DF1:#? ALL FORCE

deletes all the files on DF1:, even those set as not deletablc.

DIR

Format: DIR [<dir|pattern>] [OPT A|I|AI|D|F| [ALL]

[DIRS] [FILES] [INTER]

Template: DIR,OPT/K,ALL/S,DIRS/S,FILES/S,INTER/S

Purpose: To display a sorted list of the files in a directory.

Path: C:DIR

Specification:

DIR displays the file and directory names contained in the

specified directory, or the current directory if no name is given.

Directories are listed first, followed by an alphabetical list of

the files in two columns. Pressing Ctrl-C aborts a directory

listing.

The options are:

ALL Displays all subdirectories and their files.

DIRS Displays only directories.

FILES Displays only files.

INTER Enters an interactive listing mode.

AmigaDOS Reference 8-37

NOTE: The ALL, DIRS, FILES and INTER keywords supersede

the OPT A, D, F and I options, respectively. The older keywords

are retained for compatibility with earlier versions of

AmigaDOS. Do not use OPT with the full keywords—ALL,

DIRS, FILES, or INTER.

The interactive listing mode stops after each name and

displays a question mark at which you can enter commands.

The acceptable responses are shown below:

Return Displays the next name on the list.

E Enters a directory; the files in that

directory will be displayed.

B Goes back one directory level.

DEL or DELETE Deletes a file or empty directory. DEL does not refer to
the Del key; type the

T Types the contents of a file. htteTS Dr Er then L

C or COMMAND Allows you to enter additional

AmigaDOS commands.

Q Quits interactive editing.

? Displays a list of the available

interactive-mode commands.

The COMMAND option allows almost any AmigaDOS

command to be executed during the interactive directory list.

When you want to issue a command, type C (or COM) at the

question mark prompt. DIR will ask you for the command.

Type the desired command, then press Return. The command

will be executed and DIR will continue. You can also combine

the C and the command on one line, by putting the command

in quotes following the C.

For instance, C "type prefs.info hex" is equivalent to pressing Q

to exit interactive listing mode and return to a regular Shell

prompt, and typing:

1> TYPE Prefs.info HEX

8-38 AmigaDOS Reference

The Prefs.info file would be typed to the screen in hexadecimal

format.

It is dangerous to format a disk from the DIR

interactive mode, as the format will take place

immediately, without any confirmation requesters

appearing. Also, starting another interactive DIR from

interactive mode will result in garbled output.

Examples:

1> DIR Workbench.0:

displays a list of the directories and files on the Workbench2.0

disk.

1>DIR MyDisk:#?.memo

displays all the directories and files on MyDisk that end in

.memo.

1>DIRExtras2.O: ALL

displays the complete contents of the Extras2.0 disk — all

directories, all subdirectories and all files.

1>DIRWorkbench2.0: DIRS

displays only the directories on Workbench2.0.

1> DIR Workbench2.0: INTER

provides an interactive list of the contents of Workbcnch2.0.

DISKCHANGE

DISKCHANGE <device>

DRIVE/A

Format:

Template:

Purpose:

Path:

To inform the Amiga that you have changed a

disk in a disk drive.

CDISKCHANCE

AmigaDOS Reference 8-39

Specification:

The DISKCHANGE command is only necessary when you

are using 5.25 inch floppy disk drives or removable media

drives without automatic diskchange hardware. Whenever you

change the disk or cartridge of such a drive, you must use

DISKCHANGE to inform the system of the switch.

DISKCHANGE can also be used if you edit a disk icon image

and wish to sec the new icon on the Workbench screen

immediately. This is the only way to display an altered hard

disk icon without rebooting.

Example:

If a requester appears and asks you to insert a new disk into

your 5.25 inch drive, known as DF2:, you must insert the disk,

then type:

1> DISKCHANGE DF2:

AmigaDOS will then recognize the new disk, and you can

proceed.

DISKCOPY

Format: DISKCOPY |FROM| <disk> TO <disk>

[NOVERIFY] [MULT1] [NAME <rtame>]

Template: DISK/A,TO/A,DISK/A,NOVERIFY/S,

MULTI/S,NAME/S

Purpose: To copy the contents of onedisk to another.

Path: SYS:System/DiskCopy

Specification:

The DISKCOPY command copies the entire contents of one

volume to another. The FROM keyword does not have to be

specified. However, the TO keyword must be given for

DISKCOPY to work.

An altered floppy disk

icon can be displayed

by removing the disk

from the drive and

reinserting it.

8-40 AmigaDOS Reference

The <disk> argument can be either the volume name or drive

name, such as Workbench2.0 or DFO:.

Normally during a diskcopy, the Amiga copies and verifies

each cylinder of data. The NO VERIFY option allows you to

skip the verification process, making the copy faster.

The MULTI option loads the data on the source disk into

memory, allowing you to make multiple copies without having

to read the data from the source disk each time.

By default, the destination disk will have the same name as the

source disk. If you specify the NAME option, you can give the

destination disk a different name from the source disk.

Examples:

1> DISKCOPY DF0: to DF2:

copies the contents of the disk in drive DFO: to the disk in

drive DF2: overwriting the contents of the disk in drive DF2:

1 > DISKCOPY DF0: to DF2: NOVERIFY NAME NewDisk

copies the contents of the disk in drive DFO: to the disk in

drive DF2: and gives the disk in drive DF2: the name

NewDisk. The disk will not be verified as it is copied.

Format:

Template:

Purpose:

Path:

DISKDOCTOR

DISKDOCTOR <drive>

DRIVE/A

To attempt to repair a corrupted disk.

CDISKDOCTOR

Specification:

DISKDOCTOR attempts to repair a corrupted disk enough to

allow you to retrieve files from it and copy them onto a good

disk. If AmigaDOS has detected a corrupted disk, it displays a

AmigaDOS Reference 8-41

requester stating that the disk could not be validated or that it

has a read/write error. By using DISKDOCTOR, you can try to

restore the file structure of the disk.

You can use DISKDOCTOR on both the standard file system

and the FastFileSystem. However, to use DISKDOCTOR with

the FastFileSystem, you must make sure that the DosType

keyword in the Mount List is set to 0x444F5301. Do not use

DISKDOCTOR on a FastFileSystem partition if the DosType

keyword is not set correctly.

DISKDOCTOR versions of 1.3.5 or earlier do not work

with FFS floppies.

Before running DISKDOCTOR, it is a good idea to copy all files

from the disk, as DISKDOCTOR will write to the corrupted

disk. This can prevent the use of other disk-repair utilities.

After running DISKDOCTOR, you should copy the restored

files to a new disk, then reformat the corrupted disk.

DISKDOCTOR checks for enough memory before starting

operations and changes the boot block to type DOS.

It may be necessary to run DISKDOCTOR several times before

a disk is usable once again. If DISKDOCTOR was not able to

read the root block of the disk, the disk will be renamed

Lazarus.

Example:

If you receive a message stating that Volume Workbench is not

validated or Error validating disk'Disk is unreadable, you can use

DISKDOCTOR to retrieve the disk's files. For instance, if the

corrupted disk is in DF1:, type:

1> DISKDOCTOR DF1

8-42 AmigaDOS Reference

AmigaDOS will ask you to insert the disk to be corrected and

press Return. DISKDOCTOR then reads each cylinder of the

disk. If it finds an error, it displays Hard error Track <xx>, Surface

<XX>. As each file and directory is replaced, the filename is

displayed on the screen. When DISKDOCTOR is finished, it

displays Now copy files required to a new disk and reformat this disk.

If a hard error is found, there may be actual physical damage to

the disk. If, after reformatting, the disk still shows problems, it

should be discarded.

DISPLAY

Format: DISPLAY {<filename>|FROM <filelist>}

[OPTmlbpenv][t = <n>l

Template: FILENAME/ A/M,FROM/K,OPT7K,T7N

Purpose: To display graphics saved in IFF ILBM format.

Path: SYS:Utilities/Display

Specification:

DISPLAY displays graphics saved using the IFF ILBM format.

You can type a series of files on the command line, and they

will be shown in the order given. You can also create a script

containing a list of all the IFF files you'd like to display and use

the FROM <filelist> argument.

The options are listed below. Remember, the OPT keyword

must be used.

m Clicking the selection button displays the

next file in the filelist; clicking the menu

button displays the previous file.

1 Instead of exiting after the last picture,

Display will return to the first file and start

again.

AmigaDOS Reference 8-43

b Pictures stay on their own unactivated

screen behind the Workbench screen. This is

useful when printing pictures while doing

something else.

p Prints each file that is displayed. You can

also press Ctrl-P while the file is on the

screen.

a Pictures that are larger than the display area

will scroll automatically when the pointer is

moved to the edge of the screen.

This option tells Display to treat a 6-

bitplane image as Extra Halfbrite. This is for

users who may be using an early HAM paint

package that does not save a CAMG chunk.

Normally if there is no CAMG, Display will

treat the image as a HAM picture.

n Borders will not be transparent when

genlocked.

v Pictures will be displayed with full-video

display clip. This means that the picture

will fill the maximum possible position on

the right edge of the screen, going a little

beyond the Overscan settings in Preferences.

However, when using this option, the screen

cannot be dragged sideways, and Display

cannot center the picture.

The t = <n> argument specifies the number of seconds the IFF

file will be displayed. This allows for automatic advancing

through files.

Examples:

1> DISPLAY filei file2 file3

displays the files in the order given. To advance from one file to

the next, press Ctrl-C.

A CAMG chunk is

part of an IFF file that

describes in which

viewmode the picture

should be displayed.

8-44 AmigaDOS Reference

1> DISPLAY from Scriptlist

displays the files listed in the Scriptlist file. Pressing Ctrl-C

will advance to the next file.

1 > DISPLAY from Scriptlist OPT mp

displays the files listed in the Scriptlist file. Clicking the

selection button advances to the next file in the list. Clicking

the menu button displays the previous file. Each file is printed

as it is displayed.

1 > DISPLAY from Scriptlist OPT t = 5

displays each file in the Scriptlist file for five seconds.

ECHO

Format: ECHO [<string>] (NOLINE] (FIRST <n>]

[LEN <n>) [TO<device|file>]

Template: /M,NOLINE/S,FIRST/K/N,LEN/K/N,TO/K

Purpose: To display a string.

Path: Internal

Specification:

ECHO writes the specified string to the current output

window or device, usually the screen. By using the TO option,

you can send the string to a device or file. When the string

contains spaces, the whole string must be enclosed in double

quotes. (ECHO is commonly used in scripts.)

When the NOLINE option is specified, ECHO does not

automatically move the cursor to the next line after printing

the string.

The FIRST and LEN options allow the echoing of a substring.

FIRST <n> indicates the character position to begin the echo;

LEN <n> indicates the number of characters of the substring

to echo, beginning with the first character. If the FIRSToption

is omitted and only the LEN keyword is given, the substring

printed will consist of the rightmost <n> characters of the

AmigaDOS Reference 8-45

main string. For instance, if your string is 20 characters long

and you specify LEN4, the 17th, 18th, 19th, and 20th

characters of the string will be echoed.

Examples:

1> ECHO "hello out there!"

hello out there!

1 > ECHO -hello out there!" NOLINE FIRST 0 LEN 5

hellol ■

ED

Format: ED [FROM] <filename> (SIZE <n>] [WITH]

IWINDOW] (TABS| [WIDTH| [HEIGHT]

Template: FROM/A,SIZE/N,WITH/K,WINDOW/K,

_ TABS/N, WIDTH - COLS/N,HEIGHT - ROWS/N

Purpose: To edit text files (a screen editor).

Path: C:ED

Specification:

See Chapter 9, "Editors."

EDIT

Format: EDIT [FROM] <filename> [|TO] <filename>]

[WITH <filename>] [VER <filename>]

[[OPT P <lines>|W <chars>|

(PREVIOUS <lines>|WIDTH <chars>]|

Template: FROM/A,TO,WITH/K,VER/K,OPT/K,

WIDTH/N,PREVIOUS/N

Purpose: To edit text files by processing the source file

sequentially (a line editor).

Path: C:EDIT

Specification:

See Chapter 9, "Editors."

8-46 AmigaDOS Reference

ELSE

Format:

Template:

Purpose:

Path:

ELSE

(none)

To specify an alternative for an IF statement in a

script file.

Internal

Specification:

ELSE is used in an IF block of a script to specify an alternative

action in case the IF condition is not true. If the IF condition is

not true, execution of the script will jump from the IF line to

the line after ELSE; all intervening commands will be skipped.

If the IF condition is true, the commands immediately

following the IF statement are executed up to the ELSE. Then,

execution skips to the ENDIF statement that concludes the

IF block.

Example:

Assume a script, call Display, contained the following block:

IF exists <name>

TYPE <name> OPT n

ELSE

ECHO '■<name> is not in this directory"

ENDIF

To execute this script, you could type:

1> EXECUTE Display work/prg2

If the work/prg2 file can be found in the current directory, the

TYPE <name> OPT n command will be executed. The work/prgl

file will be displayed on the screen with line numbers.

AmigaDOS Reference 8-47

If the work/prg2 file cannot be round in the current directory,

the script will skip ahead to the ECHO "<name> is not in this

directory" command. The message work/prg2 is not in this directory

will be displayed in the Shell window.

See also: IF, ENDIF, EXECUTE

Format:

Template

Purpose:

Path:

ENDCLI

(nonel

To end a

Internal

Specification:

ENDCLI

See also:

Format:

Template

Purpose:

Path:

ends a Shell

ENDSHELL

ENDIF

(none)

ENDCLI

Shell process.

process.

ENDIF

To terminate an IF bloc

Internal

Specification:

ENDIF is used in scripts at the end of an IF block. If the IF

condition is not true, or if the true condition commands were

executed and an ELSE has been encountered, the execution of

the script will skip to the next ENDIF command. Every IF

statement must be terminated by an ENDIF.

The ENDIF applies to the most recent IF or ELSE command.

See also: IF, ELSE

8-48 AmigaDOS Reference

ENDSHELL

Format: ENDSHELL

Template: (nonel

Purpose: To end a Shell process.

Path: Internal

Specification:

ENDCLI also closes a ENDSHELL ends a Shell process.
Shell window.

ENDSHELL should only be used when the Workbench is

loaded or another Shell is running. If you have quit the

Workbench and you close your only Shell, you will be unable

to communicate with the Amiga. Your only recourse will be to

reboot.

The Shell window may not close if any processes that were

launched from the Shell are still running. Even though the

window stays opens, the Shell will not accept new input. You'

must terminate those processes before the window will close.

For instance, if you opened an editor from the Shell, the Shell

window will not close until you exit the editor.

ENDSKIP

Format: ENDSKIP

Template: (none)

Purpose: To terminate a SKIP block in a script file.

Path: Internal

Specification:

ENDSKIP is used in scripts to terminate the execution of a

SKIP block. (A SKIP block allows you to jump over intervening

commands if a certain condition is met.) When an ENDSKIP

is encountered, execution of the script resumes at the line

following the ENDSKIP. The condition flag is set to 5 (WARN).

See also: SKIP

AmigaDOS Reference 8-49

** EVAL

Format: EVAL <valuel> [<operation>| [<value2>] [TO

<file>] [LFORMAT= <string>]

Template: VALUE1/A,OP,VALUE2/M,TO/K,LFORMAT/K

Purpose: To evaluate simple expressions.

Path: C:EVAL

Specification:

EVAL is used to evaluate and print the answer of an integer

expression. The fractional portion of input values and final

results, if any, is truncated (cut off).

<Valuel> and <value2> may be in decimal, hexadecimal, or

octal numbers. Decimal numbers are the default. Hexadecimal

numbers are indicated by either a leading Ox or #X. Octal

numbers are indicated by either a leading 0 or a leading #.

Alphabetical characters are indicated by a leading single

quote (').

You can specify multiple arguments for <value2>.

The output format defaults to decimal; however, you can

use the LFORMAT keyword to select another format. The

LFORMAT keyword specifies the formatting string used to

print the answer. You may use %X (hexadecimal), %O (octal),

%N (decimal), or %C (character). The %X and %O options

require a number of digits specification (i.e., %X8 gives 8 digits

of hex output). When using the LFORMAT keyword, you can

specify that a new line should be printed by including a "N in

your string.

8-50 AmigaDOS Reference

The supported operations and their corresponding symbols are

shown in the table below:

FVAT, Operation*

Operation Symbol

addition

subtraction

multiplication

division

modulo

AND

OR

NOT

left shift

right shift

negation

exclusive OR

+

—

*

/

mod

&

«

»

-

xor

bitwise equivalence eqv

EVAL can be used in scripts to act as a counter for loops. In that

case, the TO option, which sends the output of EVAL to a file,

is very useful.

Parentheses may be used in the expressions.

Examples:

1>EVAL64/8 + 2

10

1> EVAL 0x4f / 010 LFORMAT = "The answer is %X4*N"

The answer is 0009

1>

This divides hexadecimal 4f (79) by octal 10 (8), yielding 0009,

the integer portion of the decimal answer 9.875. (The 1>

prompt would have appeared immediately after the 0009 if

*N had not been specified in the LFORMAT string.)

AmigaDOS Reference 8-51

Assume you were using the following script, called Loop:

.Key loop/a

; demo a loop using eval and skip

.Bra{

.Ketj
ECHO >ENV:Loop {loop}

LAB start

ECHO "Loop #" noline

TYPE ENV:Loop

EVAL <ENV:Loop >NIL: to = T:Qwe{$S} value2=1 op = - ?

TYPE >ENV:LoopT:Qwe{SS|
IF val Sloop GT0

SKIP start back

ENOIF

ECHO "done"

If you were to type:

1> EXECUTE Loop 5

Loop #5

Loop #4

Loop #3

Loop #2

Loop #1

done

The first ECHO command sends the number given as the loop

argument, entered as an argument of the EXECUTE command,

to the ENV:Loopfile.

The second ECHO command coupled with the TYPE

command, displays Loop # followed by the number given as

the loop argument. In this case, it displays Loop #5.

The EVAL command takes the number in the ENV:Loop file as

<valuel>. <Value2> is 1, and the operation is subtraction.

The output of the EVAL command is sent to the T:Qwe($$) file.

In this case, the value would be 4.

The next TYPE command sends the value in the T:Qwe|$$) file

to the ENV:Loop file. In this case, it changes the value in

ENV: Loop from 5 to 4.

8-52 AmigaDOS Reference

A list of acceptable

key combinations can

be found on page 5-29.

The IF statement states that as long as the value for Loop is

greater than 0, the script should start over. This results in the

next line being Loop #4.

The script will continue until Loop is equal to 0.

EXCHANGE

Format: EXCHANGE |CX_POPKEY = <key>]

|CX_POPUP = no|[CX_PRIORITY = <n>)

Template: CX_POPKEY/K,CX_POPUP/K,

CX_PRIORITY/K/N

Purpose: To monitor and control the Commodity Exchange

programs.

Path: SYS:Utilities/Exchange

Specification:

EXCHANGE is a Commodity Exchange program that

monitors and controls all the other Commodity Exchange

programs. CX_POPKEY = <key(s)> allows you to specify the

hot key for the program. If more than one key is specified, be

sure to enclose the entire argument in double-quotes (i.e.,

"CX^POPKEY - Shift Fl").

CX_POPUP = no will keep the Exchange window from

opening.

CX_PRIORITY - <n> sets the priority of Exchange in relation

to all the other Commodity Exchange programs. All the

Commodity Exchange programs are set to a default priority

Of 0.

To kill Exchange, press Ctrl-E.

Example:

1> EXCHANGE "CX^POPKEY = Shift F1"

The Exchange program will be started and its window will

appear on the screen. If you Hide the window, then want to

bring it back again, the hot key combination is Shift-Fl.

AmigaDOS Reference 8-53

^
EXECUTE

Format: EXECUTE <script> [{<argumcnts>}|

Template: (none)

Purpose: To execute a script with optional argument

substitution.

Path: C: EXECUTE

Specification:

EXECUTE is used to run scripts of AmigaDOS commands. The

lines in the seript are executed just as if they had been typed at

a Shell prompt. If the s protection bit of a file is set and the file

is in the search path, you only need to type the filename—the

EXECUTE command is not needed.

You can use parameter substitution in scripts by including

special keywords in the script. When these keywords are used,

you can pass variables to the script by including the variable in

the EXECUTE command line. Before the script is executed,

AmigaDOS checks the parameter names in the script against

any arguments given on the command line. If any match,

AmigaDOS substitutes the values you specified on the

command line for the parameter name in the script. You can

also specify default values for AmigaDOS to use if no variables

are given. If you have not specified a variable, and there is no

default specified in the script, then the value of the parameter

is empty (no substitution is made}.

The permissible keywords for parameter substitution are

explained below. Each keyword must be prefaced with a dot

character!.).

The .KEY (or .K) keyword specifies both keyword names and

positions in a script. It tells EXECUTE how many parameters

to expect and how to interpret them. In other words, .KEY

serves as a template for the parameter values you specify. Only

one .KEY statement is allowed per script. If present, it should

be the first line in the file.

EXECUTE is generally

made resident during

the startup-sequence.

8-54 AmigaDOS Reference

The arguments on the .KEY line can be given with the /A and

/K directives, which work the same as in an AmigaDOS

template. Arguments followed by /A are required; arguments

followed by /K require the name of that argument as a

keyword. For example, if a script starts with .KEY filename/A it

indicates that a filename must be given on the EXECUTE

command line after the name of the script. This filename will

be substituted in subsequent lines of the script. For instance, if

the first line of a script is:

.KEYfilename'A, TOname/K

You must specify a filename variable. The TOname variable is

optional, but if specified the TOname keyword must be used.

For instance:

1 > EXECUTE Script Textfile TOname NewFile

Before execution, AmigaDOS scans the script for any items

enclosed by BRA and KETcharacters (< and >). Such items

may consist of a keyword or a keyword and a default value.

Wherever EXECUTE finds a keyword enclosed in angle-

brackets, it tries to substitute a parameter. However, if you

want to use a string in your script file that contains angle

brackets, you will have to define substitute "bracket"

characters with the .BRA and .KET commands. .BRA <ch>

changes the opening bracket character to <ch>, while .KEY

changes the closing bracket character to <ch>. For example:

KEY filename

ECHO "This line does NOT print -angle - brackets.'

.BRA{

.ket}

ECHO "This line DOES print - angle ■ brackets."

ECHO "The specified filename is {filename}."

would result in the following output:

1> EXECUTE script TestFile

This line does NOT print brackets.

This line DOES print <angle ■ brackets.

The specified filename is TestFile.

AmigaDOS Reference 8-55

The first ECHO statement causes AmigaDOS to look for a

variable to substitute for the <anglc> parameter. If no

argument was given on the EXECUTE command line, the null

string is substituted. The .BRA and .KETcommands then tell

the script to use braces to enclose parameters. So, when the

second ECHO statement is executed, the angle brackets will be

printed. The third ECHO statement illustrates that the braces

now function as the bracket characters.

When enclosing a keyword in bracket characters, you can also

specify a default string to be used if a variable is not supplied

on the command line. There are two ways to specify a default.

The first way requires that you specify the default every time

you reference a parameter. You must separate the two strings

with a dollar sign {$).

For example, in the following statement:

ECHO'VwordtSdefwordi ■ is the default for Wordi."

dcfwordl is the default value specified for wordl. It will be

printed if no other variable is given for wordl. However, if you

want to specify this default several times in your script, you

would have to use <wordlSdefwordl > each time.

The .DOLLAR <eh> command allows you to change the

default character from S to <ch>. (You can also use .DOL

<ch>.) For instance:

.DOL#

ECHO '^wordUdefwordi is the default for Wordl."

The second way to define a default uses the .DEF command.

This allows you to specify a default for each specific keyword.

8-56 AmigaDOS Reference

For example:

DEF wordl "defwordl"

assigns defwordl as the default for the wordl parameter

throughout the script. The following statement:

ECHO "<word1 > is the default for Wordl."

results in the same output as the previous ECHO statement:

defwordl is the default for Wordl.

You can embed comments in a script by including them after a

semicolon!;) or by typing a dot (.), followed by a space, then the

comment.

Summary of Dot Commands

.KEY Argument template used to

specify the format of arguments;

may be abbreviated to .K

.DOT <ch>

.BRA <ch>

.KET <ch>

.DOLLAR <ch>

.DEF <keyword

value >

.<space>

■\

Change dot character from . to

<ch>

Change opening "bracket"

character from < to <ch>

Change closing "bracket"

character from > to <ch>

Change default character from S

to <ch>; may be abbreviated to

.DOL

Give default to parameter

Comment line

Blank comment line

AmigaDOS Reference 8-57

When you EXECUTE a command line, AmigaDOS looks at the

first line of the script. If it starts with a dot command,

AmigaDOS scans the script looking for parameter substitution

and builds a temporary file in the T: directory. If the file does

not start with a dot command, AmigaDOS assumes that no

parameter substitution is necessary and starts executing the

file immediately without copying it to T:. If you do not need

parameter substitution, do not use dot commands as they

require extras disk accesses and increase execution time.

AmigaDOS provides a number of commands that are useful in

scripts, such as IF, ELSE, SKIP, LAB, and QUIT. These

commands, as well as the EXECUTE command, can be nested

in a script. That is, a script can contain EXECUTE commands.

To stop the execution of a script, press Ctrl-D. If you have

nested script files, you can stop the set of EXECUTE

commands by pressing Ctrl-C. Ctrl-D only stops the current

script from executing.

The current Shell number can be referenced by the characters

<$$>. This is useful in creating unique temporary files, logical

assignments, and PIPE names.

Examples:

Assume the script List contains the following:

K filename

RUNCOPY<filename>TOPRT: +

ECHO "Printing of <filename> done"

The following command

1> EXECUTE List Test/Prg

acts as though you had typed the following commands at the

keyboard:

1> RUN COPY Test/Prg TO PRT: +

1 > ECHO "Printing of Test/Prg done"

8-58 AmigaDOS Reference

Another example, Display, uses more of the features described

above:

.Key name/A

IF EXISTS ■ name>

TYPE <name-- NUMBER ;if the file is in the given directory.

;type it with line numbers

ELSE

ECHO "<name> is not in this directory"

ENDIF

The command: i

1> RUN EXECUTE Display Work/Prg2

should display the Work/Prg2 file, with line numbers on the

screen, if it exists on the current directory. If the file is not

there, the screen displays an error message. Because of the /A,

if a filename is not given on the command line after display, an

error will occur.

See also: IF, SKIP, FAILAT, LAB, ECHO, RUN, QUIT

FAILAT

Format: FAILAT |<n>|

Template: RCLIM/N

Purpose: To instruct a command sequence to fail if a

program gives a return code greater than or equal

to the given value.

Path: Internal

Specification:

Commands indicate that they have failed in some way by

setting a return code. A nonzero return code indicates that the

command has encountered an error of some sort. The return

code, normally 5, 10, or 20, indicates how serious the error

AmigaDOS Reference 8-59

~

~

was, A return code greater than or equal to a certain limit, the

fail limit, terminates a sequence of non-interactive commands

(commands you specify after RUN or in a script),

You may use the FAILAT command to alter the fail limit

RCLIM (Return Code Limit) from its initial value of 10. If you

increase the limit, you indicate that certain classes of error

should not be regarded as fatal and that execution of

subsequent commands may proceed after an error. The

argument must be a positive number. The fail limit is reset to

the initial value of 10 on exit from the command sequence.

If the argument is omitted, the current fail limit is displayed.

Example;

Assume a script contains the following lines:

COPYDF0:MyFiletoRAM:

ECHO "MyFile being copied."

If MyFile cannot be found, the script will he aborted and the

following message will appear in the Shell window:

COPY: object not found

COPY (ailed returncode 20:

However, if you changed the return code limit to higher than

20, the script would continue even if the COPY command

fails. For instance, if you changed the script to read:

FAILAT 21

COPY DFO:MyFile to RAM:

ECHO "MyFile being copied "

even if MyFile cannot be found, the script will continue. The

following message will appear in the Shell window

COPY: object not found

MyFile being copied.

See also: ECHO, EXECUTE

8-60 AmigaDOS Reference

A complete list of er

ror messages starts on

page 8-131,

FAULT

Format: FAULT <error number(s)>

Template: /N,/N,/N,/N,/N,/N,/N,/N,/N,/N

Purpose: To print the messagcs(s) for the specified error

code[s).

Path: Internal

Specification:

FAULT prints the message(s) corresponding to the error

numbcr(s) supplied. Up to ten error numbers can be specified at

once. If several error numbers are given with FAULT, they may

be separated by commas or spaces.

Example:

If you received the error message Error when opening DF1 :TestFile

205 and needed more information, you would type:

1 > FAULT 205

FAULT 205: object not found

This tells you that the error occurred because TestFile could

not be found on DF1:.

FILENOTE

Format: FILENOTE [FILE] <file|pattern> [[COMMENT]

<comment>] |ALL| [QUIET]

Template: FILE/A,COMMENT,ALL/S,QUIET/S

Purpose: To attach a comment to a file.

Path: C: FILENOTE

Specification:

FILENOTE attaches an optional comment of up to 79

characters to the specified file or to all files matching the given

pattern.

AmigaDOS Reference 8-61

If the <comment> includes spaces, it must be enclosed in

double quotes. To include double quotes in a filenote, each

literal quote mark must be immediately preceded by an

asterisk (*|, and the entire comment must be enclosed in

quotes, regardless of whether the comment contains any

spaces.

If the <comment> argument is omitted, any existing filenote

will be deleted from the named file.

Creating a comment with FILENOTE is the same as entering a

comment into the Comment gadget of an icon's Information

window. Changes made with FILENOTE will be reflected in

the Information window, and vice versa.

When an existing file is copied to (specified as the TO

r argument of a COPY command), it will be overwritten, but its

comment will be retained. Any comment attached to a FROM

file will not be copied unless the CLONE or COM option of

COPY is specified.

If the ALL option is given, FILENOTE will add the

<comment> to all the files in the specified directory. If the

QUIEToption is given, screen output is suppressed.

Examples:

1 > FILENOTE Sonata "allegro non troppo'

attaches the filenote allegro non troppo to the Sonata file.

1> FILENOTE Toccata —presto—

Here the filenote is "presto".

8-62 AmigaDOS Reference

FIXFONTS

Format: FIXFONTS

Template: (none)

Purpose: To update the .font files of the FONTS: directory.

Path: SYS:System/FixFonts

Specification:

FIXFONTS runs the FixFonts program. (FIXFONTS does not

support any arguments.) Your disk light will come on while the

FONTS: directory is updated. When the update is finished, the

light will go out and a Shell prompt will appear.

Example:

1> FIXFONTS

Format:

Template:

FKEY

FKEY(Fl-F10 = <strmg>][SFl-SF10 = <string>]

|CX_PRIORITY-n] [CX_POPUP = yes|no

|CX_POPKEY = <key>

KEY,CX_PRIORITY/K/N,CX_POPUP/K,

CX.POPKEY/K

Purpose: To assign text to function and shifted functions

keys.

Path: Extras2.0:Tools/Commodities/FKey

Specification:

FKEY is a Commodities Exchange program that allows you to

assign a text string to the function keys and shifted function

keys. The output of the function keys is viewable through the

Execute Command menu item or in a Shell window.

AmigaDOS Reference 8-63

Example:

1>RUNFKEYF4 = INF0\n CX_POPUP = no

assigns the INFO command to the F4 key. The FKey program

will be started but the CX_POPUP = no option keeps the

window from opening. Pressing F4 while working in a Shell

window is the same as typing the INFO command and pressing

Return.

FONT

Format: FONT (FROM <filename>] [EDIT] (USE) (SAVE]

[WORKBENCH] [SCREEN] [SYSTEM]

Template: FROM,EDIT/S,USE/S,SAVE/S,WORKBENCH/S,

SCREEN/S,SYSTEM/S

Purpose: To specify the font(s) used by the system.

Path: SYS:Prefs/Font

Specifications:

FONT with no arguments or with the EDIT argument opens

the Font editor.

The FROM argument must be used in combination with at

least one WORKBENCH, SCREEN, or SYSTEM switch. (You

can use more than one switch.) This allows you to specify a

particular font to be used in the designated area(s) of the screen.

The FROM file must be one that was previously saved with the

Save As menu item of the Font editor's Project menu. Even

if the font in the FROM file was originally saved as one type

of text, it can be used in a different area of the screen by

specifying the appropriate switch. For instance, if the FROM

file was created when you saved a font as Screen text, that font

can be used as the Workbench icon text by specifying the

WORKBENCH switch after the filename.

8-64 AmigaDOS Reference

If you specify the USE option, the font will be loaded into the

appropriate area and used, just as if you had opened the Font

editor, selected the appropriate radio button, chosen the font,

and selected the Use gadget. If you specify the SAVE option,

that font will be saved.

If you do not specify USE or SAVE, EDIT is assumed, and the

Font editor is opened. If a FROM file and a WORKBENCH,

SCREEN, or SYSTEM switch is specified, the Font editor will

open with the font saved in the FROM file displayed next to

the selected radio button(s). If no switch is specified with the

FROM file, the editor will display the last used configuration.

Examples:

1 > FONT Prefs/Presets/Font.screen WORKBENCH

opens the Font editor. The font previously saved in the

Font.screen file will be displayed in the Workbench icon text

gadget. You must select the Save, Use or Cancel gadget to close

the editor.

1> FONT Prefs/Presets/Font.screen WORKBENCH USE

uses the font saved in the Font.screen file as the Workbench

icon text. The Font editor is not opened. The font choice will

be lost if the system is rebooted.

1> FONT Prefs/Presets/Font.screen SCREEN WORKBENCH USE

uses the font saved in the Font.screen file as both the Screen

text and the Workbench icon text.

AmigaDOS Reference 8-65

FORMAT

Format: FORMAT DRIVE <drive> NAME <name>

NOICONS] (QUICK] [FFS] [NOFFS]

Template: DRIVE/A/K,NAME/A/K,NOICON/S,QUICK/S,

FFS/S,NOFFS/S

Purpose: To format a disk for use with the Amiga.

Path: SYS:System/Format

Specification:

To format a disk, you must specify both the DRIVE and the

NAME keywords. The name can be from one to thirty-one

characters in length. If you include spaces in the name, it must

be enclosed in double quotes.

The NOICONS option prevents a Trashcan icon from being

added to the newly formatted disk.

The QUICK option specifies that FORMAT will only format

and create the root block (and track), the boot block (and track),

and create the bitmap blocks. This is useful when reformatting

a previously formatted floppy disk.

Normally, floppy disks are formatted with the old file system.

For hard disks, FORMAT uses information specified by the

HDToolbox program or in the MountList to determine the

DOS type and file system. The FFS option marks the disk as

being used with the FastFileSystem and overrides the

MountList keywords or any other default file systems.

Examples:

1 > FORMAT DRIVE DFO: NAME EmptyOisk

formats the disk in drive DFO:, erases any data, and names the

disk EmptyDisk.

To reformat, or erase, a disk that already contains data, use the

QUICK option.

1 > FORMAT DRIVE DF2: NAME NewDisk QUICK

8-66 AmigaDOS Reference

GET

Format: GET <name>

Template: NAME/A

Purpose: To get the value of a local variable.

Path: Internal

Specification:

GET is used to retrieve and display the value of a local

environment variable. The value is displayed in the current

window.

Local environment variables are only recognized by the Shell

in which they are created, or by any Shells created from a

NEWSHELL command executed in the original Shell. If you

open an additional Shell by opening the Shell icon or by using

the Execute Command menu item, previously created local

environment variables will not be available.

Example:

1> GET editor

Extras2.0:Tools'MEmacs

See also: SET

GETENV

Format: GETENV <name>

Template: NAME/A

Purpose: To get the value of a global variable.

Path: Internal

Specification:

GETENV is used to retrieve and display the value of a global

environment variable. The value is displayed in the current

window. Global variables are stored in ENV: and are recognized

by all Shells.

AmigaDOS Reference 8-67

Example:

1>GETENV editor

Extras2.0;Tools/MEmacs

See also: SETENV

GRAPHICDUMP

Format: GRAPHICDUMP [TINY|SMALL|MEDIUM|

LARGE|<xdots>:<ydots>]

Template: TINY/S,SMALL/S,MEDIUM/S,LARCE/S,

<xdots>:<ydots>/S

Purpose: To print the frontmost screen.

Path: Extras2.0:Tools/GraphicDump

Specification:

GRAPHICDUMP sends a dump of the frontmost screen to the

printer about ten seconds after issuing the command. The size

options, which correspond to the program's acceptable Tool

Types, determine the width of the printout:

TINY 1/4 the total width allowed by the printer

SMALL 1/2 the total width allowed by the printer

MEDIUM 3/4 the total width allowed by the printer

LARGE the full width allowed by the printer

The height of the printout is such that the perspective of the

screen is maintained.

To specify specific dimensions, substitute the absolute width

in dots for <xdots> and the absolute height for <ydots>.

Examples:

1> GRAPHICDUMP SMALL

will produce a printout of the frontmost screen that is about

one-half the total width allowed by the printer.

1> GRAPHICOUMP 600:300

will produce a printout that is 600 dots wide by 300 dots high.

8-68 AmigaDOS Reference

ICONEDIT

Format: ICONEDIT

Template: (none)

Purpose: To edit the appearance and type of icons.

Path: Extras2.0:Tools/IconEdit

Specification:

ICONEDIT opens the IconEdit program. The command does

not support any arguments.

Example:

1> ICONEDIT

ICONTROL

Format: ICONTROL [FROM <filename>] [EDIT| [USE]

[SAVE]

Template: FROM,EDIT/S,USE/S,SAVE/S

Purpose: To specify parameters used by the Workbench.

Path: SYS:Prefs/IControl

Specification:

ICONTROL without any arguments or with the EDIT

argument opens the IControl editor. The FROM argument

lets you specify a file to open. This must be a file that was

previously saved with the Save As menu item of the IControl

editor. For instance, if you have saved a special configuration of

the IControl editor to a file in the Presets drawer, you can use

the FROM argument to open that file. If the USE switch is also

given, the editor will not open, but the settings in the FROM

file will be used. If the SAVE switch is given, the editor will not

open, but the settings in the FROM file will be saved.

AmigaDOS Reference 8-69

^

Example:

1> ICONTROL Prefs/Presets/IControl.pre USE

uses the settings that were saved in the IControl.pre file. The

editor is not opened.

ICONX

Format: ICONX

Template: (none)

Purpose: To allow execution of a script file from an icon.

Path: CICONX

Specification:

ICONX allows you to execute a script file of AmigaDOS

commands via an icon.

To use ICONX, create or copy a project icon for the script.

Open the icon's Information window and change the Default

Tool of the icon to OICONX. Add the WINDOW = and

DELAY = Tool Types if you choose, and select Save to store the

changed .info file. The script can then be executed by double-

clicking on the icon.

When the icon is opened, ICONX changes the cunent directory

to the directory containing the project icon before executing

the script. An input/output window for the script file will be

opened on the Workbench screen. The icon's WINDOW = Tool

Type can be used to specify the size of the window. You can add

a delay (specified in seconds) after the execution of the file is

complete with the DELAY = Tool Type. This will keep the

window open to allow time for reading the output. If a 0 is

specified for DELAY-, ICONX waits for a Ctrl-C before

exiting.

Complete informa

tion on the WINDOW =

specifications >s gi\ -

on page 7-38.

8-70 AmigaDOS Reference

Extended selection can be used to pass files that have icons to

the script. Their filenames appear to the script as keywords. To

use this facility, the .KEY keyword must appear at the start of

the script. In this case, the AmigaDOS EXECUTE command is

used to execute the script file.

See Also: EXECUTE

IF

Format: IF [NOT] |WARN| [ERROR] [FAIL) |<string>

EQ|GT|GE <string>] [VAL| [EXISTS

<filename>]

Template: NOT/S,WARN/S,ERROR/S,FAIL/S,,EQ/K,

GT/K,GE/K,VAL/S,EXISTS/K

Purpose: To evaluate conditional operations in script files.

Path: Internal

Specification:

In a script file, IF, when its conditional is true, carries out all

the subsequent commands until an ENDIF or ELSE command

is found. When the conditional is not true, execution skips

directly to the ENDIF or to an ELSE. The conditions and

commands in IF and ELSE blocks can span more than one line

before their corresponding ENDIFs.

Following are some of the ways you can use the IF, ELSE, and

ENDIF commands:

w

IF <condition>

<command(s)>

ENDIF

IF <condition>

<command(s)>

ELSE

<command(s]>

ENDIF

IF <condition>

<command(s)>

IF <condition>

<command(s)>

ENDIF

ENDIF

AmigaDOS Reference 8-71

ELSE is optional, and nested IFs jump to the nearest ENDIF.

The additional keywords are as follows:

NOT Reverses the interpretation of the result.

WARN True if previous return code is greater than

or equal to 5.

ERROR True if previous return code is greater than or

equal to 10; only available if you set FAILAT

to greater than 10.

FAIL True if previous return code is greater than or

equal to 20; only available if you set FAILAT

to greater than 20.

<a> EQ True if the text of a and b is identical

(disregarding case).

^ EXISTS <filc> True if the file exists.

If more than one of the three condition-flag keywords (WARN,

ERROR, FAIL] are given, the one with the lowest value is used.

IF supports the GT [greater than) and GE (greater than or equal

to) comparisons. Normally, the comparisons are performed as

string comparisons. However, if the VAL option is specified,

the comparison is a numeric comparison.

NOTE: You can use NOT GE for LTand NOT GT for LE.

You can use local or global variables with IF by prefacing the

variable name with a $ character.

Examples:

IF EXISTS Work/Prog

TYPE Work, Prog

- ELSE

ECHO "It's not here"

ENDIF

If the file Work/Prog exists in the current directory, then

AmigaDOS displays it. Otherwise, AmigaDOS displays the

message It's not here and continues after the ENDIF.

8-72 AmigaDOS Reference

A list of acceptable

key combinations can

be found on page 5-29.

IF ERROR

SKIP errlab

ENDIF

ECHO "No error

LAB errlab

If the previous command produced a return code greater than

or equal to 10 then AmigaDOS skips over the ECHO command

to the errlab label.

See also: EXECUTE, FAILAT, LAB, QUIT, SKIP

IHELP

Format: IHELP [CYCLE = <key>] [MAKEBIG = <key>]

[MAKESMALL = <key>] [CYCLESCREEN =

<key>] [ZIPWINDOW = <key>

[CX_PRIORITY=<n>]

Template: CYCLE/K,MAKEBIG/K,MAKESMALL/K,

CYCLESCREEN/K, ZIPWINDOW/K,

CX_PRIORITY/K/N

Purpose: To enable the keyboard to take over certain

mouse operations.

Path: Extras2.0:Tools/Commodities/IHelp

Specification:

IHELP is a Commodities Exchange program that lets you

assign functions normally performed by the window gadgets to

keys. The arguments supported by IHelp are the same as the

Tool Types that can be entered into the icon's Information

window. If a <key> argument specifies multiple keys, be sure

to enclose the entire argument in double quotes. A list of the

arguments follows:

CYCLE Cycles any open tool or project screens

from the back of the screen to the front.

MAKEBIG Makes the active window as large as

possible without moving it.

AmigaDOS Reference 8-73

MAKESMALL Makes the active window as small as

possible.

CYCLESCREEN Cycles through all open screens.

ZIPWINDOW Zooms the active window. (This is the

same as selecting the window's zoom

gadget.)

The CX_PRIORITY - <n> argument sets the priority of IHelp

in relation to all the other Commodity Exchange programs. All

the Commodity Exchange programs are set to a default priority

of 0. For instance, if IHelp has a priority of 3, it will intercept

any keys specified for the arguments before any other Exchange

programs.

Example:

1 IHELP "CYCLE = Alt F7" 'MAKESMALL = Control S" "MAKEBIG = Control B"

If you were to press Alt-F7, any project or tool windows would

cycle from front to back. The Ctrl-S combination makes the

selected window small; while the Ctrl-B combination makes

the selected window bigger.

INFO

Format: INFO [<device>]

Template: DEVICE

Purpose: To give information about the file system(s).

Path: OINFO

Specification:

INFO displays a line of information about each disk or

partition. This includes the maximum size of the disk, the

used and free space, the number of soft disk errors that have

occurred, and the status of the disk.

With the DEVICE argument, INFO provides information on

just one device or volume.

8-74 AmigaDOS Reference

Example:

1> INFO

Unit Size Used Free Full Errs Status Name

DF0: 879K 1738 20 98% 0 Read Only Workbench2.Q

DF1: 879K 418 1140 24% 0 Read/Write Text-6

Volumes available:

Workbench2.0 [Mounted]

Text-6 [Mounted]

INITPRINTER

Format: INITPRINTER

Template: (none!

Purpose: To initialize a printer for print options specified in

the Preferences editors.

Path: Extras2.0:Tools/InitPrinter

Specification:

INITPRINTER runs the InitPrinter program. (It does not

support any arguments.) You will hear the printer reset, then

the Shell prompt will return.

Example:

1 ■ INITPRINTER

AmigaDOS Reference 8-75

INPUT

Format: INPUT [FROM <filename>] [EDIT| [USE] [SAVE]

Template: FROM,EDIT/S,USE/S,SAVE/S

Purpose: To specify different speeds for the mouse and

keyboard.

Path: SYS:Prefs/Input

Specification:

INPUT without any arguments or with the EDIT argument

opens the Input editor. The FROM argument lets you specify a

file to open. This must be a file that was previously saved with

the Save As menu item of the Input editor. For instance, if you

have saved a special configuration of the Input editor to a file in

the Presets drawer, you can use the FROM argument to open

that file. If the USE switch is also given, the editor will not be

opened, but the settings in the FROM file will be used. If the

SAVE switch is given, the editor will not open, but the settings

in the FROM file will be saved.

Example:

1> INPUT Prels/Presets/lnput.fasl SAVE

loads and saves the settings from the Input.fast file. Even if the

system is rebooted, those settings will still be in effect. The

editor does not open.

8-76 AmigaDOS Reference

INSTALL

Format: INSTALL [DRIVE] <DFO:|DF1:|DF2:|DF3:>

[NOBOOT](CHECKj[FFS]

Template: DRIVE/A,NOBOOT/S,CHECK/S,FFS/S

Purpose: To write the boot block to a formatted floppy

disk, specifying whether it should be bootable.

Path: OINSTALL

Specification:

INSTALL clears a floppy disk's boot block area and writes

a valid boot block onto the disk. By default, the disk will be

given the boot block of the filing system specified when the

disk was initially formatted, either the old filing system (OFSl

or the FastFileSystem (FFS). To force FastFileSystem, use the

FFS switch.

The NOBOOT option removes the boot block from an

AmigaDOS disk, making it not bootable.

The NOBOOT option will write a boot block on a non-

AmigaDOS disk. INSTALL will use the default DOS type,

OFS, when writing to a non-AmigaDOS disk.

The CHECK option checks for valid boot code. It reports

whether a disk is bootable or not and whether standard

Commodore-Amiga boot code is present on the disk. The

condition flag is set to 0 if the boot code is standard (or the disk

isn't bootable), 5 (WARN) otherwise.

Examples:

1> INSTALL DF0: CHECK

No bootblock installed

indicates that there is a non-bootable floppy in DFO:.

1 > INSTALL DFO:

makes the disk in drive DFO: a bootable disk.

AmigaDOS Reference 8-77

O1> INSTALL DF0: CHECK

Appears to be FFS bootblock

indicates that there is an FFS floppy in DFO:.

IPREFS

Format: IPREFS

Template: (none)

Purpose: To communicate Preferences information stored

in the individual editor files to the Workbench.

Path: CIPREFS

Specifications:

IPREFS reads the individual system Preferences files and passes

the information to the Workbench so that it can reply

accordingly. IPREFS is generally run in the Startup-sequence

after the Preferences files are copied to ENV:. Each time a user

selects Save or Use from within an editor, IPREFS is notified

and passes the information along to Workbench. If necessary,

IPREFS will reset Workbench in order to implement those

changes. If any project or tool windows are open, IPREFS will

display a requester asking you to close any non-drawer

windows.

JOIN

Format: JOIN {<file|pattern>} AS|TO <filename>

Template: FILE/M,AS = TO/K/A

Purpose: To concatenate two or more files into a new file.

Path: C:JOIN

Specification:

JOIN copies all the listed files, in the order given, to one new

file. This destination file cannot have the same name as any of

the source files. You must supply a destination filename. The

8-78 AmigaDOS Reference

original files remain unchanged. Any number of files may be

JOINed in one operation.

TO can be used as a synonym for AS.

Example:

1 > JOIN Parti Part2 Part3 AS Textfile

KEYSHOW

Format: KEYSHOW

Template: (none)

Purpose: To display the current Keymap.

Path: Extras2.0:Tools/KeyShow

Specification:

KEYSHOW opens the KeyShow window. (The command does

not support any arguments.) To exit the program, select the

window's close gadget.

Example:

1> KEYSHOW

LAB

Format: LAB (<string>)

Template: (none)

Purpose: To specify a label in a script file.

Path: Internal

Specification:

LAB is used in scripts to define a label that is looked for by the

SKIP command. The label <string> may be of any length but

must be alphanumeric characters. No symbols are allowed. If

the <string> contains spaces, it must be enclosed in quotes.

See also: SKIP, IF, EXECUTE

AmigaDOS Reference 8-79

~

~

LIST

Format: LIST [{<dir|pattern>}] [P|PAT <pattern>] [KEYS|

[DATES| (NODATES] (TO <name>] [SUB

<string>] (SINCE <date>] |UPTO <date>|

(QUICKI [BLOCK] (NOHEAD] (FILES] [DIRS]

[LFORMAT <stnng>] (ALL]

Template: D1R/M,P - PAT/K,KEYS/S,DATES/S,NODATES/S,

TO/K,SUB/K,SINCE/K,UPTO/K,QUICK/S,

BLOCK/S,NOHEAD/S,FILES/S, DIRS/S,

LFORMAT/K,ALL/S

Purpose: To list specified information about directories and

files.

Path: OLIST

Specification:

LIST displays information about the contents of the current

directory. If you specify a <dir>, <pattern>, or <filename>

argument, LIST will display information about the specified

directory, all directories or files that match the pattern, or the

specified file, respectively.

Unless other options are specified, LIST displays the following:

name The name of the file or directory.

size The size of the file in bytes. If there is

nothing in this file, the field will read

empty. For directories, this entry reads Dir.

protection The protection bits that are set for this

file are shown as letters. The clear (unset)

bits are shown as hyphens. Most files will

show the default protection bits, —-rwed

for readable/writable/executable/delete-

able. See the PROTECT command for

more on protection bits.

8-80 AmigaDOS Reference

date and time The date and time the file was created or

last altered.

comment The comment, if any, placed on the file

using the FILENOTE command. It is

preceded by a colon (:).

LIST has options which will change the way the output is

displayed. These options are explained below:

KEYS

DATES

NODATES

TO <name>

SUB <string>

SINCE <date>

UPTO <datc>

QUICK

Displays the block number of each file

header or directory.

Displays dates in the form DD-MMM-YY

(the default unless you use QUICK|.

Will not display date and time

information.

Specifies an output file or device for LIST;

by default, LISToutputs to the current

window.

Lists only files containing the substring

<string>.

Lists only files created on or after a

certain date.

Lists only files created on or before a

certain date.

Lists only the names of files and

directories.

BLOCK

NOHEAD

FILES

DIRS

Displays file sizes in blocks, rather than

bytes.

Suppresses the printing of the header

information.

Lists files only |no directories).

Lists directories only (no files).

AmigaDOS Reference 8-81

LFORMAT Defines a string to specially format LIST

output.

ALL Lists all files in directories and

subdirectories.

The LFORMAT option modifies the output of LIST and can be

used as a quick method of generating script files. When

LFORMAT is specified, the QUICK and NOHEAD options are

automatically selected. When using LFORMAT you must

specify an output format specification string; this string is

incorporated into the resulting output. If you want the

output to be saved, you must redirect it to a file by using the

> operator or specifying a TO file.

The format for the output format specification string is

LFORMAT = <string>. To include the output of LIST in this

string, use the substitution operator %S. The path and

filename can be made part of the string this way. Whether the

path or the filename is substituted for an occurrence of %S

depends on how many occurrences are in the LFORMAT line,

and their order, as follows:

Occurrences of

1

2

3

4

Substituted with each occurrence

%S 1st 2nd 3rd

filename

path

path

path

filename

filename filename

filename path

4th

filename

Some new operators allow you to specify fields to be printed in

the LFORMAT output. These operators are:

%A Prints file attributes (protection bits).

%B Prints size of file in blocks.

%C Prints any comments attached to the file.

%D Prints the date associated with the file.

%F Prints the complete file parent path, regardless of

the current directory.

%K Prints the file key block.

When using %S, the

path is always rela

tive to the current

directory.

8-82 AmigaDOS Reference

o,

%L Prints the length of file in bytes.

%N Prints the name of the file.

%P Prints the file parent path relative to the current

directory.

%T Prints the time associated with the file.

You can put a length specifier and/or a justification specifier

between the percent sign (%) and the field specifier.

Examples:

1 > LIST Dirs

Monitors Dir — rwed 27-June-90 11:43:59

T Dir -— rwed Wednesday 11:37:43

Trashcan Dir —- rwed 21 -Jun-90 17:54:20

Only the directories in the current directory, in this case SYS:,

are listed. (A shortened version of the output is shown above.

1>LISTLi#?T0RAM:Libs.file

LIST will search for any directories or files that start with LI.

The output of LIST will be sent to the Libs.file in RAM:.

1> LIST DF0:Documents UPT0 09-Oct-90

Only the files or directories on the Documents directory of

DFO: that have not been changed since October 9, 1990, will be

listed.

1> LIST >RAM:Scriptnotes #? LFORMAT = "filenote %S%S Testnote"

A new script file, Scriptnotes, is created in RAM:. The

contents will include a list of all the files in the current

directory. When Scriptnotes is executed, it will add the filenote

Testnote to each file.

1 > LIST TestFile LFORMAT "%-25N %6L %A %-9D %T*N: %C"

TestFile 28 --rwed 28-May-91 14:45:40

The output is organized in the same way as the default LIST

output.

AmigaDOS Reference 8-83

~
LOADWB

Format: LOADWB [-DEBUG] [DELAY] [CLEANUP]

[NEWPATH]

Template: -DEBUG/S, DELAY/S, CLEANUP/S,

NEWPATH/S

Purpose: To start Workbench.

Path: C:LOADWB

Specification:

LOADWB starts the Workbench. Normally, this is done when

booting, by placing the LOADWB command in the Startup-

sequence file. If you shut down the Workbench, LOADWB can

be used from a Shell to restart it.

The -DEBUG option makes a special developer menu, Debug,

available in the Workbench menu bar. If the DELAY option is

specified, LOADWB waits three seconds before executing,

giving disk activity time to stop. The CLEANUP option

automatically performs a "cleanup" of the window.

Workbench snapshots the current paths in effect when the

LOADWB command is executed. It uses these paths for each

Shell started from Workbench. NEWPATH allows you to

specify a new path which is snapshot from the current Shell.

Example:

If you have quit the Workbench and are working through a

Shell, typing:

1 > LOADWB

will bring the Workbench back. Typing LOADWB when the

Workbench is already loaded has no effect.

1> PATH DF2:Bin ADD

1> LOADWB NEWPATH

loads Workbench. Any Shells started from the icon will have

the same path as the Shell used to run the LOADWB

NEWPATH command.

8-84 AmigaDOS Reference

LOCK

Format: LOCK <drive> [ON|OFF] [<passkey>]

Template: DRIVE/A,ON/S,OFF/S,PASSKEY

Purpose: To set the write protect status of a disk.

Path: CLOCK

Specification:

LOCK sets or unsets the write protect status of a disk or

partition. The LOCK remains on until the system is rebooted

or until the LOCK is turned off with the LOCK OFF command.

An optional passkey may be specified. If the passkey is used to

lock a hard disk partition, the same passkey must be specified

to unlock the partition. The passkey may be any number of

characters in length.

Example:

1> LOCK Work: ON SecretCode

The Work: partition is locked. You can read the contents of

Work: with commands like DIR, LIST or MORE, but you

cannot alter the contents of the partition. If you try to edit the

contents of a file on Work:, a requester will appear stating that

Work: is write-protected. For instance, if you try to create a

new directory, the following message will appear:

1>MAKEDIRW0RK:Test

Can't create directory Work:Test

Oisk is write-protected

To unlock the partition, type:

1> LOCK Work: OFF SecretCode

AmigaDOS Reference 8-84.2

~

^

MAGTAPE

Format: MAGTAPE [DEVICE <devicename>)

[UNIT <n>) [RET|RETENSION]

[REW|REWIND| [SKIP <n>]

Template: DEVICE/K,UNIT/N/K,RET = RETENSION/S,

REW = REWIND/S,SKIP/N/K

Purpose: To retension, rewind, or skip forward on SCSI

tapes.

Path: CMAGTAPE

Specification:

By default, MAGTAPE uses scsi.device unit 4. To change the

default, you must use both the DEVICE and UNIT keywords.

The RET|RETENSION option runs the tape to the end, then

rewinds it. The REW|REWIND options rewind the tape. The

SKIP <n> option allows you to skip files on the tape.

MAGTAPE tests to see if the unit is ready before sending the

command. If your tape is not on-line, you may have to repeat

the MAGTAPE command.

Example:

1 > MAGTAPE DEVICE second_scsi.device UNIT 0 REW

8-84.3 AmigaDOS Reference

MAKEDIR

Format: MAKEDIR {<name>}

Template: NAME/M

Purpose: To create a new directory.

Path: OMAKEDIR

Specification:

MAKEDIR creates a new, empty directory(s) with the name(s)

you specify. The command works within only one directory

level at a time, so any directories on the given path(s) must

already exist. The command fails if a directory or a file of the

same name already exists in the directory above it in the

hierarchy. MAKEDIR does not create a drawer icon for the new

directory.

Examples:

1> MAKEDIR Tests

creates a directory Tests in the current directory.

1> MAKEDIR DF1:Xyz

creates a directory Xyz in the root directory of the disk in DF1:.

1>CDDF0:

1> MAKEDIR Documents Payables Orders

creates three directories, Documents, Payables, and Orders, on

the disk in DFO:.

AmigaDOS Reference 8-85

~
MAKELINK

Format: MAKELINK (FROM] <file> (TO] <file> (HARD]

iFORCEl

Template: FROM/A,TO/A,HARD/S,FORCE/S

Purpose: To create a link between files.

Path: CMAKEL1NK

~

Specification:

MAKELINK creates a file on a disk that is a pointer to another

file, this is known as a link. When an application or command

calls the FROM file, the TO file is actually used. By default,

MAKELINK supports hard links—the FROM file and TO file

must be on the same volume.

NOTE: Soft links (symbolic links), which can be links across

volumes, are not currently supported.

Normally, MAKELINK docs not support directory links, as

they can be dangerous to applications. To create a directory

link, you must use the FORCE option. If MAKELINK detects

that you are creating a circular link, such as a link to a parent

directory, you will receive a Link loop not allowed message.

^

8-86 AmigaDOS Reference

MORE

Format: MORE <filename>

Template: FILENAME/K

Purpose: To display the contents of an ASCII file.

Path: SYS:Utilities/More

Specification:

MORE displays the contents of the file <filename>. If the file

is not in the current directory, you must specify the complete

path. If you don't specify a file, MORE will display a file

requester.

MORE also accepts input from a PIPE. Since standard input

from the Pipe-Handler is of unknown length, the Backspace, >,

and %n commands are disabled when the MORE input is from

a PIPE.

If the EDITOR environment variable is defined and you are

using MORE from the Shell, you can bring up an editor to use

on the file you are viewing (type Shift-E). The EDITOR variable

should have the complete path to the editor specified, i.e.

C:ED.

Example:

1>MOREDFO:TestFile

displays the contents of the ASCII file called TestFile on the

disk in drive DFO:.

AmigaDOS Reference 8-87

MOUNT

Format: MOUNT <device> [FROM <filename>]

Template: DEVICE/A,FROM/K

Purpose: To make a device connected to the system

available.

Path: C:MOUNT

Specification:

MOUNT causes AmigaDOS to recognize devices connected to

the system. When the MOUNT command is issued, MOUNT

looks in the DEVS:MountList file (or the optional FROM file)

for the parameters of the device that is being mounted.

MOUNTcommands are usually placed in the Startup-

sequence file.

Example:

Sample uses of MOUNT in the startup-sequence, include:

MOUNT Speak:

MOUNT Aux:

MOUNT Pipe:

These commands MOUNT the Speak.handler, Aux.handler,

and Pipe.handler found in the L: directory.

See also: Chapter 7, "Using AmigaDOS."

~

8-88 AmigaDOS Reference

NEVVCLI

Format: NEWCLI [<window specification>]

[FROM<filename>]

Template: WINDOW,FROM

Purpose: To start a new Shell process.

Path: Internal

Specifications:

NEWCLI starts a new Shell process. It is the same as using the

NEWSHELL command. See the specifications for NEWSHELL

for more information.

NEWSHELL

Format: NEWSHELL [<window specification^

|FROM<filename>]

Template: WINDOW,FROM

Purpose: To open a new interactive Shell window.

Path: Internal

Specifications:

NEWSHELL invokes a new, interactive Shell. The new

window becomes the currently-selected window and process.

The new window has the same current directory, prompt

string, and stack size as the one from which it was invoked.

However, each Shell window is independent, allowing separate

input, output, and program execution.

The window can be sized, dragged, zoomed, and depth-adjusted

just like most other Amiga windows.

AmigaDOS Reference 8-89

To create a custom window, you can include the WINDOW

argument. You may specify the initial dimensions, location,

and title of the window with this <window specification>

syntax:

CON:x/y/width/height/title/options

where:

x Is the number of pixels from the left edge of the

screen to the left border of the Shell window.

y Is the number of pixels from the top of the screen

to the top of the Shell window.

width Is the width of the Shell window, in pixels.

height Is the height of the Shell window, in pixels.

title Is the text that appears in the Shell window title

bar.

For a full explanation of the available options, see the

"Customizing the Window" section of Chapter 7 (page 7-38).

NEWSHELL uses the default startup file S:Shell-startup,

unless a FROM filename is specified. You might have several

different Shell-startup files, each having different command

aliases, for example. You can call such customized Shell

environments with FROM.

Examples:

1> NEWSHELL

a new Shell window will open.

8-90 AmigaDOS Reference

1> NEWSHELL CON:0 0 640 200 MyShell/CLOSE

a window starting in the upper left corner of the screen and

measuring 640 pixels wide and 200 pixels high will open. The

window will be titled MyShell, and it will have a close gadget.

If you add the command to your User-startup file, a Shell

window will open automatically when your Amiga is booted.

1> NEWSHELL FROM S:Programming.startup

opens a new Shell, but instead of executing the Shell-startup

file, the Programming.startup file is executed. You could have

aliases and prompt commands in the Programming-startup file

that you only use when you are programming.

NOCAPSLOCK

Format: NOCAPSLOCK [CX_PRIORITY = <n>

Template: CX_PRIORITY/K/N

Purpose: To disable the Caps Lock key.

Path: ExtrasLOiTools/Commodities/NoCapsLock

NOCAPSLOCK is a Commodity Exchange program that

temporarily disables the Caps Lock key.

CX_ PRIORITY = <n> sets the priority of NoCapsLock in

relation to all the other Commodity Exchange programs. All

the Commodity Exchange programs are set to a default priority
ofO.

To kill NoCapsLock, press Ctrl-E.

Example:

1> NOCAPSLOCK

AmigaDOS Reference 8-91

~

Format:

Template:

Purpose:

Path:

Specification

NOFASTMEM

NOFASTMEM

(none)

To force the Amiga to use i

RAM.

SYS:System/NoFastMem

NOFASTMEM disables any Fast (or expansion] RAM used by

the system. The expansion memory can be turned on again by

sending the NoFastMem program a break, either via the

BREAK command or by typing Ctrl-C. Ctrl-C will only work if

you don't start the program with the RUN command.

Example;

1> NOFASTMEM

OVERSCAN

Format: OVERSCAN [FROM <filename>] [EDIT] [USE]

(SAVE

Template: FROM,EDIT/S,USE/S,SAVE/S

Purpose: To change the sizes of the display areas for text

and graphics.

Pa th: S YS: Pref s/O verscan

Specification:

OVERSCAN without any arguments or with the EDIT

argument opens the Overscan editor. The FROM argument lets

you specify a file to open. This must be a file that was

previously saved with the Save As menu item of the Overscan

editor. For instance, if you have saved a special configuration of

the Overscan editor to a file in the Presets drawer, you can use

the FROM argument to open that file. If the USE switch is also

8-92 AmigaDOS Reference

given, the editor will not open, but the settings in the FROM

file will be used. If the SAVE switch is given, the editor will not

open, but the settings in the FROM file will be saved.

Example:

1> OVERSCAN Prefs/Presets/Overscan.graphics SAVE

loads and saves the Overscan sizes saved in the

Overscan.graphics file.

PALETTE

Format: PALETTE [FROM <filename>] [EDIT) [USE]

[SAVE]

Template: FROM,EDIT/S,USE/S,SAVE/S

Purpose: To change the colors of the Workbench screen.

Path: SYS:Prefs/Palette

Specification:

PALETTE without any arguments or with the EDIT argument

opens the Palette editor. The FROM argument lets you specify

a file to open. This must be a file that was previously saved

with the Save As menu item of the Palette editor. For instance,

if you have saved a special configuration of the Palette editor to

a flic in the Presets drawer, you can use the FROM argument to

open that file. If the USE switch is also given, the editor will

not be opened, but the settings in the FROM file will be used. If

the SAVE switch is given, the editor will not open, but the

settings in the FROM file will be saved.

Example:

1> PALETTE Prefs/Presets/Palette.grey USE

loads and uses the colors saved in the Palette,grey file. If the

system is rebooted, the previously saved colors will be used.

AmigaDOS Reference 8-93

— PATH

Format: PATH [{<dir>}] [ADD] [SHOW] |RESET| [QUIET]

[REMOVE]

Template: DIR/M,ADD/S,SHOW/S,RESET/S,QUIET/S,

REMOVE/S

Purpose: To control the directory list that the Shell

searches to find commands.

Path: Internal

Specification:

PATH lets you see; add to, or change the search path that

AmigaDOS follows when looking for a command or program

to execute. When a directory is in the search path, you no

longer need to specify the complete path to any files or

subdirectories within that directory. You can just enter the

filename, and AmigaDOS will look through the directories in

the search path until it finds the file.

Enter the PATH command alone, or with the SHOW option,

and the directory names in the current search path will be

displayed. Normally, when PATH is displaying the directory

names, a requester will appear if a volume that is part of the

search path cannot be found. For instance, if you added a floppy

disk to the search path, then removed that disk from the disk

drive, a requester would ask you to insert the disk.

If you specify the QUIET option, PATH will not display

requesters for volumes that are not currently mounted. If

PATH encounters an unmounted volume, it will simply

display the volume name. The names of any directories on that

volume included in the PATH will not be displayed.

The ADD option specifies directory names to be added to the

current PATH. You can add up to ten directories with one

PATH ADD command (the ADD keyword is optional); names

of the directories must be separated by at least one space.

8-94 AmigaDOS Reference

When you issue the PATH command, AmigaDOS searches for

each of the ADDed directories.

To replace the existing search path with a completely new one,

use PATH RESET followed by the names of the directories. The

existing search path, except for the current directory and

SYS:C, is erased and the new one is substituted.

The REMOVE option eliminates the named directory from the

search path.

Examples:

1> PATH EXTRAS2.0:Tools ADD

add the Tools directory on the Extras2.0 disk to the search path

of the Shell. If the Extras2.0 disk is not in a disk drive, a

requester will ask you to insert it in any drive.

If you remove ExtrasLO from the drive, and type:

1 > path

a list of directories in the search path will be displayed. A

requester will ask you to insert Extras2.0. However, if you had

typed:

1> PATH QUIET

the list of directories in the search path will be displayed;

however when the path comes to Extras2.0:Tools, only the

volume name, Extras2.0:, will appear in the list.

See also: ASSIGN

AmigaDOS Reference 8-95

~

~

POINTER

Format: POINTER [FROM <filename>] [EDIT] [USEj

[SAVE]

Template: FROM,EDIT/S,USE/S,SAVE/S

Purpose: To change the appearance of the screen pointer.

Path: SYS:Prefs/Pointer

Specification:

POINTER without any arguments or with the EDIT argument

opens the Pointer editor. The FROM argument lets you specify

a file to open. This must be a file that was previously saved

with the Save As menu item of the Pointer editor. For instance,

if you have saved a special configuration of the Pointer editor

to a file in the Presets drawer, you can use the FROM argument

to open that file. If the USE switch is also given, the editor will

not be opened, but the settings in the FROM file will be used. If

the SAVE switch is given, the editor will not open, but the

settings in the FROM file will be saved.

Example:

1 > POINTER Prefs/Presets/Pointer.star USE

loads and uses the pointer saved in the Pointer.star file. If the

system is rebooted, the previously saved pointer will appear.

8-96 AmigaDOS Reference

PRINTER

Format: PRINTER [FROM <filename>] [EDIT] [USE]

(SAVE]

Template: FROM;EDIT/S,USE/S;SAVE/S

Purpose: To specify a printer and print options.

Path: SYS:Prefs/Printer

Specification:

PRINTER without any arguments or with the EDIT argument

opens the Printer editor. The FROM argument lets you specify

a file to open. This must be a file that was previously saved

with the Save As menu item of the Printer editor. For instance,

if you have saved a special configuration of the Printer editor to

a file in the Presets drawer, you can use the FROM argument to

open that file. If the USE switch is also given, the editor will

not be opened, but the settings in the FROM file will be used. If

the SAVE switeh is given, the editor will not open, but the

settings in the FROM file will be saved.

Example:

1> PRINTER Prefs/Presets/Printer.epson SAVE

loads and saves the specifications saved in the Printer.epson

file.

PRINTERGFX

Format: PRINTERGFX [FROM <filename>] [EDIT] [USE]

(SAVE]

Template: FROM,EDIT/S,USE/S,SAVE/S

Purpose: To specify graphic printing options.

Path: SYS:Prefs/PrinterGfx

Specification:

PRINTERGFX without any arguments or with the EDIT

argument opens the PrinterGfx editor. The FROM argument

lets you specify a file to open. This must be a file that was

AmigaDOS Reference 8-97

~
previously saved with the Save As menu item of the PrinterGfx

editor. For instance, if you have saved a special configuration of

the PrinterGfx editor to a file in the Presets drawer, you can use

the FROM argument to open that file. If the USE switch is also

given, the editor will not be opened, but the settings in the

FROM file will be used. If the SAVE switch is given, the editor

will not open, but the settings in the FROM file will be saved.

Example:

1> PRINTERGFX Prefs/Presets/PrinterGfx.halftone USE

loads and uses the specifications saved in the

PrinterGfx.halftone file. If the system is rebooted, the last

saved specifications will be loaded.

_ PRINTFILES

Format: PRINTFILES {[-f] <filename>}

Template: -f/S,FILENAME/A/M

Purpose: To send file(s) to the printer.

Path: Extras2.0:Tools/PrintFiles

Specification:

PRINTFILES prints the specified file. The -f flag turns on the

form feed mode. When printing multiple files, be sure to

specify the flag before each filename.

Example:

1> PRINTFILES -f DF0:testfile -f DF0:docfile

prints the testfile and docfile files, stored on the disk inserted

in drive DFO:. The -f argument will add a form feed between

the two files so that they each start on a new page.

8-98 AmigaDOS Reference

In the examples in this

manual, the prompt

string is shown as 1>.

PROMPT

Format: PROMPT [<prompt>]

Template; PROMPT

Purpose; To change the prompt string of the current Shell.

Path: Internal

Specification:

PROMPT allows you to customize the prompt string, the text

printed by the Shell at the beginning of a command line. The

prompt string may contain any characters, including escape

sequences.

The default prompt string is:

"%N.%S> " Displays the Shell number, a period, the

current directory, a right angle-bracket and

a space.

The substitutions available for the <prompt> string are:

%N Displays the Shell number.

%S Displays the current directory.

%R Displays the return code for the last operation.

A space is not automatically added to the end of the string. If

you want a space between the prompt and typed-in text, place

it in the string, and enclose the string in double quotes.

You can embed commands in the prompt string by enclosing

the command in backward quotes (').

PROMPTalone, without a string argument, resets the prompt

to the default.

AmigaDOS Reference 8-99

»•■> Examples:

1> PROMPT %N

1

Only the Shell number is shown. The > is removed from the

prompt.

1> PROMPT "%N.%S.%R> "

1.SYS:.0>

The Shell number, current director)', and return code of the

previous command are shown. A space is included after the >.

1> prompt- 'date'>"

Tuesday 11-Sep-90 14:36:39 ■

The DATE command is executed and used as the prompt. The

prompt is not updated as the time changes. You would have to

execute the PROMPT command again to update the Shell

prompt.

PROTECT

Format: PROTECT [FILE] <file|pattern> [FLAGS]

| +1 -] [<flags>] [ADD|SUB] (ALL] |QUIET|

Template: FILE/A,FLAGS,ADD/S,SUB/S,ALL/S,QUIET/S

Purpose: To change the protection bits of a file.

Path: CPROTECT

Specification:

All files have a series of protection bits stored with them which

control their attributes. These bits can be altered to indicate

the type of file and the file operations permitted. PROTECT is

used to set or clear the protection bits of a file.

8-100 AmigaDOS Reference

The protection bits are represented by letters:

r The file can be read.

w The file can be written to (altered).

e The file is executable (a program).

d The file can be deleted.

s The file is a script.

p The file is a pure command and can be made

resident.

a The file has been archived.

To see the protection bits associated with a file, use the LIST

command. The protection field is displayed with set (on) bits

shown by their letters and clear (off) bits shown by hyphens.

For instance, a file that is readable, writable and dcletable, will

have —-rw-d in the protection field.

To specify the entire protection field at once, simply give the

letters of the bits you want set as the FLAGS argument,

without any other keywords. The named bits will be set, and

all the others will be cleared.

The symbols + and - (or the equivalent keywords ADD and

SUB) are used to control specific bits without affecting the

state of unspecified bits. Follow + or - with the letter(s) of the

bit{s) to set or clear, respectively, and only those bits will be

changed. Don't put a space after the symbol or between the

letters. The order of the letters does not matter. ADD and SUB

work similarly, but there must be a space between the keyword

and the letter(s). You cannot both set and clear bits in the same

command.

The ALL option adds or removes the specified protection bits

from all the files in the specified directory. The QUIET option

suppresses the screen output.

AmigaDOS Reference 8-101

"—^ Examples:

1> PROTECT DFO:Memo + rw

sets only the protection bits r (readable) and w (writable) to the

file Memo on DFO:. No other protection bits are changed.

1> PROTECT L:#?e SUB

clears the e [executable) protection bit from all the files in the

L: directory.

1> PROTECT Work:Paint rwed

The protection status of Paint becomes "-—rwed".

See Also: LIST

QUIT

Format: QUIT [<return code>]

Template: RC/N

Purpose: To exit from a script file with a specified return

code.

Path: Internal

Specification:

QUIT is used to stop the execution of the script upon the

specified return code. The default return code is zero. It is

recommended that you use the standard return code values

of 5, 10 and 20.

Example:

ASK "Do you want to stop now?"

"* IF WARN

QUIT 5

ENDIF

ECHO "OK"

ECHO "The script is continuing."

8-102 AmigaDOS Reference

If you press Yat the prompt, the script will be aborted, as

WARN is equal to a return code of 5. If you press N or press

Return:

OK

The script is continuing.

will be displayed in the Shell window.

RELABEL

Format: RELABEL (DRIVE] <dnve> [NAME] <name>

Template: DRIVE/A,NAME/A

Purpose: To change the volume name of a disk.

Path: C: RELABEL

Specification:

RELABEL changes the volume name of the disk in the given

drive to the <name> specified. Volume names are set initially

when you format a disk.

If you have a floppy disk system with only one disk drive, be

sure to specify the disks by volume name, instead of drive

name.

Examples:

1> RELABEL Workbench2.0: My2.0Disk

changes the name of the Workbench2.0 disk to My2.0Disk.

Notice that you don't need the colon after the second name.

1> RELABEL DF2: DataDisk

changes the name of the disk in DF2: to DataDisk.

AmigaDOS Reference 8-103

REMRAD

Format: REMRAD [<drive>] (FORCE]

Template: DRIVE,FORCE

Purpose: To remove the recoverable ramdrive.device.

Path: CREMRAD

Specification:

If you want to remove the recoverable ramdrive.device (usually

mounted as RAD:) from memory, and you do not want to turn

the system off, you can use the REMRAD command. If you

have mounted more than one recoverable ramdrive.device, use

the DRIVE specification.

^_^ REMRAD commands the ramdrive.device to delete all of its

files and become inactive. The next time the Amiga is

rebooted, the ramdrive.device is removed from memory

completely. If the device is in use at the time the REMRAD

command is given, the operation will abort with a drive in use

message. To remove it even if it is in use, you must use the

FORCE option.

RENAME

Format: RENAME ({FROM}] <name> [TO|AS] <name>

[QUIET]

Template: FROM/A/M,TO » AS/A; QUIET/S

Purpose: To change the name of a file or directory.

Path: CRENAME I»^H

Specification: mM^^^

RENAME renames the FROM file or directory with the

specified TO name. FROM and TO must be on the same disk.

8-104 AmigaDOS Reference

The colon before the

directory indicates

that the directory is in

the root directory.

If the name refers to a directory, RENAME leaves the contents

of the directory unchanged (the directories and files within that

directory keep the same names and contents).

If you rename a directory, or if you use RENAME to give a file

another directory name (for example, you rename :Bili/Letter

to :Mary/Letter), AmigaDOS changes the position of that

directory or file in the filing system hierarchy.

Examples:

1> RENAME Work'Progi AS :Arthur/Example

renames the file Progl as Example, and moves it from the Work

directory to the Arthur directory. The Arthur directory must

exist in the root directory for this command to work.

1> RENAME 7.2Fax 8.16Fax 9.22Fax TO Faxes

moves the 7.2Fax, 8.16Fax, and 9.22Fax files to the Faxes

directory. The Faxes directory must already exist.

RESIDENT

Format: RESIDENT president name>] [<filename>|

[REMOVE] [ADD] (REPLACE] |PURE|FORCE]

[SYSTEM]

Template: NAME,FILE,REMOVE/S,ADD/S,REPLACE/S,

PURE - FORCE/S,SYSTEM/S

Purpose: To display and modify the list of resident

commands.

Path: Internal

Specification:

RESIDENT is used to load commands and add them to the

resident list maintained by the Shell. This allows the

command to be executed without it having to be reloaded from

disk each time. This eliminates the time it takes to load the

command and reduces memory use when multitasking.

AmigaDOS Reference 8-105

To be made resident, a command should be both reentrant and

re-executable. A reentrant command can properly support

independent use by two or more programs at the same time.

A re-executable command does not have to be reloaded to be

executed again. Commands that have these characteristics are

called pure and have the p (pure) protection bit set.

Many of the commands in the C: directory, as well as the More

command in Utilities, are pure commands and can be made

resident. If a command does not have its pure bit set, it

probably cannot be made resident safely. (Just setting the pure

bit does not make a command or program pure).

The REPLACE option is the default option and does not need

to be explicitly stated. If RESIDENT is invoked with no

options, it lists the programs on the resident list. If no

<resident name> is specified (i.e., just a filename is specified),

RESlDENTwill use the filename portion as the name on the

resident list.

NOTE: The full path to the file must be used.

If a <rcsident name> is specified and RESIDENT finds a

program with that name already on the list, it will attempt to

replace the command. That -President name> must then be

used to reference the resident version of the command. The

replacement will succeed only if the already-resident

command is not in use.

To override REPLACEment and make several versions of a

command resident simultaneously, use the ADD option,

giving a different <resident namc> for each version loaded.

If the SYSTEM option is specified, the command will be added

to the system portion of the resident list. Any commands

added to the resident list with the SYSTEM option cannot be

removed. To list SYSTEM files on the RESIDENT list, you

must specify the SYSTEM option.

LIST the C: directory

to check for the pres

ence of the p protec

tion bit to determine

which commands are

pure.

8-106 AmigaDOS Reference

The PURE option forces RESIDENT to load commands which

are not marked as pure (i.e., they do not have their pure bit set),

and can be used experimentally to test the pureness of other

commands and programs.

Use the PURE option with caution. Remember that in

order for a command to be made RESIDENT, it must be

both reentrant and re-executable. Although it is unlikely,

some of your programs may be pure enough to be fully

reentrant and usable by more than one process at the

same time. Other programs may not be fully reentrant

but may be pure enough to be re-executable. Such

commands can be made RESIDENT, but you must be

extremely careful to use the command in only one

process at a time.

The availability of Internal commands can also be controlled

with RESIDENT. To deactivate an Internal command (for

instance if an application has its own command of the same

name), use RESIDENT <Command> REMOVE. AmigaDOS

will no longer recognize the Internal command. The

AmigaDOS command can be reactivated with the REPLACE

option.

Examples:

1> RESIDENT C:COPY

makes the COPY command resident (replaces any previous

version).

1> RESIDENT Copy2 DF1 :C/COPY ADD

adds another version of COPY to the resident list, under the

name Copy2.

1> RESIDENT XdirDF1:C/Xdir PURE

makes an experimental, non-pure version of the DIR command

resident.

AmigaDOS Reference 8-107

1>RESIDENT CD REMOVE

makes the Internal CD command unavailable.

1> RESIDENT CD REPLACE

restores the CD command to the system.

See Also: PROTECT

RUN

Format: RUN <command> [+ {<command>}|

Template: COMMAND/F

Purpose: To execute commands as background processes,

Path: C:RUN

Specification:

RUN is used to launch background processes. A background

process does not open its own window for input or output and

does not take over the parent Shell.

RUN attempts to execute the <command> and any

arguments entered on the command line. You can RUN

multiple commands by separating them with plus signs (+). If

you press Return after a plus sign, RUN will interpret the next

line as a continuation of the same command line.

To allow the closing of the Shell window in which the process

was started, redirect the output of RUN with RUN >NIL:

<command>.

A new background Shell has the same search path and

command stack size as the Shell from which RUN was given.

8-108 AmigaDOS Reference

You can RUN commands stored on the resident list. For speed,

resident commands are checked before commands in the

command path. A Shell started with RUN NEWSHELL still

uses the default startup file, S:Shell-startup.

Examples:

1> RUN COPY Text PRT: +

DELETE Text +

ECHO "Printing finished"

prints the Text file by copying it to the printer device, deletes

it, then displays the given message. Plus signs are used to

concatenate the command lines.

1> RUN EXECUTE Comseq

executes, in the background, all the commands in the file

Comseq.

SAY

Format: SAY[-m] [-f] [-r] [-n] [-s <n>] [-p <n>]

[-x <filename>]

Template: -m/S,-f/S,-r/S,-n/S,-s/K/N,-p/K/N,-x/K

Purpose: To speak phrases or files through the Amiga.

Path: SYS:Utilities/Say

Specification;

SAY utilizes the Amiga's speech capabilities. It supports the

same options as when run through the Workbench, except that

when run through the Shell, you can specify a file and its

contents will be spoken. The options are:

-m Specifies a male voice.

-f Specifies a female voice.

-r Specifics a robot voice,

-n Specifies a natural voice.

AmigaDOS Reference 8-109

-s <n> Type the -s option, followed by a number

from 40 to 400 to control the speed of the

voice. Do not put a space between the -s and

the number.

-p <n> Type the -p option, followed by a number

from 65 to 320 to control the pitch of the

voice.

-x <filename> Type the -x option followed by a filename,

and the Amiga will "read" the contents of

that file.

Do not forget the hyphen before each alphabetical option.

Example:

1> SAY -m -s125 -p65 -x s:star1up-sequence

The Amiga will read the contents of the startup-sequence file

in a male voice at a moderately-paced speed.

SCREENMODE

Format: SCREENMODE (FROM <filename>] [EDIT] [USE]

[SAVE]

Template: FROM,EDIT/S,USE/S,SAVE/S

Purpose: To select a display mode.

Pa th: SYS: Pref s/ScreenMode

Specification:

SCREENMODE without any arguments, or with the EDIT

argument, opens the ScreenMode editor. The FROM argument

lets you specify a file to open. This must be a file that was

previously saved with the Save As menu item of the

ScreenMode editor. For instance, if you have saved a special

configuration of the ScreenMode editor to a file in the Presets

drawer, you can use the FROM argument to open that file. If

the USE switch is also given, the editor will not be opened, but

the settings in the FROM file will be used. If the SAVE switch

is given, the editor will not open, but the settings in the FROM

file will be saved.

8-110 AmigaDOS Reference

Example:

1 > SCREENMODE Prefs/ Presets/Screen Mode. Hi res USE

You will be prompted to close all non-drawer windows, and the

system will reset and use the settings saved in the

ScreenMode.Hires file. The editor window will not open.

When the system is rebooted, the display mode will return to

the last selection saved.

SEARCH

Format: SEARCH [FROMj <name|pattern>

[SEARCH|NAME] <strmg|pattcrn> (ALL|

[NONUM] [QUIET] [QUICK] [FILE] (PATTERN]

Template: FROM/A/M,SEARCH/A,ALL/S,NONUM/S,

QUIET/S,QUICK/S,FILE/S,PATTERN/S

Purpose: To look for the specified text string in the files of the

specified directory or directories.

Path: OSEARCH

Specification:

SEARCH looks through all the files in the FROM directory for

the given SEARCH string. (The FROM and SEARCH keywords

are optional.) If the ALL switch is given, SEARCH also looks

through all the subdirectories of the FROM directory. SEARCH

displays the name of the file being searched and any line that

contains the text sought. You must place quotation marks

around any search text containing a space. The search is case-

indifferent (capitalization is ignored).

The options are as follows:

NONUM Line numbers are not printed with the strings.

QUIET Searches quietly; filenames being searched are

not displayed.

QUICK Uses a more compact output format.

AmigaDOS Reference 8-111

~

FILE Looks for a file by the specified name, rather

than for a string in the file.

PATTERN Uses pattern matching in the search.

SEARCH leaves a 0 in the condition flag if the object is found,

and a 5 (WARN) otherwise. This makes it useful in scripts. To

abandon the search of the current file and continue to the next

file, if any, type Ctrl-D. SEARCH is aborted when a Ctrl-C

is typed.

Examples:

1 > Search DEVS: alternative

(dir)

Keymaps (dir)

Printers (dir)

clipboard.device..

MountList .

14 /* This is an example of an alternative type ol non-filing device mount,

narrator.device.,

parallel.device.,

printer.device.,

serial.device.,

system-configuration..

searches through the DEVS: directory for the word alternative. It

is found on line 14 of the MountList file.

1> SEARCH Universe: ■'Intelligent life" ALL

searches for Intelligent life (or intelligent life) in every file on the

volume Universe:.

1 > SEARCH Work:#?.source SEARCH Progtest.c?? FILE PATTERN

locates all Progtest.c files with a two-character suffix in

directories ending in .source in the Work volume.

8-112 AmigaDOS Reference

SERIAL

Format: SERIAL (FROM <filename>] [EDIT) [USE]

(SAVE]

Template; FROM,EDIT7S,USE/S,SAVE/S

Purpose: To set the specifications for communication

through the serial port.

Path: SYS:Prcfs/Senal

Specification:

SERIAL without any arguments or with the EDIT argument

opens the Serial editor. The FROM argument lets you specify a

file to open. This must be a file that was previously saved with

the Save As menu item of the Serial editor. For instance, if you

have saved a special configuration of the Serial editor to a file

in the Presets drawer, you can use the FROM argument to open

that file. If the USE switch is also given, the editor will not

open, but the settings in the FROM file will be used. If the

SAVE switch is given, the editor will not open, but the settings

in the FROM file will be saved.

Example:

1> SERIAL Prefs/Presets/Serial.9600 USE

loads and uses the specifications saved in the Serial.9600 file. If

the system is rebooted, the last saved settings will take effect.

AmigaDOS Reference 8-113

SET

Format: SET [<name>] [<string>|

Template: NAME,STRING/F

Purpose: To set a local variable.

Path: Internal

Specification:

SET with <name> and <string> arguments creates a new

environment variable. The first word after SET is taken as the

<name>. Everything else on the command line is taken as the

<string> argument. Quotation marks are not required.

SET with no arguments list the current local variables.

An environment variable created with SET is local to the Shell

in which it was created. If you create a new Shell with the

NEWSHELL command, that Shell will also recognize any

variables created in its parent Shell. However, if you create

a new Shell with the Execute Command menu item or by

opening the Shell icon, variables created with SET will not

be recognized.

You can call environment variables in a script or on a

command line by placing a dollar sign (S) in front of the

variable name.

To remove a local variable definition, use the UNSET

command.

Examples:

^^ 1 > SET origin This process launched from icon

creates the local variable origin which stores a reminder that a

Shell was invoked from an icon rather than a NEWSHELL.

1 > ECHO Sorigin

This process launched from icon

See Also: GET, UNSET

8-114 AmigaDOS Reference

The battery backed-

up clock keeps the

time even when the

Amiga is turned off.

Amiga 500s do not

have battery backed-

up clocks, unless an

A501 RAM expansion

cartridge has been in

stalled.

SETCLOCK

Format: SETCLOCK LOAD|SAVE RESET

Template: LOAD/S,SAVE/S,RESET/S

Purpose: To set or read the battery backed-up hardware

Path:

clock.

OSETCLOCK

Specification:

SETCLOCK SAVE sets the date and time of the battery backed-

up hardware clock from the current system time (saved with

the Time editor or with the DATE commandl. SETCLOCK

SAVE is typically used after a DATE command.

SETCLOCK LOAD sets the current system time from the

battery backed-up clock. It is typically included in the Startup-

sequence to automatically load the correct time when the

Amiga is booted.

The RESET option resets the clock completely. This may be

necessary if a poorly written program that does not follow the

rules turns the clock off or sets the test bit of the clock.

Example:

1> DATE 17-Aug-92 05:45:54

1> SETCLOCK SAVE

saves the date, August 17, 1992, and the time, 5:45 a.m., to the

battery backed-up hardware clock. That clock keeps time even

when the Amiga is powered off. When the system is booted,

the SETCLOCK LOAD command in the Startup-sequence sets

the system clock with the time saved in the hardware clock.

See also: DATE

AmigaDOS Reference 8-115

SETDATE

Format: SETDATE <file|pattern> [<weekday>]

|<date>][<time>]|ALL]

Template: FILE/A,WEEKDAY,DATE,TIME,ALL/S

Purpose: To change a file or directory's timestamp.

Path: OSETDATE

Specification:

SETDATE changes the timestamp (date and time of creation or SETDATE does not af-

last change) of a file or directory. SETDATE <file> changes the fect tbe software or

date/time of the file to the current system date/time. bardware clocks-

The output of the DATE command may be used as input to

^s SETDATE.

Examples:

1> SETDATE TestFife

changes the date and time associated with TestFile to the

current date and time.

1 > SETDATE TestFile 16-09-89 15:25:52

change the date and time associated with TestFile to

September 16, 1989, 3:25 p.m.

See Also: DATE

8-116 AmigaDOS Reference

SETENV

Format: SETENV [<name>] [<string>]

Template: NAME,STRING/F

Purpose: To set a global variable.

Path: Internal

Specification:

SETENV with <name> and <string> arguments creates a new

global environment variable. The first word after SETENV is

taken as the <name>. Everything else on the command line is

taken as the <string> argument. Quotation marks are not

required. Comments (statements prefaced with a semicolon (;))

are not allowed on a SETENV command line. This includes

command lines that are part of a script.

SETENV with no arguments list the current global variables.

Global variables are stored in ENV: and are used by all

processes. If a local variable (defined by SET) and a global

variable share the same name, the local variable will be used.

Environment variables are called by scripts or other commands

by including a dollar sign ($! in front of the variable name.

To remove a global variable definition, use the UNSETENV

command.

Examples:

1> SETENV Editor Extras2.Q:Tools/MEmacs

creates the environment variable Editor which can be used

with the More utility. This specifies the editor as being

MEmacs, located in the Tools drawer of the Extras2.0 disk. The

variable Editor will be available in any Shell.

1> SETENV Editor C:EO

same as above, only the editor specified is the editor ED.

1 > ECHO SEditor

C:ED

See Also: GETENV, UNSETENV

AmigaDOS Reference 8-117

SETFONT

Format: SETFONT <size> [SCALE] [PROPj

[ITALIC] |BOLD] [UNDERLINE]

Template: NAME/A,SIZE/A,SCALE/S,PROP/S,

ITALIC/S,BOLD/S,UNDERLINE/S

Purpose: To change the Shell font.

Path: CSETFONT

Specification:

SETFONT lets you change the font used in a particular Shell

window, overriding the System Default Text setting specified

in the Font editor. SETFONT is only effective in the window in

which it is invoked.

You must specify both a font name and a size when using the

SETFONT command. The other options are:

SCALE Enables bitmap font scaling.

PROP Allows proportional fonts.

ITALIC The font will be italic.

BOLD The font will be boldface.

UNDERLINE The font will be underlined.

Invoking SETFONT will clear the Shell window of its current

contents and display a new prompt, in the new font, at the top

of the window.

Example:

.—^ 1 > SETFONT Topaz 13 BOLD UNDERLINE

The Shell window will clear, and the new prompt will be in

13 point Topaz, underlined and boldface.

8-118 AmigaDOS Reference

SETMAP

Format: SETMAP <keymap>

Template: KEYMAP/A

Purpose: To change the keymap used by the Amiga.

Path: SYS:System/SetMap

Specification:

SETMAP specifies the keymap used by the Amiga. The

available files are listed below:

Keymap

cdn

chl

ch2

d

dk

e

f

gb
i

is

n

s

usaO

usa

usa2

Keyboard

French Canadian

Swiss French

Swiss German

German

Danish

Spanish

French

Great Britain

Italian

Icelandic

Norwegian

Swedish

(For programs developed

before VI.0)

American

Dvorak

To have the system always use a different keymap, add the

SETMAP command to your Startup-sequence file.

Example:

To change to a French Canadian keymap, type:

1> SETMAP cdn

The keymap file must be in DEVS:Keymaps for SetMap to

find it.

AmigaDOS Reference 8-119

SETPATCH

Format: SETPATCH [NOCACHE] [QUIET]

Template: NOCACHE/S,QUIET/S

Purpose: To make ROM patches in system software.

Path: C:SETPATCH

Specification:

SETPATCH installs temporary modifications to the operating

system. If needed, it must be run at the beginning of the

Startup-sequence file. Updated versions of SETPATCH will be

made available when necessary as AmigaDOS development

continues.

The NOCACHE option disables data cache on some third-

party accelerator cards. If you have been experiencing system

failures and you have a third-party accelerator card in your

machine, you should try adding the SETPATCH NOCACHE

command to the beginning of your Startup-sequence.

The QUIET switch suppresses any screen output.

SKIP

Format: SKIP [<label>] [BACK]

Template: LABEL,BACK/S

Purpose: To skip to a label when executing script files.

Path: Internal

Specification:

SKIP is used in scripts to allow you to skip ahead in the script

to a <label> defined by a LAB statement. If no <label> is

specified, SKIP jumps to the next LAB statement.

8-120 AmigaDOS Reference

SKIP always searches forward from the current line of the file.

However, when the BACK option is used, SKIP starts searching

for the label from the beginning of the file. This allows SKJPs

to points prior to the SKIP command.

You can only SKIP back as far as the last EXECUTE statement.

If there are no EXECUTE statements in a script, you will SKIP

back to the beginning of the file.

If SKIP does not find the label you specified, the command

sequence terminates and the message Label <label> not found by

Skip is displayed.

Example:

Assume you have the following script, called CheckFile:

.KEY name

IF exists <name>

SKIP message

ELSE

ECHO "<name> is not in (his directory."

ENDIF

LAB message

ECHO "The <name> file does exist."

You can run the script by typing:

1 > EXECUTE CheckFile Document

If the Document file exists in the current directory, the

execution of the script will skip ahead to the LAB command.

The message The Document file does exist will be displayed in the

Shell window.

If the Document file is not in the current directory, the

execution of the script will jump to the line after the ELSE

statement, and the message Document is not in this directory will

be displayed.

See also: EXECUTE, LAB

AmigaDOS Reference 8-121

SORT

Format: SORT [FROM] <file|pattern> [TO] <filename>

(COLSTART <n>] [CASE] (NUMERIC]

Template: FROM/A,TO/A,COLSTART/K,CASE/S,

NUMERIC/S

Purpose: To alphabetically sort the lines of a file.

Path; CSORT

Specification:

SORT will sort the FROM file alphabetically, line-by-line,

sending the sorted results to the TO file. SORTassumes the file

is a normal text file in which lines are separated by Returns or

line feeds. SORT normally disregards capitalization. If the

CASE switch is given, capitalized items will be output first.

The COLSTART keyword allows you to specify the character

column at which the comparison will begin. SORT compares

the lines from that point on, and comparison will wrap around

to the beginning of the line if the lines being compared match

to the end.

When the NUMERIC option is specified, the lines are

interpreted as numbers from the first column rightward,

stopping at the first non-numeric character. Lines not

beginning with numbers are treated as 0. The lines are output

in numerical order. If the CASE switch is given with

NUMERIC, CASE is ignored.

Example:

' i 1 > SORT DFQ:Glossary DF0:Glossary.alpha

sorts the lines in the Glossary file, arranges them

alphabetically, and outputs them to a new file called

Glossary.alpha. The case of the words is disregarded.

8-122 AmigaDOS Reference

Format:

Template:

Purpose:

Path:

STACK

STACK [<n>]

SIZE/N

To display or set the stack size within the current

Shell.

Internal

Specification:

When you run a program, it uses a certain amount of stack, a

special area in memory allocated for the program. The stack

required for a program should be given in the program's

documentation. However, if a program causes system failure,

you may wish to experiment with various stack sizes.

Commands that perform operations that consist of multiple

levels may require additional stack space.

Stack sizes generally range from 4000 to 25000 bytes. If the

stack size is too small, a system failure may occur. Too large of

a stack size may take too much memory away from other

system functions.

If you run out of stack space, you may receive a

Software Failure message. If you have altered the stack

for the program that caused the Software Failure

message, try increasing the stack size.

AmigaDOS Reference 8-123

^n STATUS

Format: STATUS [<process>] |FULL| [TCB] [CLI|ALL]

[COMMAND <command>]

Template: PROCESS/N,FULL/S,TCB/S,CLI = ALL/S,

COM-COMMAND/K

Purpose: To list information about Shell/CLI processes.

Path: C:STATUS

Specification:

STATUS without any arguments lists the numbers of the

current Shell/CLI processes and the program or command, if

any, running in each. The <process> argument specifies a

process number, and STATUS will only give information

about that process.

For information on the stacksize, global vector size, priority,

and current command for each process, use the FULL keyword.

The TCB keyword is similar, but omits the command

information.

With the COMMAND option, you can tell STATUS to search

for a command. STATUS then scans the Shell list, looking for

the specified <command>. If the command is found, the Shell

number is output, and the condition flag is set to 0. Otherwise

the flag is set to 5 (WARN). This is useful in script files.

Examples:

1 > STATUS 1

Process 1: Loaded as command: status

^^ 1> STATUS! FULL

Process 1: stk 4000. gv 150, pri 0 Loaded as command: status

1 > STATUS >RAM:Xyz COMMAND = COPY

1> BREAK <RAM:Xyz >NIL: ?

sends a break to the process executing COPY.

See Also: BREAK

8-124 AmigaDOS Reference

TIME

Format: TIME [EDIT]

Template: EDIT/S

Purpose: To set the system clock.

Path: SYS:PREFS/TIME

Specification:

TIME without any arguments or with the EDIT argument

opens the Time editor.

Example:

TIME

TYPE

Format: TYPE {<file|pattern>} (TO <name>] [OPT H|N]

|HEX] (NUMBER]

Template: FROM/A/M,TO/K,OPT/K,HEX/S,NUMBER/S

Purpose: To display a text file.

Path: C:TYPE

Specification:

TYPE will output the contents of the named file to the current

window, if no destination is given, or to a specified output file.

If more than one filename is specified, and the TO keyword is

not used, the filenames will be typed in sequence.

The OPT H and OPT N options are also available by the HEX

and NUMBER keywords, respectively. The HEX option causes

the file to be typed as columns of hexadecimal numbers, with

an ASCII character interpretation column. This is useful for

analyzing object files. The NUMBER option will number the

lines as they are output.

To pause output, press the Space bar. To resume output, press

Backspace, Return, or Ctrl-X. To stop output, press Ctrl-C

("'"BREAK is displayed).

AmigaDOS Reference 8-125

,—v Example:

1>TYPE DEVS:MountLisl

The contents of the MountList file in the DEVS: directory will

be displayed on the screen.

UNALIAS

Format.1 UNALIAS [<name>]

Template: NAME

Purpose: To remove an alias.

Path: Internal

Specification:

UNALIAS removes the named alias from the alias list.

With no arguments, UNALIAS lists the current aliases.

See also: ALIAS

UNSET

Format: UNSET |<name>

Template: NAME

Purpose: To remove a local variable.

Path: Internal

Specification:

UNSET removes the named local variable from the variable list

for the current process.

With no arguments, UNSET lists the current variables.

See also: SET

8-126 AmigaDOS Reference

Format:

Template:

Purpose:

Path:

UNSETENV

UNSETENV[<name>]

NAME

To remove a global variable.

Internal

Specification:

UNSETENV removes the named global variable from the

current variable list. With no arguments, UNSETENV lists the

current variables.

See also: SETENV

VERSION

Format: VERSION [<library|device|file>]

[<version #>] [<revision #>] [<unit #>]

[FILE] [INTERNAL] [RES] [FULL|

Template: NAME,VERSION,REVISION,UNIT,FILE/S,

INTERNAL/S,RES/S,FULL/S

Purpose: To find software version and revision numbers.

Path: OVERSION

Specification:

VERSION finds the version and revision number of a library,

device, command, or Workbench disk. VERSION can also test

for a specific version/revision and set the condition flags if the

version/revision is greater. This is useful in scripts.

VERSION with no <library|device|file> argument prints the

Kickstart version number and the Workbench version number

and sets the environment variables. If a name is specified,

version attempts to open the library, device, drive, or file and

read the version information. You can get the version of the

filesystem by specifying a drive name, such as DFO: or DHO:.

AmigaDOS Reference 8-127

~

~

When a <version #> (and possibly a <revision #>) is

specified, VERSION sets the condition flag to 0 if the version

(and revision) number of the Kickstart, library, or device driver

is greater than or equal to the specified values. Otherwise, the

flag is set to 5 (WARN). (If a revision number is not specified,

no comparison on the revision number is performed.)

The <unit #> option allows you to specify a unit number

other than 0. This may be necessary for accessing multi-unit

devices.

The FILE option forces VERSION to inspect the object as a file,

even if it is a library or device. The INTERNAL and RES

options let you get the version of the Internal and Resident

commands, respectively. Built-in Shell commands will have

the same version string as the Shell itself. INTERNAL can also

be used to find the version of a RAM module (library or drive)

without opening the device or library. The FULL option prints

out the complete version string, including the date.

Examples:

1> VERSION

Kickstart version 36.202 Workbench version 36.77

1> VERSION Prefs/Font

Prefs/Font version 36.191

^

8-128 AmigaDOS Reference

WAIT

Format: WAIT[<n>] [SEC|SECS] [MIN|MINS| [UNTIL

<time>]

Template; /N,SEC = SECS/S;MIN = MINS/S,UNTIL/K

Purpose: To wait for the specified time.

Path: C:WAIT

Specification:

WAIT is used in command sequences or after RUN to wait for a

certain period, or to wait until a certain time. Unless you

specify otherwise, the waiting period is one second. The <n>

argument specifies the number of seconds (or minutes, if MINS

is given) to wait. Use the keyword UNTIL to wait until a

particular time of the day, given in the format HH:MM.

Examples:

1> WAIT 10 MINS

waits ten minutes.

1> WAIT UNTIL 21:15

waits until 9:15 p.m.

AmigaDOS Reference 8-129

~
WBPATTERN

Format: WBPATTERN [FROM <filename>| [EDIT] [USE]

|SAVE] [WORKBENCH] [WINDOW]

Template: FROM,EDIT/S,USE/S,SAVE/S,WORKBENCH/S,

WINDOW/S

Purpose: To create background patterns for the Workbench

and windows.

Path: SYS:Prefs/WBPattern

Specification:

WBPATTERN with no arguments or with the EDIT argument

opens the WBPattern editor.

The FROM argument must be used in combination with a

WORKBENCH or WINDOW switch. (You can use more than

one switch.) This allows you to specify a particular pattern to

be used in the designated area(s) of the screen. The FROM file

must be one that was previously saved with the Save As menu

item of the WBPattern editor's Project menu. Even if the

pattern in the FROM tile was originally saved for one area of

the screen, it can be used in a different area of the screen by

specifying the appropriate switch. For instance, if the FROM

file was created when you saved a pattern for the Workbench,

that pattern can be used in the windows by specifying the

WINDOW switch after the filename.

If you specify the USE option, the pattern will be loaded into

the appropriate area and used, just as if you had opened the

WBPattern editor, selected the appropriate radio button,

created the pattern, and selected the Use gadget. If you specify

the SAVE option, that pattern will be saved.

8-130 AmigaDOS Reference

If you do not specify USE or SAVE, EDIT is assumed, and the

WBPattern editor is opened. If a FROM file and a

WORKBENCH or WINDOW switch is specified, the Font

editor will open, the pattern saved in the FROM file will be

displayed, and the appropriate radio button will be selected. If

no switch is specified with the FROM file, the editor will

display the last used pattern.

Examples:

1> WBPATTERN FROM SYS:Prefs/Presets/Diamonds WORKBENCH SAVE

loads and saves the pattern saved in the Diamond file as the

background pattern for the Workbench.

1 > WBPATTERN FROM SYS:Prefs/Presets/Dots WINDOWS

opens the WBPattern editor. The pattern saved in the Dots file

will appear in the magnified view, and the Windows radio

button will be selected. You must select the Save, Use, or

Cancel gadget to proceed.

WHICH

Format: WHICH <command> |NORES] (RES] |ALL|

Template: FILE/A,NORES/S,RES/S,ALL/S

Purpose: To search the command path for a particular item.

Path: C:WHICH

Specification:

WHICH lets you find a particular command, program, or

directory by entering its name. If the named item is in the

search path, WHICH displays the complete path to that item.

WHICH lists resident commands as RESIDENT and internal

commands as INTERNAL.

Normally, WHICH searches the resident list, the current

directory, the command path(s), and the C: directory. The

condition flag is set to 5 (WARN) if the file is not found.

AmigaDOS Reference 8-131

~

~

~

If the NORES option is specified, the resident list is not

searched. If the RES option is specified, only the resident list is

searched.

The ALL switch causes the search to continue through the full

search path, even after one or more instances of the named

item have been found and listed. This insures that all versions

of a command or program are found. It can, however, lead to

multiple listings of the same command, if that command is

reached by more than one route (e.g., C: and the current

directory).

Examples:

1> WHICH avail

C: avail

1> WHICH C:

Workbench?.0:C

1> WHICH alias

INTERNAL alias

Format:

Template:

Purpose:

Path:

WHY

WHY

(none)

To print an error message that explains why the

previous command failed.

Internal

Specification:

Usually when a command fails the screen displays a brief

message. This message typically includes the name of the file

(if that was the problem) but does not go into detail.

For example, the message Can't open <filename> may appear.

This could happen for a number of reasons—AmigaDOS may

not be able to locate the file, the file is of the wrong type, or

there was insufficient disk space or RAM for the operation

requested.

8-132 AmigaDOS Reference

If the reason is not immediately obvious, enter WHY to get a

more complete explanation.

Examples:

1> COPY DF0:

Bad arguments

1>WHY

Last command failed because required argumeni missing

The WHY message points to the error: a destination for the

COPY was not given.

AmigaDOS Reference 8-133

Error Messages

This section lists the possible AmigaDOS errors, along with probable causes and

suggestions for recovery. Programmer errors are boxed.

N- h

104 Process table

full

114 Bad template

115 Bad number

116 Required

argument

missing

117 Argument after

' =' missing

118 Too many

arguments

119 Unmatched

quotes

120 Argument line

invalid or too

long

121 File is not

executable

Probable Cause
Not enough memory in your

Amiga Co carry out the

operation.

There is a limit to the

number of possible

processes.

Incorrect command line.

The program was expecting a

numerical argument.

Incorrect command line.

Incorrect command line.

Incorrect command line.

Incorrect command line.

Your command line is

incorrect or contains too

many arguments.

You misspelled the

command name, or the file

may not be a loadable

(program or scriptl file.

Recovery Suggestion
Close any unneeded windows and

applications, then reissue the command.

If it still doesn't work, try rebooting. It

may be that you have enough memory

but it has become fragmented. It is

possible that you may need to add more

RAM to your system.

Stop one or more tasks.

Consult the documentation for the

correct command format.

Consult the documentation for the

correct command format.

Consult the documentation for the

correct command format.

Consult the documentation for the

correct command format.

Consult the documentation for the

correct command format.

Consult the documentation for the

correct command format.

Consult the documentation for the

correct command format.

Retype the filename and make sure that

the file is a program file. Remember, in

order to execute a script, either the s bit

must be set or the EXECUTE command

must be used.

8-134 AmigaDOS Reference

122 Invalid

resident library

202 Object is in use

203 Object already

exists

204 Directory not

found

205 Object not

round

206 Invalid

window

description

You are trying to use

commands with a previous

version of AmigaDOS, e.g.

Version 2.0 commands with

Version 1.3.

The specified file or

directory is already being

used by another application.

It an application is reading a

file, no other program can

write to it, and vice versa.

The name that you specified

already belongs to another

file or directory.

AmigaDOS cannot find the

directory you specified. You

may have made a typing or

spelling error.

AmigaDOS cannot find the

file or device you specified.

You may have made a typing

or spelling error.

This occurs when specifying

a window size for a Shell,

ED, or ICONX window. You

may have made the window

too big or too small, or you

may have omitted an

argument. This error also

occurs with the NEWSHELL

command, if you supply a

device name that is not a

window.

Reboot with the current version of

AmigaDOS.

Stop the other application that is using

the file or directory, and reissue the

command.

Use another name, or delete the existing

file or directory, and replace it.

Check the directory name (use DIR if

necessary). Reissue the command.

Check the filename (use DIR) or the

device name (use INFO). Reissue the

command.

Reissue the window specification.

209 Packet request

type unknown

You have asked a device

handler to attempt an

operation it cannot do. For

example, the console handler

cannot rename anything.

Check the request code passed to device

handlers for the appropriate request.

210 Object name

invalid

There is an invalid character

in the filename or the

filename is too long.

Remember, filenames

cannot be longer than 30

characters and cannot

contain control characters.

Retype the name, being sure not to use

any invalid characters or exceed the

maximum length.

AmigaDOS Reference 8-135

211 Invalid object

lock

You have used something

that is not a valid lock.

Check that your code only passes valid

locks to AmigaDOS calls that expect

locks.

212 Object not of

required type

213 Disk not

validated

~
214 Disk is write-

protectcd

215 Rename across

devices

attempted

216 Directory not

empty

217 Too many

levels

~
218 Device (or

volume) not

mounted

You may have specified a

filename for an operation

that requires a directory

name, or vice versa.

If you have just inserted a

disk, the disk validation

process may be in progress. It

is also possible that the disk

is corrupt.

The plastic tab is in the

write-protect position.

RENAME only changes a

filename on the same

volume. You can use

RENAME to move a file

from one directory to

another, but you cannot

move files from one volume

to another.

This error occurs if you

attempt to delete a director)'

that contains files or

subdirectories.

You've exceeded the limit of

15 soft links.

If the device is a floppy disk,

it has not been inserted in a

drive. If it is another type of

device, it has not been

mounted with MOUNT. It is

also possible that you have

made a typing error when
specifying the device name.

Consult the documentation for the

correct command format.

If you've just inserted the disk, wait for

the validation process to finish. This

may take less than a minute for a floppy

disk or up to several minutes for a hard

disk. If the disk is corrupt, it cannot be

validated. In this case, try to retrieve the

disk's files and copy them to another

disk. You may have to use

DISKDOCTOR.

If you're certain you want to write to

that particular disk, remove the disk,

move the tab, and reinsert the disk.

Otherwise, use a different disk.

Use COPY to copy the file to the

destination volume. Delete it from the

source volume, if desired. Then use

RENAME.

If you are sure you want to delete the
complete directory, use the ALL option

of DELETE.

Reduce the number of soft links.

Insert the correct floppy disk, check the

spelling of the device name, mount the

device, or revise your MountList file.

8-136 AmigaDOS Reference

219 Seek error You have attempted to call

SEEK with invalid

arguments.

Make sure that you only SEEK within

the file. You cannot SEEK outside the

bounds of the file.

220 Comment is

too long

221 Disk is full

222 Object is

protected from

deletion

223 File is write

protected

224 File is read

protected

225 Not a valid

DOS disk

226 No disk in

drive

Your filenote has exceeded

the maximum number of

characters (79).

There is not enough room on

the disk to perform the

requested operation.

The d (deletable) protection

bit of the file or directory is

clear.

The w (writeable) protection

bit of the file is clear.

The r [readable] protection

bit of the file is clear.

The disk in the drive is not

an AmigaDOS disk, it has

not been formatted, or it is

corrupt.

The disk is not properly

inserted in the specified

drive.

Use a shorter filenote.

Delete some unnecessary files or

directories, or use a different disk.

If you are certain that you want to delete

the file or directory, use PROTECT to

set the d bit or use the FORCE option of

DELETE.

If you are certain that you want to

overwrite the file, use PROTECT to set

the w bit.

Use PROTECT to set the r bit of the file.

Check to make sure you are using the

correct disk. If you know the disk

worked before, use DISKDOCTOR or

another disk recovery program to salvage

its files. If the disk has not been

formatted, use FORMAT to do so.

Insert the appropriate disk in the

specified drive.

232 No more

entries in

directory

233 Object is soft

link

This indicates that the

AmigaDOS call EXNEXT

has no more entries in the

directory you are examining.

You tried to perform an

operation on a soft link that

should only be performed on

a file or directory.

Stop calling EXNEXT.

AmigaDOS uses Actinn_Read_Link to

resolve the soft link and retries the

operation.

Chapter 9. Editors

This chapter describes how to use the three text editors

supplied with your Amiga: ED, MEmacs, and EDIT. Each

editor has the basic functionality of a word processor but does

not support style formatting options, such as italics, page

numbering, or different fonts.

ED is easy-to-use and is suitable for editing scripts, Startup-

sequences, MountLists, and other simple files. MEmacs is

more powerful, allows editing of more than one file at a time,

and has extensive text-manipulation options. EDIT is a line

editor designed for automated editing of files, particulary

binary files or files that are larger than available memory.

Each editor is explained in this chapter.

~

ED is a full-screen, ASCII text editor. It allows bi-directional

scrolling of text and supports inserting, deleting and moving

blocks of text as well as searching for and replacing words or

phrases.

ED features menus and function-key support for quick access

to all its features. The mouse can be used to perform nearly

any operation. The menus are preprogrammed with the most

common operations, but they can be reconfigured to suit your

personal preferences. All ED functions are accessible through

the keyboard.

NOTE: ED does not accept source files containing binary code.

To edit these types of files, use EDIT or MEmacs.

ED

9-2 Editors

New Features of ED

If you are a current user of ED, you should read this section. If

you arc a new user, you can skip ahead to the "Starting ED"

section on page 9-3.

For Version 2.0, several enhancements have been made to ED:

• ED is now fully mouse-controllable, including cursor

positioning.

• Menus have been added which support both editing and

file operations.

• The function keys and menus are completely

programmable and support the use of macros (multiple-

key commands or multiple commands).

• Shifted function keys arc also supported and

programmable.

• A file requester makes load/save operations graphically

controllable.

• Shifted cursor keys allow for quick movement

throughout a file.

• Scrolling speed has been increased.

• You can create configuration script files to customize the

ED environment.

• AREXX is supported, and AREXX scripts can be run from

within ED.

• The window has a close gadget.

Editors 9-3

Starting ED

~

You must start ED through a Shell or with the Execute

Command menu item. The correct Format and Template are

shown below:

Format: ED [FROM] <filenamc> [SIZE <n>] [WITH]

[WINDOW] [TABS] (WIDTH] (HEIGHT]

Template: FROM/A,SIZE/N,WITH/K,WINDOW/K,TABS/

N,WIDTH - COLS/KHEIGHT = ROWS/N

You must specify a filename with ED, cither the name of an

existing file you want to edit or the name of a new file you

want to create. If the filename cannot be found in the current

directory, ED will treat the specified name as the name of a

new file. This filename will be used when you save your work.

You do not have to specify the FROM keyword.

For example:

1> ED Script

opens and displays the file Script. If a file named Script cannot

be found in the current directory, a blank ED window opens

and displays the message Creating new file.

Because the file is read into memory, there is a limit to the size

of the file you can edit with ED. The default size of the text

buffer ED uses to hold the file is 40,000 bytes. The SIZE option

allows you to change the size of the buffer. For example:

1 > ED Script SIZE 55000

increases the size of the buffer to 55,000 bytes.

When you run ED, the file S:Ed-startup is executed. It is a

command file of ED extended mode commands that sets up

the default menu assignments. You can edit this file if you

want to set up custom menus or preprogrammed function key

assignments. Advanced users may want to delete, or rename,

9-4 Editors

the ED-startup file and create their own customized file of

startup options. If the S:Ed-startup file cannot be found, ED

will open with an expanded set of menus.

An alternative way to specify startup options is with the

WITH argument. WITH allows you to specify the name of an

ED command file. This file can contain any sequence of

ED extended mode commands (explained on pages 9-10 to

9-19), each on its own line. It can contain the function-key

assignments or commands for performing automated editing

operations on an existing file.

When the WITH argument is specified, ED executes the entire

series of commands included in the file, just as if you had typed

them at the keyboard. You can even include Quit commands.

NOTE: Do not include Quit commands in the S:Ed-startup

file, or you will not be able to get into ED as it will Quit

immediately after opening.

The WINDOW, WIDTH, and HEIGHT arguments allow you

to define your terminal type (if you are using a non-Amiga

console) or adjust the size of the ED window. The WINDOW

argument specifies the console type, such as RAW:0/0/640/

256/EdWindow or *. WIDTH and HEIGHT specify the number

of characters to display horizontally and vertically. ED

supports the console window options explained in Chapter 7.

TABS sets the tab stop interval. This is the number of spaces to

the right that the cursor will move when the Tab key is

pressed. The default value is 3.

When ED is running, the bottom line of the ED window is the

status line. Error messages arc displayed there and will remain

on the status line until you give another ED command. This is

also the line on which you enter extended mode commands.

NOTE: ED always appends a line feed to the end of a file, even

if you do not specify one.

Editors 9-5

Using ED

~

There are two types of ED commands: immediate and

extended. ED opens in immediate mode. In immediate mode,

ED executes commands right away. You specify an immediate

command by pressing a single key or Ctrl-key combination or

by using the mouse. All immediate commands have a

corresponding extended version.

To enter extended mode, press Esc. In extended mode, anything

you type appears on the command line at the bottom of the

window. ED docs not execute the command until you press

Return. You can type a number of extended commands on a

single command line. You can group commands together and

have ED repeat them automatically. After ED has executed the

command line, it returns to immediate mode.

You can also execute commands through the programmable

menus and function keys. Reconfiguring the menus and

function keys is simply a matter of assigning a command to the

key or menu item of your choice. This is fully explained in the

"Customizing ED" section on page 9-21.

In some cases, you must include an argument with a

command, such as a number or a text string. A text string is a

sequence of characters. However, to define where the string

begins and ends, you have to use delimiters. A delimiter is

simply any character except a letter, number, space, semicolon,

question mark, or brackets. You can use slashes, symbols,

colons, and quotes. For example, some valid strings could be:

/DF0:/

"864 bytes"

:ECHO-Hello!":

A typical use of text strings is to indicate the name of a file to

be loaded or saved. However, you can also ask ED to use a file

requester. This allows you to view the contents of the drives

and directories in your system. (File requesters arc fully

explained in the "Requesters" section of Chapter 2.)

9-6 Editors

Be sure to include a

space before the ques

tion mark and the

string.

To invoke the requester after a load or save command, you

must place a question mark (?) before the required string

argument. Normally, when a command is followed by a string,

ED treats the string as the file to be loaded or saved and

attempts the operation immediately. However, the question

mark tells the command that you want to specify the file

through a file requester. You must still specify a string after the

question mark, but the string will be the text that appears in

the file requester title bar.

For example, SA is an extended command that saves the

contents of ED to a specified file. (This is fully explained on

page 9-13). If you type:

SA !OF0:DOCS/Lisl!

The file will be saved as List in the Docs directory of DFO:.

However, if you want to use a file requester to view the

available drives and directories, type:

SA?'Save As?!

The question mark tells SA that you want the requester with

the words Save As? in the title bar. If for some reason ED is

unable to bring up the file requester, a text prompt will appear

on the status line, and you can enter the file name there.

Immediate Commands

This section describes the immediate commands. Immediate

commands control:

• cursor movement

• text scrolling

• text insertion

• text deletion

• repetition of commands

Editors 9-7

^

Moving the Cursor

The cursor can be positioned anywhere in your text by moving

the pointer to the desired spot and clicking the selection

button. If you prefer to use the keyboard, you can use the

cursor keys, Tab, and several Ctrl-key combinations.

To move the cursor one position in any direction, press the

appropriate cursor key. If the cursor is on the right edge of the

screen, ED scrolls the text to the left so you can see the rest

of the line. ED scrolls text vertically one line at a time and

horizontally ten characters at a time. You cannot move the

cursor off the top or bottom of the file or off the left or right

edge of a line. If you try, ED displays a Top of File or Bottom of File

message.

Some additional ways to move the cursor are listed below:

Shift-up cursor Top of the file

Shift-down cursor Bottom of the file

Left edge of the ED window

(regardless of the margin setting)

End of the current line

To right-hand edge of current line

(if cursor is already there, it is moved

to the left-hand edge)

Start of the first line on the screen

(if cursor is already there, it is moved

to the end of the last line on the

screen)

Start of the next word

Space following the previous word

To the next tab position

(multiple of 3)

Shift-left cursor

Shift-right cursor

Ctrl-

Ctrl-E

Ctrl-T

Ctrl-R

Tab

9-8 Editors

If your file has more lines than can fit in the ED window, you

can scroll through the file vertically. One way to do this is by

moving the cursor to the top or bottom of the ED window, and

pressing the up or down cursor key. The text will scroll one line

at a time. You can move the text in jumps, by pressing:

Ctrl-D Moves 12 lines down through the

file.

Ctrl-U Moves 12 lines up through the file.

The commands do not move the cursor position in the

window. They just redraw the text in the window with the new

line at the cursor position.

If something happens to disturb your screen, such as an alert

from another program appearing in the ED window, press

Ctrl-V. This will refresh the entire screen.

Inserting Text

While in immediate mode, any characters you type are inserted

at the current cursor position, and the cursor is moved to the

right. Any characters to the right of the cursor are moved to

make room for the new text. If the line is wider than the width

of the window, the window scrolls to the left so that you can

see what you are typing. If you move the cursor beyond the end

of the line, by using the Tab or cursor keys, ED inserts spaces

between the end of the line and any new characters you insert.

There is a maximum limit of 225 characters in a line. If you try

to add more characters, ED will display a Line Too Long message.

To split the current line at the cursor, press Return. Any text to

the left of the cursor will remain on the original line. All text

under and to the right of the cursor will move down onto a new

line. If the cursor is at the end of the line and you press Return,

ED creates a new blank line. In either case, the cursor will

appear in the first column of the new line.

Editors 9-9

-^ Deleting Text

ED has no typeovcr mode. To replace a word or line, you must

delete the existing word(s) and insert new information. You can

do this with several keys and key combinations:

Backspace Deletes the character to the left of the

cursor.

Del Deletes the character under the cursor.

Ctrl-O If the cursor is over a space, all spaces up to

the next character are deleted. If the cursor

is over a character, all characters up to the

next space are deleted.

Ctrl-Y Deletes all characters from the cursor to the

^^-^ end of the line.

Ctrl-B Deletes the entire line.

When text is deleted, any characters remaining on the line

shift to the left, and any text beyond the right edge of the

screen becomes visible.

Changing Case

You can change the case of text by moving the cursor to the

desired location and pressing Ctrl-F. If the letter is lowercase, it

will become uppercase, and vice versa. Ctrl-F will not change a

non-alphabetic character.

After you press Ctrl-F, the cursor moves to the right. If the next

character is a letter, you can press Ctrl-F again to change its

case. You can repeat the command until you have changed all

the letters on the line. For example, if you had the line:

and you keep Ctrl-F pressed down, the line would become:

if<FILE>< = X

Symbols are not affected. If you continue to press Ctrl-F after

the last letter on the line, the cursor keeps moving right.

9-10 Editors

Extended Commands

This section describes the extended commands. Extended

commands manage:

• program control

• cursor movement

• text altering

• block control

• searching and exchanging text

To enter extended command mode, press Esc. Subsequent

input will appear on the command line at the bottom of the

screen. You can correct mistakes with Backspace. To execute

the command line, press either Esc or Return. If you press Esc,

the editor remains in extended mode, and you can enter

another command on the command line. If you press Return,

ED is returned to immediate mode.

Extended commands consist of one or two characters. In this

section they are shown in uppercase, but they can be entered in

either uppercase or lowercase. You can give multiple

commands on the same command line by separating them

with a semicolon. For instance:

T; F Workbench1

moves the cursor to the top of the file, then searches for the

next occurrence of the word Workbench.

Editors 9-11

Program Control

This section provides a specification of the program control

commands.

New Project Esc-NW

Creates a new file, replacing the existing file. The message

Edits will be lost - type Y to confirm appears to remind you that this

will clear the current file from ED. To save the existing file,

press any key except Y, and the command will be aborted.

Open File Esc-OP

Opens a file. If you want a file requester to appear, type a

question mark after the command along with a properly

delimited string. For example:

OP?/File?/

will bring up a file requester with File? in the title bar. Use the

requester to select a file to be loaded into ED.

You can also specify the file to be opened by entering the path

to the file as the string. For example:

OP/S;S!artup-sequence/

will load the Startup-sequence into ED.

In either case, the message Edits will be lost - type Y to confirm: will

appear to remind you that you will be replacing the current file.

Run File Esc-RF

Loads and executes a command file of extended mode

commands. The command file can consist of any ED

commands, entered just as they would be within ED, on

multiple lines if necessary. The file can he written and saved

with any text editor. It can include function-key definitions,

which may themselves be macros of several commands or

complete editing processes, including exiting from ED. If no

exit command terminates the command file, control will be

returned to the keyboard at the end of the file's execution.

ED will be in immediate mode.

9-12 Editors

Undo Esc-U

Reverses changes made to the current line. Normally when

you move the cursor to a line, ED makes a copy of that line and

stores the original. It is the copy that is changed when you add

or delete characters. You can use Undo, while on the line, to

bring back the original version. Once you move the cursor off

the current line, ED makes the changed line a part of the file.

ED cannot undo a line deletion. Once you have moved

from the current line, the U command cannot undo a

change.

Show Esc-SH

Shows the current state of the editor. The screen displays

information, such as the value of tab stops, current margins,

block marks, and the name of the file being edited.

Set Tab Esc-ST

Sets the tab stop. To change the current setting of tabs, use the

ST command followed by a number. For example:

ST5

sets the tab stops to every fifth column.

Set Left Margin Esc-SL

Sets the left margin. To specify the left margin, use the SL

command followed by a number indicating the column

position. For example:

SL 10

sets the left margin to the 10th column. The left margin should

not be set beyond the right edge of the screen. For instance, if

you have an 80 column screen, you should not set the left

margin to 81.

Editors 9-13

Set Right Margin Esc-SR

Sets the right margin. To specify the right margin, use the SR

command followed by a number indicating the column

position. For example:

SR80

sets the right margin to the 80th column.

Extend Margins Esc-EX

Extends the margins for the current line. Once you have

entered the EX command, ED ignores the right margin on the

current line. When you move the cursor from the current line,

ED turns the margins on again.

Status Line Message Esc-SM

Prints the given string on the status line. This is primarily

useful when included in scripts that perform automated

editing operations. It lets you display custom messages or

prompt a user for input.

Save Esc-SA

Saves the text. If no filename is specified, SA saves to the

current file. You can save to a different file via a file requester

or by giving the name directly. For example, to bring up a file

requester, type:

SA 1 Save as:/

This will display a file requester with Save as: in the title bar.

To save directly to a file, specify the name on the command

line. For example:

SA !DF0:Doc/UpToDate!

saves the file as UpToDate, in the Doc directory on DFO:.

SA followed by Q is equivalent to the X command.

// slashes appear in

the path to a file, do

not use the slash as a

delimiter.

9-14 Editors

Exit Esc-X

Exits ED saving the current file to the designated filename.

ED writes the text it is holding in memory to the file that was

specified when ED was opened, then terminates. If you look at

this file, you can see that all the changes you made are there.

If the T directory exists (usually in RAM:), ED also writes a

temporary backup to SYS:T/Ed-backup. This backup file

remains in the T directory until you exit from ED a second

time. Then it is overwritten with the latest contents of ED. If

the T directory does not exist, ED does not make a backup.

Exit with Query Esc-XQ

Exits ED unless changes have been made to the file. If changes

have been made, a requester will ask if you really want to exit

without saving the file. XQ is equivalent to clicking the Close

gadget on the ED window.

Quit Esc-Q

Exits ED without saving changes. If you have made any

changes to the file, ED will ask you if you really want to quit. If

you press Y, ED terminates immediately without writing to the

buffer and discards any changes you have made.

Cursor Control

There are several commands for moving the cursor around the

screen. These are listed below:

Esc-T Top of the file; first line of the file will be the

first line on the screen

Esc-B Bottom of the file; last line of the file will be

the bottom line on the screen

Esc-EP End of a page

Esc-PD Next page

Esc-PU Previous page

Editors 9-15

Esc-N Start of next line

Esc-P Start of previous line

Esc-CL One place to the left

Esc-CR One place to the right

Esc-CE End of current line

Esc-CS Start of current line

Esc-TB Next tab position

Esc-WN Start of next word

Esc-WP Space after previous word

Esc-M <n> To the line specified by <n>; for example:

M503

moves the cursor to the 503rd line in the

file.

Altering Text

The commands in this section describe ways to edit text on the

screen.

Insert Before Esc-I

Inserts the specified string on the line before the cursor.

Specify the string that you want to make into a new line after

the I command, and the text will be inserted before the current

line. For example:

I /Insert this before the current line/

inserts the string Insert this before the current line as a new separate

line before the line containing the cursor.

Insert After Esc-A

Inserts the specified string on the line after the cursor. This

command works in the same was as I, except the string is

inserted on a new line beneath the current cursor position.

9-16 Editors

Some other commands include:

Esc-S Splits the current line at the cursor position

Esc-J Joins the next line to the end of current line

Esc-D Deletes the current line

Esc-DC Deletes the character under the cursor

Esc-DL Deletes the character to the left of the cursor

Esc-DW Deletes to the end of the current word

Esc-EL Deletes to the end of the current line

Esc-FC Switches the case of letters

Block Control

To move, insert, or delete text, use the commands described in

this section.

Block Start Esc-BS

Block End Esc-BE

Identifies the beginning and end of a block of text. To specify a

block of text to be moved, inserted or deleted, move the cursor

to the first line that you want in the block, and give the BS

command. Then, move the cursor to the last line that you

want in the block, and give the BE command.

NOTE: ED selects the entire line no matter where on the line

the cursor is positioned.

If you have defined a block with BS and BE, then make changes

to the text, the start and end of the block become undefined.

You will have to redefine the block. The only exception to this

is if you used the IB command to insert a block of text

(explained below).

To specify one line as the current block, move the cursor to

that line, press Esc, then type:

BS:8E

Editors 9-17

The current line becomes the current block. You cannot start

or finish a block in the middle of a line. To do this, you must

first split the line.

Insert Block Esc-IB

Inserts a copy of the block after the current line. The block

will remain defined until you change the text. You can keep

using IB to insert copies of the block throughout the document.

Delete Block Esc-DB

Deletes a block. Once you delete a block it becomes undefined.

This means you cannot delete a block, then insert a copy of it.

(You cannot use DB, then IB.) If you need to place a copy of it

elsewhere, do that first, then delete it.

Show Block Esc-SB

Redraws the display so the block is at the top of the screen.

The first line in the block will be at the top of the screen.

Write Block Esc-WB

Writes the block to another file. ED creates a file with the

name that you specify, overwriting any other files with that

name, then copies the block to the file. For example:

WB !DFO:Doc/Example!

writes the contents of the block to the Example file in the Doc

directory. You can also specify the file through a file requester,

by typing:

WB /File?/

Insert File Esc-IF

Inserts a file into the current file. ED reads into memory the

specified file at the point immediately following the current

line. For example:

IF !DFO:Doc/Example!

inserts the Example file into the current file. It is inserted on

the line immediately after the line with the cursor in it.

9-18 Editors

Searching and Exchanging

ED allows you to search through the file for specific instances

of text. You can substitute one pattern of text with another.

Find Esc-F

Finds the next occurrence of the specified string of text. The

search starts one character beyond the current cursor position

and continues forward through the file. If the string is found,

the cursor moves to the start of the located string. The string

must be surrounded by acceptable delimiters (quotes, slashes,

periods, or exclamation points). The search is case sensitive,

unless the UC command is used (explained below).

For example:

F Workbench!

searches through the file for the next occurrence of the word

Workbench.

Backward Find Esc-BF

Searches backwards through the file for the specified string.

This command finds the last occurrence of the string before the

current cursor position. The search continues through to the

beginning of the file.

Exchange Esc-E

Exchanges one occurrence of text with another. You must

specify two strings, separated by delimiter characters. For

example:

E ;SYS:/DF0:/

changes the next occurrence of SYS: to DFO:.

Editors 9-19

ED starts searching for the first string at the current cursor

position and continues through the file. After the exchange is

completed, the cursor moves to the end of the exchanged text.

You can specify empty strings by typing two delimiters with

nothing between them. If the first string is empty, ED inserts

the second string at the current cursor position. If the second

string is empty, ED searches for the next occurrence of the first

string, then deletes it.

NOTE: ED ignores margin settings when exchanging text.

Exchange and Query Esc-EQ

Searches for text to be exchanged, but asks for permission to

do so. When you use EQ, ED asks you whether you want each

exchange to take place. This is useful when you want the

exchange to occur in some circumstances, but not in others.

For example, after typing:

EQ /SYS:/DF0:/

ED finds SYS:, then displays an Exchange? message on the

command line. If you press Y, the exchange takes place. If you

press N, the cursor moves to the first place after the search

string. EQ is usually given in repeated groups.

Upper/Lower Case Esc-UC

Specifies a case-insensitive search. To tell all subsequent

searches not to make any distinction between upper and

lowercase text, use the UC command. To make searches

case sensitive again, use the LC command.

~

9-20 Editors

Repeating Commands

ED remembers any extended command line you type. To

execute a command line again, you do not have to retype it,

you can press Ctrl-G. For instance, suppose you use Esc-F to

search for a text string. If the first occurrence of the string is

not the one you need, you can press Ctrl-G to execute the

search command again. You can set up and execute complex

sets of editing commands many times.

You can repeat a command a specified number of times, by

entering the number before the command. For example:

4 E'rename'copy

changes the next four occurrences of rename to copy.

You can use the RP (Repeat) extended command to repeat a

command until ED returns an error, such as reaching the end of

the file. For example:

T; RP E/rename/copy/

moves the cursor to the top of the file, then exchanges all

occurrences of rename with copy. Notice that you need the T

command (Top of File] to change all occurrences of rename.

Otherwise, only the occurrences after the current cursor

position would be changed.

To execute command groups repeatedly, you can group the

commands together in parentheses. You can also nest

command groups. For example:

RP (F /Workbench/; 3A//)

inserts 3 blank lines (the null string //) after every line

containing Workbench. This command only works from the

cursor to the end of the file. To apply the command to the

entire file, you would have to first move to the top of the file.

To interrupt any sequence of extended commands, just press

any key while the commands are being executed. If an error

occurs, ED abandons the command sequence.

Editors 9-21

~

Customizing ED

This section describes the commands that relate to menu and

function key setup. Remember, these commands can be

entered individually within ED. They can also be saved as a

script, such as S:Ed-startup, or as a file to be specified with the

WITH argument. To execute the file from within ED, you

could use the RF (Run Command File) extended command.

Set Menu Item SI

Defines the menu headings and items. There are 120 menu

item slots that you can fill. The syntax for SI is:

SI <slot number> <slot type> /stringl/stringl/

The slot numbers range from 0 to 119.

The slot type identifies the contents of the slot and is a number

from 0 to 4. The possible types and their functions are listed

below:

Type

0

1

2

3

4

Function

End of Menus

Menu Heading

Menu Item

Submenu Heading

Separator bar

String Input

No arguments

Stringl = heading name

Stringl = item name

Stringl = command string

Stringl - heading name

No arguments

The 0 slot type must be the last defined slot. If you specify a

menu heading, be sure to include menu items after it.

Do not create a menu without items. This could cause

problems with your system.

Enable Menu EM

Enables the menus. This command must be given after the

SI commands in order for the commands to be enabled.

9-22 Editors

sample menu

An example script is shown below. Quotes are used as the

delimiters.

SI

SI

SI

SI

SI

s

SI

51

SI

EM

01

12

22

34

42

51

62

72

80

"Project"

"Open ..." "op ? /Open file:/11

"Save. . . : "sa"

"Quit!" "q"

"Move'

"Top" "f

"Bottom" "b"

This script would result in the following menu:

Project M

Set Function Key SF

Defines the function keys. There are 57 immediate key slots.

Defining function key and Ctrl-key commands is similar to

defining menu items. The syntax is:

SF <slot number> /command string/

Editors 9-23

~

The slot numbers range from 1 to 57 with the function keys

and Shifted function keys ranging from 1 to 20. Slots 21 to 25

are reserved for Shifted cursor key combinations and the Del

key. The alphabetical Ctrl-key combinations range from 27 to

52 (one for each letter of the alphabet). To define Ctrl-key

combinations, you can substitute a caret (") and the other

character for the slot number.

Many of the slots are already defined. For instance, slot 25, the

Del key, is reserved for deleting the character at the cursor. Slot

27, Ctrl-A, inserts a new line after the current line. Any slot

number may be redefined to execute any command string.

Numbers within the range that do not appear are undefined.

An example script assigning function keys to cursor control

commands is shown below. This could be combined with the

menu script shown in the previous section. Quotes are used as

delimiters.

5F

SF

SF

SF

SF

SF

■

2

3

4

5

6

"t

■■b11

"ep"

■'per
"n"
.. „

This script assigns the top of file, bottom of file, end of page,

next page, next line, and previous line commands to the Fl

through F6 keys, respectively.

A complete list of slots is shown on page 9-24.

Display Function Key DF <key>

Displays the setting for the function key specified by <key>.

For instance, using the above example, if you pressed Esc-DF 1,

the status line would display t to indicate that the Tcommand

is linked to Fl.

Reset Key RK

Resets the key definitions to the default.

9-24 Editors

Slot #

1-10

11-20

21

22

23

24

25

26

27

IS

19

.il)

31

32

3i

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

o • 1

Key/Key Sequence

Fl through F10

Shift-Fl toShift-FlO

Shift-left cursor

Shift-right cursor

Shift-up cursor

Shift-down cursor

Del

Not defined

Ctrl-A

Ctrl-B

Ctrl-C

Ctrl-D

Ctrl-E

Ctrl-F

Ctrl-G
Ctrl-H

Ctrl-I

Ctrl-J
Ctrl-K

Ctrl-L

Ctrl-M

Ctrl-N

Ctrl-0

Ctrl-P

Ctrl-Q

Ctrl-R

Ctrl-S
Ctrl-T

Ctrl-U

Ctrl-V

Ctrl-W

Ctrl-X

Ctrl-Y

Ctrl-Z

Ctrl-
Not defined

Ctrl-

Not defined

Not defined

V niT Jlfl i nn i « rt r-
l\ry ITI rlltlll 11 VS

Function

Not defined

Not defined

Move to beginning of line

Move to end of line

Move to previous page

Move to next page

Delete character at cursor

Not defined

Insert line

Delete line

Not defined

Move down 12 lines

Move tO top or bottom of screen

Change case

Repeat last extended command line

Delete character left of cursor

Move cursor to next tab position

Not defined

Not defined

Not defined

Return

Not defined

Delete word or spaces

Not defined

Not defined

Move to end of previous word

Not defined

Move to start of next word

Move up 12 lines

Redisplay window

Not defined

Not defined

Delete to end ot line

Not defined

Esc (enter extended command mode)

Not defined

Move to end or start of line

Not defined

Not defined

Editors 9-25

AREXX Support

ED may be controlled from AREXX. To do this, you need some

familiarity with AREXX as well as three pieces of information:

the name of ED's AREXX port, a method for sending

commands to ED, and a way to retrieve information from ED.

Each running copy of ED has its own AREXX port name. If you

are running multiple copies of ED, you must be careful to

specify the correct port name for the corresponding ED session.

For instance, the first session has the port name of ED, the

second session is ED_1, the third session is ED_2, and so on.

Many of ED's extended commands can be used from AREXX.

ED's RV command is used in AREXX programs to send

information from ED to AREXX. It allows you to find out

about the status of ED, such as the current line number or the

name of the file being edited.

The RV command takes one argument—the name of the

AREXX stem variable in which you would like the information

stored. For example, the AREXX line:

address'ED' 'RV/stem/'

assign values to the fifteen variables outlined below:

stem.LEFT Current left margin (SL command)

stem.RIGHT Current right margin (SR commandl

stem.TABSTOP Current tab stop setting (ST command)

stem.LMAX Maximum visible line on screen

stem. WIDTH Width of the screen in characters

stem.X Physical X position on the screen (1 is the

left edge)

stem.Y Physical Yposition on the screen (1 is the

top line)

stem.BASE Window base (normally 0, but non-zero

when the screen is shifted to the right)

9-26 Editors

stem.EXTEND Extended margin value (EX command)

stem.FORCECASE Case sensitivity flag (UC/LC commandsl

stcm.LINE Current line number in the file (1 is the

first line)

stem.FILENAME Name of the file being edited

stem.CURRENT Text of the current line

stem.LASTCMD Last extended command issued

stem.SEARCH Last string searched for

NOTE: You can substitute any valid AREXX symbol for

"stem." Be sure to enclose the name in proper delimiters, as

shown above. These variables can then be treated as ordinary

AREXX stem variables [see Chapter 10 for AREXX

programming information).

You can use several extended commands from AREXX, as

illustrated in the example program, transpose.cd, shown on

page 9-27. This program, which you should launch from ED,

will transpose two characters. For example, if a line contains

the string 123 and the cursor is highlighting the 3, transpose.ed

will change the string to 213.

To try this program, type it and save it as rcxx:transpose.cd.

Then, open ED and edit an existing file or just enter some new

text. Place the cursor one character to the right of the two you

want to transpose, press Esc, and type:

rx -transpose

If you have typed the transpose.ed program correctly and

AREXX is set up and running properly, the program will

execute and the characters will be transposed.

Editors 9-27

Sample Program

" Transpose.ed: An example program to transpose two characters.

I* Given string '123', it cursor is on 3, this macro converts */

,'• string into'213'. 7

HOST = address () I* find out which ED session invoked this program '/

address VALUE HOST ''...and talk to that session 7

"rv" 7CURR/1 /' Ask ED to store info in stem variable CURR 7

* Obtain two pieces of information:

currpos = CURR.X I" 1. position of cursor on line 7

currlin = CURR.CURRENT I" 2, contents of current line 7

if (currpos ■ 2) then * Work only on the current line 7

currpos = currpos - 1

else do /' Otherwise, report error and exit

'sm /Cursor must be at position 2 or further to the right/'

exit 10

end

/" Next the code needs to reverse the CURRPOSth and CURRPOSth-1 characters

and then replace the current line with the new one. 7

drop CURR- /" CURR is no longer needed: dropping it saves some memory.

'd' /* Tell ED to delete current line

currlin = swapch (currpos,currlin) * Swap the two characters

'i /'||currlin||V .■■* Insert modified line

do i = 1 to currpos /* Place cursor back where it started

'cr' /* ED's 'cursor right' command

end

exit /' Program has finished 7

." Function to swap two characters '

swapch: procedure

parse arg epos.din

ch1 - substr(clin,cpos.1) ' Get character 7

din = delstr(clin,cpos,1) ' Delete it from string

clin = insert(ch1.clin,cpos-2.1) ' Insert to create transposition

return clin " Return modified string

9-28 Editors

MEmacs

MEmacs, which stands for MicroEmacs, is a scrccn-oricnted

editor that allows you to edit multiple files at one time. The

only restriction is that the entire text file must be able to fit

into memory at once, since MEmacs performs all of its

operations on memory-resident text.

The length of the lines you can edit is limited to the right-hand

edge of the screen, usually 80 characters. Characters beyond

the rightmost character of the line are not lost; they simply do

not show on the screen. The only way to see those characters is

to break the line or to delete some of the displayed characters.

When entering new characters, you can keep typing past the

rightmost character on the line, but what you type will not

show on the screen.

Starting MEmacs

MEmacs is in the Tools directory of the Extras2.0 disk. You can

run MEmacs from either the Workbench or the Shell. From the

Workbench, double-click on the MEmacs icon in the Tools

window of the Extras2.0 disk. If you have a hard disk, the Tools

drawer will be in your System2.0 window.

From the Shell, the format is:

Format: MEmacs |<filename>| [goto <n>] [OPT W]

<Filcname> speeifics the file to read into MEmacs. If no file of

that name can be found, the file will be created when you save

your work. This argument is optional. The goto <n> option

allows you to specify the line that the cursor will appear on

when the file is opened. This is convenient if you are editing a

particularly large file.

Editors 9-29

Normally, MEmaes opens on a new screen. However, if you

specify the OPT W option, MEmaes opens in a Workbench

window.

Using MEmaes

When you open MEmaes, without specifying a filename, the

words MfCroEMACS — main appear at the bottom of the screen.

- MicroEHACS -- nain

MEmaes screen

This line displays the name of the buffer that is currently in

use. A buffer is an area of memory that MEmaes is using to

store the text that you are editing.

If you had specified a filename, the file will be read into the

buffer, and MEmaes will give the buffer the same name as the

file. In that case, the bottom line of the screen will display the

name of the buffer along with the filename with which it is

associated.

9-30 Editors

You can have several buffers in use at one time, and you can see

one or more on the screen at the same time. Menu options let

you switch back and forth between them. At all times, what

you see on the screen is what is actually in the buffer.

MEmacs has two modes of operations: normal and command.

When MEmacs is in normal mode, you can:

• move the cursor using the cursor keys

• move the cursor to the edge of the window by holding

down Shift and pressing the appropriate cursor key

• move the cursor by clicking the left mouse button at the

desired place on the screen

• insert characters at the current cursor position simply by

typing them

• delete the character at the current cursor position by

pressing Del

• delete the character to the left of the cursor by pressing

Backspace

• perform other special functions as explained in the menu

section and command summaries that follow

When MEmacs is in the command mode, the cursor jumps to

the bottom line of the display, and the program asks you for

certain additional information. The command mode is entered

through various menu items which are explained later.

There are some special terms associated with MEmacs that

you should be familiar with:

Buffer A memory area that MEmacs controls.

There is always at least one buffer used by

MEmacs, and it can contain zero or more

characters of text.

Dot The current cursor position.

Editors 9-31

Mark A cursor position that you have specified.

[Each buffer has its own dot and mark.) The

Set-mark menu item allows you to mark

the current cursor position. You can then

move forward or backward in the file,

adding or deleting text. Then, when you

wish to return to the place that you

marked, you simply select the

Swap-dot&mark menu item.

You can also set a mark to indicate the

beginning of a block of text that you want

to duplicate, move, or delete. The block will

encompass all the characters starting with

the mark and continuing to the current

cursor position.

Kill Kill commands remove text from the screen

and save it in a kill buffer. This text can be

retrieved and put back into your document

by using the Yank command. As you issue

successive Kill commands (without

selecting Yank in between), each block of

text that you kill will be added to the

existing text in the kill buffer.

Window A MEmacs window is somewhat different

from Workbench window. In MEmacs, the

screen can be split into multiple layers so

that you can edit and display more than one

buffer, or two or more portions of the same

buffer. Each layer is an MEmacs window.

9-32 Editors

Modified When you make any changes to a buffer,

Buffers even if you only press Return then delete it,

MEmacs remembers and will mark that

buffer as a modified buffer.

You can see which buffers have been

modified by using the List-buffers

command. Any modified buffers arc

identified with an asterisk [*). If you try to

exit MEmacs without saving any changes, a

prompt will tell you that modified buffers

exist and will ask you if you really want to

quit. Once you save a buffer, the modified

status is removed.

Menu Commands

MEmacs has the following menus:

Project Contains system and file-oriented items.

Edit Contains buffer editing commands.

Window Controls the characteristics of the MEmacs

windows.

Move Controls the placement of the cursor.

Line Controls line-oriented operations.

Word Controls word-oriented operations.

Search Controls search and search/replace options.

Extras Controls the numerical value of arguments,

and lets you execute a series of operations as

though it were a single special command.

This section explains each of these menus and their related

commands. Each of the commands also has a keyboard

Editors 9-33

^

^-

shortcut. The shortcuts appear to the right of the menu item.

In the menu, Ctrl is represented by a caret ("). For instance, the

Rename menu item shows "XF as its shortcut. You must press

Ctrl-X-F.

In the manual, the keyboard shortcuts are shown along the

right margin and the standard format for key sequences is used.

However, if a symbol is shown, you must press Shift to create

that symbol. For instance, the keyboard shortcut for the Set-

Mark menu item is Ctrl-(«. Since the (a symbol is created by

pressing Shift-2, you must press Ctrl-Shift-2; Ctrl-2 will not

work.

The Project Menu

The commands in the Project menu, except for Visit-file, affect

the buffer associated with the current cursor position.

Project Line Word Search Extras

-- HicroEHflCS -- nain

Rename Ctrl-X-F

Changes the name of the file associated with the current

buffer, This command is useful if you are saving versions of a

program or text file as you go along. You can perform a Save

Project menu

9-34 Editors

command for the first version, modify a few things, rename the

file associated with this buffer and then save the new version.

When you select Rename, MEmacs prompts:

New file name:

If you press Return without specifying a filename, the buffer

becomes disassociated from any filename. You must specify a

name here if you want the buffer to be appropriately associated

with a file.

Read-file Ctrl-X-Ctrl-R

Replaces the contents of the current buffer with the contents

of a file. When you select Read-file, MEmacs moves the cursor

to the bottom line of the display and prompts:

Read file:

Enter the complete path to the file, including the volume

name, directory, and file, then press Return. The file is read

into the current buffer, overwriting the data that was stored

there.

If you do not want to read a file, simply press Return without

specifying a filename. MEmacs will ignore the request and

return you to normal mode.

Visit-file Ctrl-X-Ctrl-V

Lets you work with additional files, aside from the first file

you open. You must already be editing something before you

can visit another file. This command is useful for programmers

who are creating a program and want to extract pieces from or

refer to other programs.

When you issue this command, MEmacs moves the cursor to

the bottom line and prompts:

Visit file:

Editors 9-35

nType the complete path of the file, and press Return. MEmacs

will read the file into a buffer, if it is not already there. If the file

you want to visit is on a different disk, AmigaDOS will display

a requester asking you to insert that particular disk into any

drive. If the file is already in a buffer, MEmacs will switch you

to that buffer automatically.

Insert-file Ctrl-X-Ctrl-I

Inserts the contents of a file into the current buffer. When you

issue this command, MEmacs moves the cursor to the bottom

line and prompts:

Insert file:

Enter the complete path to the file, and press Return. MEmacs

will read it into the current buffer at a point one line above the

current cursor position.

Save-file Ctrl-X-Ctrl-S

Writes the contents of the current buffer to the filename

associated with that buffer. The filename associated with the

buffer was determined when the contents of an existing file

were read to the file or when the file associated with the

current buffer was renamed.

If there is no filename specified on the status line, MEmacs

tells you No File Name and refuses to perform the Save.

After a successful Save, MEmacs uses the bottom line of the

screen to tell you how many lines it has written out to the

designated file.

Save-as-file Ctrl-X-Ctrl-W

Allows you to specify the name of a file to associate with a

buffer. When you issue this command, MEmacs prompts:

Write file:

MEmacs is requesting the name of the file in which it should

save the current contents of the buffer. If you provide a

9-36 Editors

complete path and press Return, the buffer will be written out

to that disk, directory, and filename. (If you press Return

without providing a name, you are returned to normal mode.)

The following notation appears on the status line:

File: <filename>

From now on, that file will be used to save the current contents

of this buffer when you issue a Save command.

Save-mod Ctrl-X-Ctrl-M

Writes the contents of all modified buffers to the disk. Use this

item with caution to ensure that you don't accidentally modify

a buffer associated with a file you have visited but don't intend

to change.

Save-exit Ctrl-X-Ctrl-F

Saves all modified buffers then exits MEmacs. It is simply a

combination of the Save and Quit items. Again, use this item

with caution (see the menu item Save-mod).

New-Cli Ctrl- -

Brings up a new Shell window called Spawn Window. You can

issue as many AmigaDOS commands in the spawn window as

you want without interfering with MEmacs. To return to

MEmacs, use the ENDSHELL command. The spawn window

disappears, and MEmacs is restored to its previous state.

Cli-Command Ctrl-X-!

Allows you to execute an AmigaDOS command while you are

still in MEmacs. It is similar to issuing a RUN command while

in the Shell.

When you select this menu item, MEmacs moves the cursor to

the bottom of the screen and provides you with a ! prompt. You

can then type a command for AmigaDOS to process on this

line. MEmacs temporarily suspends operation, and AmigaDOS

executes your command. The output of the command appears

in a temporary buffer called spawn.output.

Editors 9-37

~

Quit Ctrl-C

Exits MEmacs. If one or more of the buffers has been modified

since you last saved it to a file, MEmacs prompts:

Modified buffers exist, do you really want to exit? [y/n]?

MEmacs is giving you a last chance to save your work. If you

don't want to exit, simply press Return. If you do want to quit,

press Y then press Return.

Before quitting, you can check existing buffers by selecting

List-buffers in the Edit menu. MEmacs lists the names

associated with each buffer and shows an asterisk by each

buffer that has been modified since you last saved it to disk.

There arc circumstances under which you will not want to

save all buffers back to the original files. For example, suppose

you were writing a program and copying pieces from other

existing programs as you went along. Some of the files you

visited may have been accidentally modified or may have been

on a write-protected disk.

If you arc simply using an old program as temporary source

material, you will not want to destroy the original program.

When you are finished writing the new program, save your new

material and exit MEmacs without saving the modified buffers

of the source program.

Two alternative keyboard shortcuts for the Quit command are

Ctrl-X-Ctrl-C and Esc-Ctrl-C.

~

9-38 Editors

Edit menu

The Edit Menu

The commands in the Edit menu affect the editing of your

buffers and their associated files.

Edit Window

Kill-region AH

Yank AY

Set-nark A@

Copy-region ESCu

Upper-region AXAU

Louer-region AXAL

List-buffers AXAB

Select-buffer AXb

Insert-buffer ESCAY

Kill-buffer AXk

Justify-buffer AXJ

Redisplay AL

Quote-char AQ

Indent AJ

Transpose AT

Cancel AG

Line Word Search Extras

-- HicroEMRCS — nain

Kill-region Ctrl-W

Deletes blocks of text from the current buffer and saves them

in a kill buffer. (Text can be pulled back into the document by

using the Yank command, described below.)

If a block of text has been marked using the Set-mark

command [explained below) and the cursor has been positioned

away from the mark, the area between those two points is

considered a block and can be deleted by selecting Kill-region.

You can also use Kill-region to copy a block from one section of

the buffer to another. Mark the block, select Kill-region, then

without moving the cursor, immediately select Yank. The

block will be restored to its original position, but there will

also be a copy of the block in the kill buffer,

If you repeatedly select Kill-region on different areas of text,

without performing a Yank, each successive kill segment is

Editors 9-39

appended to the kill buffer. When you perform the first Yank, it

marks the end of the kill buffer.

Yank Ctrl-Y

Copies the contents of the kill buffer to the line immediately

above the current cursor location in the current buffer. Yank

reverses the action of Kill-region, but it does not change the

contents of the kill buffer. Therefore, you can repeatedly move

the cursor to another buffer, select Yank, and copy the contents

of the kill buffer. The next time you kill a block of text,

however, the contents of the kill buffer will be replaced with

the new material and the old contents will be lost.

Kill-region and Yank are often used together to move text from

one buffer to another.

Set-mark Ctrl-<§

Marks the cursor position in a buffer. When you select Set-

mark, the position of the cursor is marked in the current buffer.

From then on, any other position of the cursor is referred to as

the dot. You can move back and forth between the mark and

the dot by selecting the Swap-dot&mark command in the

Move menu.

You can use Set-maik to mark the beginning of a block of text

that you want to duplicate or move somewhere else in the

buffer. Set the mark on the first character you want to include

in the block. As you move the cursor through the file, you are

essentially blocking out a portion of text.

An alternative keyboard shortcut for Set Mark is Esc - -.

9-40 Editors

Copy-region Esc-W

Copies the contents of the marked region to the kill buffer.

This new text replaces any previous contents of the kill buffer.

Upper-region Ctrl-X-Ctrl-U

Changes the text of the entire marked region, the area

between the mark and the current cursor position (dot), to

uppercase.

Lower-region Ctrl-X-Ctrl-L

Changes the text of the entire marked region to lowercase.

List-buffers Ctrl-X-Ctrl-B

Splits the current buffer's window and provides you with a list

of the buffers that MEmacs is currently maintaining. The list

has 4 columns. For example:

C Size Buffer File

17260 Emacs.doc df1:Docfiles/Emacs.doc

The fields are:

Displays an asterisk if the buffer has been

modified since it was last saved to a file.

[Stands for "changed.")

Size Shows how many characters are in the

buffer.

Buffer Shows the name given to the buffer. If you

have read in a file, this will usually be the

name of the file itself, minus the full path.

In the example above, the file being edited

isDFl:Docfiles/Emacs.docs, but the buffer

name is just Emacs.docs.

File Shows the full path to the file. This is the

file where MEmacs will write the buffer if

you choose Save-file or Save-exit while the

cursor is in that buffer.

Editors 9-41

When you choose List-buffers, the status line at the bottom of

the screen displays MEmacs — [List]. Even though List-buffers

brings up a window display, it is not listed as an available

buffer. If you edit the List-buffers window, it can be made to act

just like any other buffer. If, for example, you open a file in the

List-buffers window, the name of the buffer will continue to be

[List], and the name of the file you have opened will become

associated with the List-buffers window.

If you should leave the List-buffers window on the screen but

use a different window to modify the listed buffers, the List-

buffers display will not be continuously changed to reflect the

current changes. To get current information, you must select

List-buffers again.

_^ Select-buffer Ctrl-X-B

Lets you select which buffer you wish to edit in the currently

selected window, the window where your cursor is positioned.

When you choose Select-buffer, MEmacs moves the cursor to

the bottom line and prompts:

Use buffer:

You must provide a name that is the same as one of those

shown in the List-buffers listing. If you specify one of the

available names, that buffer replaces the contents of the

currently selected window.

If you specify a name that is not in the List-buffers listing, you

are telling MEmacs to create a new buffer with that name. In

this case, there is no filename associated with the new buffer

and you will have to rename the file or select Save-as-file when

you are prepared to save the buffer's contents to a file.

If you simply press Return, the command is ignored.

9-42 Editors

Insert-buffer Esc-Ctrl-Y

Inserts the contents of a named buffer into the current buffer

at the line above the current cursor position. When you select

Insert-buffer, MEmacs prompts:

Insert buffer

You must type the name of the buffer to insert, then press

Return.

Kill-buffer Ctrl-X-K

Deletes the contents of a chosen buffer. MEmacs can only edit

a file if the entire file will fit in available memory. To make

room in memory, you can use Kill-buffer to delete the contents

of one or more buffers. This command returns the buffer's

memory to the memory manager for reuse.

When you choose Kill-buffer, MEmacs prompts:

Buffer to kill (delete):

You must then enter the name of the buffer you wish to delete.

You cannot kill a buffer if its contents are currently displayed.

Justify-buffer Ctrl-X-J

Removes all blank spaces and tabs from the left-hand edge of

all the lines in the current buffer. The text is rearranged so that

it aligns with the current margins.

Redisplay Ctrl-L

Redraws the screen.

Quote-char Ctrl-Q

Allows you to insert a literal character in the text file. Some

keyboard selections have been assigned as MEmacs control

characters (for instance, the menu command shortcuts). If you

try to insert such a selection into your text, MEmacs will react

as if you chose a menu item.

Editors 9-43

For example, Ctrl-L tells MEmacs to redraw the display, but

Ctrl-L is also useful as a printing control to insert a form feed

character. By selecting Quote-char, the next character you type

will be taken "literally" by MEmacs and will be inserted into

the text file, instead of being treated as a menu command.

To quote the form feed character, press Ctrl-Q-Ctrl-L. MEmacs

will display "L, on the screen. (MEmacs uses the caret (-]

symbol to represent Ctrl.)

As MEmacs manipulates the buffer, the combination of the

caret and the character is treated as a single character, both by

the cursor keys and the character counter.

You can also use Quote-char to insert a Return (Ctrl-M),

Backspace (Ctrl-H), or Esc (Ctrl-() into the text by quoting the

single keys, or for inserting any other control character that

may be needed during a macro command. Even Ctrl-Q can be

inserted by typing it twice. The Tab key cannot be quoted.

An alternative keyboard shortcut for Quote-char is Ctrl-X-Q.

Indent Ctrl-J

Moves the cursor to the next line, automatically indenting the

same amount of spaces as the previous line.

Alternative keyboard commands are Help or Enter on the

numeric keypad.

Transpose Ctrl-T

Swaps the positions of two adjacent characters. Place the

cursor on the right-most of the two characters.

Cancel Ctrl-G

Ends an ongoing menu command, such as a query search and

replace.

9-44 Editors

Window menu

The Window Menu

A window in MEmacs is not the same as a window on the

Workbench. MEmacs splits the screen into multiple layers,

allowing you to edit a separate file (buffer) in each MEmacs

window. The Window menu lets you control how you view

your buffers on the screen.

Hindog Hove

Qne-mndou AX1

Split-uindou AX2

Next-uindou AXn

Prev-uindou AXp

Expand-uindou AXz

Shrink-uindou AXAZ

Next-u-page # ESCAU

Preu-u-page * AXu

Search Extras

-- MicroEHBCS — nain

One-window Ctrl-X-1

Makes the current buffer a single, full-sized window on the

MEmacs screen. All other buffers remain invisible, allowing

you maximum space to work on the current buffer.

Split-window Ctrl-X-2

Splits the current window in half, positioning the current

buffer identically in both windows. This lets you edit two

segments of the buffer at the same time. Any changes made in

cither window affect the entire buffer. This is convenient when

you want to see what you wrote in an earlier part of your

document while working on a later section.

Editors 9-45

^ Next-window Ctrl-X-N

Moves the cursor to the next window and makes that window

available for editing.

If the cursor has been moved down to the bottom window, the

cursor will automatically move up to the top window.

Prev-window Ctrl-X-P

Moves the cursor to the previous window and makes that

window available for editing.

Selecting Prev-window when the cursor is in the top window

will move the cursor to the last, or bottom, window.

Expand-window Ctrl-X-Z

Adds a line to the height of the current window and

n simultaneously subtracts a line from the height of the

adjacent window.

Shrink-window Ctrl-X-Ctrl-Z

Subtracts a line from the height of the current window and

simultaneously adds a line to the height of the adjacent

window.

Next-w-page Esc-Ctrl-V

Displays the next page of the adjacent window. For instance, if

you have split a window and are working in the top one,

selecting Next-w-page will move the contents of the bottom

window (the one you aren't working in) to the next page. This

doesn't make the window available for editing; it just lets you

view the contents.

Prev-w-page Ctrl-X-V

Displays the previous page of the adjacent window. If only one

window is displayed, it displays the previous page of that

window.

9-46 Editors

Move menu

The Move Menu

The commands in the Move menu let you move the cursor

rapidly through the current buffer.

Project Edit I hove Line

Top-of-buffer ESC<:

End-of-buffer ESC>

Top-of-uindou ESC,

End-of-uindou ESC.

Goto-line AXAG

Suap-dot&nark AXAX

Next-page AV

Preu-page ESCv

Next-uord ESCf

Previous-uord ESCb

Scroll-up AZ

Scroll-doun ESCz

Search Extras

-- MicroEflflCS ~ nain

Top-of-buffer Esc-<

Moves the cursor to the top line of the current buffer.

End-of-buffer Esc->

Moves the cursor to the bottom line of the current buffer.

Top-of-window Esc-,

Moves the cursor to the top of the current window.

End-of-window Esc-.

Moves the cursor to the bottom of the current window.

Goto-Hne Ctrl-X-Ctrl-G

Moves the cursor to a specific line number. When you select

Goto-line, MEmacs moves the cursor to the bottom of the

screen and prompts:

goto-line:

Editors 9-47

^
Enter a line number, press Return, and MEmacs moves the

cursor directly to that line. If you specify a line number larger

than the total number of lines in the buffer, MEmacs moves the

cursor to the last line of the buffer.

Swap-dot&mark Ctrl-X-Ctrl-X

Places a mark at the current cursor position and moves the

cursor to where the mark had been set. If you have not yet set a

mark in the window, MEmacs replies, No mark in this window.

This command lets you move quickly to and from a preset

location in your buffer. Selecting this item again restores the

cursor to where it was before you selected Swap-dot&mark the

first time.

Next-page Ctrl-V

Moves the text within the window toward the end of the

buffer by one full window, less one line. The cursor is

rcpositioned so as to stay on the screen.

Prev-page Esc-V

Moires the text within the window toward the beginning of the

buffer by one full window, less one line. The cursor is

repositioncd so as to stay on the screen.

Next-word Esc-F

Moves the cursor forward to the next non-alphanumeric

character, such as a space or punctuation mark, after the

current word.

Previous-word Esc-B

Moves the cursor back to the first letter of the previous word.

Scroll-up Ctrl-Z

Moves the text up a single line.

Scroll-down Esc-Z

Moves the text down a single line.

9-48 Editors

Line menu

The Line Menu

The commands in the Line menu let you move the cursor

within or between lines and let you perform operations

involving entire lines.

Project Edit Hindou Houe Line

Open-line Ctrl-0

Splits the line the cursor is in, forcing the character on which

the cursor rests to become the first character of the following

line. This command leaves the cursor in the original line so

that you can type new characters beginning at the current

cursor position.

If you select Open-line by mistake, immediately pressing Del

closes up the line.

Kill-line Ctrl-X-Ctrl-D

Deletes the line in which the cursor is located and places the

text in the kill buffer. If you have not selected Yank since the

last Kill command, the text will be appended to the existing

text in the kill buffer.

Editors 9-49

^ Kill-to-eol Ctrl-K

Deletes the text between the current cursor position and the

end of the line. If you have not selected Yank since the last Kill

command, the text will be appended to the existing text in the

kill buffer.

Start-of-line Ctrl-A

Moves the cursor to the left-most position on a line.

End-of-line Ctrl-E

Moves the cursor to the right-most position on a line. If you

have typed more characters than will fit on a line, a dollar sign

($) appears at the right-hand edge of the line. Moving to the end

of the line places the cursor logically on the right-most

character even though you cannot see it. Physically the cursor

is positioned over the dollar sign. If you use the left cursor key

to move the cursor, it will take as many key presses as there are

unseen characters before the cursor actually begins to move.

NOTE: If you invoke MEmacs with OPT W to use a

Workbench window for MEmacs, and your display mode

allows more than 80 columns, MEmacs displays as many

characters as will fit before showing the dollar sign.

Next-line Ctrl-N

Moves the cursor down one line.

Previous-line Ctrl-P

Moves the cursor up one line.

Line-to-top Esc-!

Moves the line containing the cursor to the top of the window.

Delete-blanks Ctrl-X-CtrI-0

Deletes blank lines, proceeding forward from the current

cursor position until MEmacs gets to the next line on which

text exists.

9-50 Editors

Word menu

Show-Line# Ctrl-X- =

Displays information on the present cursor position. For

example:

Line 17 Column 1 (2%)

In this example, the cursor is on the 17th line of text, in the

first column. The percentage shows that the cursor is in a

position 2% of the way from the top of the buffer. If the cursor

was on the last character of text, the percentage would be equal

to 100.

The Word Menu

The Word menu contains word-associated operations.

Project Edit Hindou Move I Word

deiete-forw ESCd

delete-back ESCh

Upper-word ESCu

Louer-uord ESCI

Cap-uord ESCc

Suitch-case ESO

- MicroEHHCS — nain

Delete-forw Esc-D

Deletes the character on which the cursor is positioned and all

remaining characters to the right until the next non-

alphanumeric character is found, (i.e., a blank space, tab, or

punctuation mark).

Editors 9-51

For instance, if the cursor is positioned on the "s" in the word

"wordsuffix," choosing Delete-forw will delete "suffix" from

the word. If the cursor is positioned on a blank space, it must

be moved forward to the start of a word to delete that word.

Delete-back Esc-H

Deletes all characters to the left of the cursor until it finds the

first character of a word. The character under the cursor is not

deleted.

An alternative keyboard shortcut for this command is Esc-Del.

Upper-word Esc-U

Changes a word to uppercase, starting at the character where

the cursor is positioned and proceeding to the last character of

^_^ the word.

Lower-word Esc-L

Changes a word to lowercase, starting at the character where

the cursor is positioned and proceeding to the last character of

the word.

Cap-word Esc-C

Changes the character where the cursor is positioned to

uppercase. It also changes the characters to the right of the

cursor, up to the end of the word, to lowercase.

Switch-case Esc-~

Changes the case of a word, starting at the current cursor

position and proceeding to the right until it reaches the end of

the word. If a word is uppercase it changes it to lowercase, and

vice versa.

9-52 Editors

Search menu

The Search Menu

The Search menu allows you to search through the current

buffer for specific text strings. The case (upper or lower) of the

string is not significant in the search itself. However, if you are

using text substitution (search and replace), the text will be

replaced in the same case as that of the replacement string.

Project Edit Hindou Hove I Search

Search-foruard AS

Search-backuard AR

Search-replace ESCr

Querys-r ESCq

Fence-natch ESCAF

— MicroEMHCS — nain

Search-forward Ctrl-S

Searches through the text starting at the current cursor

position and moving forward to the end of the buffer. When

you issue this command, MEmacs moves the cursor to the

bottom line of the screen and prompts:

Search:

Enter the string of characters that you want MEmacs to search

for, and press Return. If the string is found, MEmacs positions

the cursor immediately following the last character of the

string.

If MEmacs cannot find the string, it replies Not found.

An alternative keyboard shortcut for this command is Ctrl-X-S.

Editors 9-53

. v Search-backward Ctrl-R

Searches through the text from the current cursor position

backwards to the beginning of the buffer. This command

operates in the same manner as Search-forward.

An alternative keyboard shortcut for this command is Ctrl-X-R.

Search-replace Esc-R

Operates the same way as Search-forward, except that it

allows you to replace the string with different text. When

MEmacs finds the first occurrence of a specified string, it

prompts:

Replace:

You must enter the string of characters that should replace the

found string. Remember, the characters will appear in the same

case as you type them. When you press Return, MEmacs will

automatically forward-search and replace the search string

with the replacement string. After MEmacs completes this

command, it reports:

Replaced <xx> occurrences

<xx> stands for the number of times the string was replaced.

Query-s-r Esc-Q

Operates the same way as Search-replace, except that it

allows you to choose whether or not to replace each

occurrence of the string. When you select Query-s-r, MEmacs

prompts for the search string, then prompts:

Query replace:

As it finds a matching string, it prompts:

Change string? [y/n/c/"G]?

The options are: Y (yes); N (no); C (change all occurrences of

the string); and Ctrl-G (abort). This gives you a chance to

control the replacement process. After MEmacs completes this

command, it reports:

Replaced <xx> occurrences

9-54 Editors

Fence-match Esc-Ctrl-F

Extras menu

Finds the closest occurrence of the fence character to match

the one at the current cursor position. A fence character is the

closing character to match a:

parenthesis [matches)

bracket [matches]

brace {matches}

angle bracket < matches >

If you choose Fence-match while the cursor is on an opening

parenthesis, the cursor will move to the next occurrence of a

closing parenthesis.

If you choose Fence-match while the cursor is on another type

of character, such as a letter or symbol, the cursor will move to

the next character of the same type. For instance, an asterisk

matches another asterisk.

The Extras Menu

The Extras menu contains commands to let you tell MEmacs

how to operate. Many of these operational commands require

that you specify a numeric argument before selecting the

command itself.

Project Edit Window Howe ExtrasSearch

Set-arg AU

Set ESCs

Start-nacro AX(

Stop-nacro AX>

Execute-nacro AXe

Set-key AXAK

Reset-keys ESCk

Execute-file ESCe

Execute-line A[AE

-- HicroEMflCS -- nain

Editors 9-55

This menu also includes several macro commands. A macro

command is actually a sequence of commands or other

keystrokes that are executed by selecting the Execute-macro

menu item.

Set-arg Ctrl-U

Lets you specify a numeric argument for a command. When

you issue this command, MEmacs prompts:

Arg: 4_

If you select Set-arg again, MEmacs multiplies the argument

value by 4.

If you press a numeric key (0-9), MEmacs accepts an integer

argument. If you press a minus sign first, MEmacs accepts a

negative integer argument, starting at -1.

Examples: (Each started by a single press of Ctrl-U)

Arg: -1 Pressed - as the first key

Arg: -23 Pressed - - 2 - 3 as a 3-key sequence

MEmacs accepts the argument value as a key for whatever you

do next. To add 12 blank lines at the cursor position, specify an

argument of 12, then press Return. To add 20 minus signs,

select an argument number of 20, do not press Return, and

press the minus sign on the keyboard.

NOTE: Don't use the keypad's minus sign,- it is mapped to a

different value.

To set one of the MEmacs operational parameters (described

below), select the value of the argument, do not press Return,

then select the appropriate menu item. MEmacs will use the

argument to set the value.

If the command does not support parameters. MEmacs

executes the command the specified number of times.

9-56 Editors

Set Esc-S

Allows you to choose various MEmacs parameters. When you

choose Set, MEmacs prompts:

Set:

You can then enter one of the following:

Screen Places the MEmacs display in a Workbench

window or back onto a custom screen.

Interlace Turns the interlace mode on or off.

Mode Results in a second prompt Mode:; you can enter

cmode (for editing c programs) or wrap [to enable

automatic word-wrap when the text reaches a

set cursor position). Cmode provides automatic

fence matching. Use +mode or -mode to add

or subtract a mode.

Left* Determines the left margin.

Right* Determines the right margin.

Tab* Sets the increment for tab spacing.

Indent* Determines how far to indent each level of

nesting (used in c mode).

Case Turns case sensitive searches on or off; default

is off.

Backup Turns the MEmacs backup function on or off.

Your options are: ON (renames the current file

<filename>.bak and saves that backup file to

theT: director)'); SAFE (this option checks to

see if a file already exists for the buffer—if so, it

will not overwrite the existing file); and OFF

(this is the default option—MEmacs does not

perform any backup).

"Each of these entries results in a prompt for a numerical

argument, unless the numeric argument is given along with

the entry.

Editors 9-57

— Start-macro Ctrl-X-(

Tells MEmacs to start recording any subsequent keystrokes.

This is a macro command and is used in conjunction with the

Stop-macro and Execute-macro commands.

Stop-macro Ctrl-X-)

Tells MEmacs to stop recording keystrokes.

Execute-macro Ctrl-X-E

Repeats keystrokes and menu selections that were entered

between Start-macro and Stop-macro. They are repeated as if

you had freshly entered the entire sequence.

Set-key Ctrl-X-Ctrl-K

Allows you to redefine all of the function keys, the Shifted

function keys, the Help key, or any key on the numeric keypad

as keyboard macros. This means that if you select one of these

redefined keys while recording macro commands, the new key

definition will be recorded in the command. One definition,

having as many as 80 keystrokes, can be recorded for each of

these keys.

NOTE: If you want to insert the Set-mark command into any

of the keyboard macro definitions, you can't use the menu

shortcut of Ctrl-@'. This does not function correctly when used

in a macro command. Instead, you must use the alternative

form of Set-mark, Esc- -. This alternative form is acceptable in

macro commands.

When you choose Set-key MEmacs prompts:

^^ key to define:

Press one of the 10 function keys, Help, or a numeric keypad

key. MEmacs responds:

del: [commands]:

[commands] is a display of the current commands bound to

that key. Enter the new string of characters (up to 80) that you

9-58 Editors

want to have MEmacs respond to when this key is touched.

Pressing Return terminates the entry.

Remember that when entering commands that involve

function keys, for example Esc-< (go to top of buffer], you must

use Quote-char (Ctrl-Q) to properly insert the keystroke into

the definition.

The table below contains the default values of the function

keys when used in macro commands.

Key

Fl

F2

F3

F4

F5

F6

F7

F8

F9

F10

Help

Enter

-Default Function Keys Assignments

Assignment Key Sequence

Clone line

Delete line

Ctrl-A-Ctrl-K-

Ctrl-Y-Ctrl-M-

Ctrl-Y

Ctrl-X-Ctrl-D

Execute keyboard macro Ctrl-X-E

Next screen

Previous screen

Split window

One window

Scroll window up

Scroll window down

Save file and exit

Insert line

(keypad) Insert line

Ctrl-V

Esc-V

Ctrl-X-2

Ctrl-X-1

Ctrl-Z

Esc-Z

Ctrl-X-Ctrl-F

Ctrl-J

Ctrl-I

The numeric, period, and minus keys on the numeric keypad

default to their normal values (i.e. keypad 1 defaults to 1,

keypad 2 defaults to 2, etc.).

Reset-keys Esc-K

Returns any keys defined by Set-keys to their original default

state.

Editors 9-59

^
Execute-file Esc-E

Allows you to execute a program file within MEmacs. When

you select this command, MEmacs prompts:

File:

Enter the name of the file you wish to access. This file is

executed as a file of MEmacs commands.

Execute-line Ctrl-[-Ctrl-[

Sets MEmacs to the command mode. When you choose

Execute-line, MEmacs prompts:

execute-line:

You can then enter any menu command and its parameters by

simply typing it at the prompt. You must use the exact format

used in the menus, including hyphens, or you will receive an

alert and command error message. For instance, this is

incorrect:

execute-line: insert file <filename>

You must type:

execute-line: insert-file <filename>

An alternative keyboard shortcut for Execute-line is Esc-Esc.

Commands Not in Menus

The following commands have not been installed in menus

and are only accessible through the keyboard.

Describe Key Esc-Ctrl-D

Tells you if any functions are bound to a key or key-sequence.

When you press Esc-Ctrl-D, MEmacs prompts for the key to

describe. If you enter a key sequence, such as Ctrl-L or Esc-K,

MEmacs will respond with the corresponding function. In this

case, Redisplay and Reset-keys, respectively.

Keys are bound when

they can be used to

perform a function.

For instance, any key,

or key sequence, that

can be used as a short

cut for a menu item is

bound to that menu

item.

9-60 Editors

Bind Key Esc-Ctrl-B

Allows you to bind a key to a function. When MEmacs

prompts for the key to bind, enter the function (following the

format used in the menu items) then the key or key sequence.

To check if the key was bound properly, use the Describe key

command (Esc-Ctrl-D).

Unbind Key Esc-Ctrl-U

Allows you to return a bound key to an unbound state. When

MEmacs prompts for the key to unbind, enter the key or key

sequence. MEmacs will then reply Key is not bound.

You cannot unbind the standard bound keys that are used as

commands. If you use Unbind Key on a key that was not

previously bound, you will not receive the Key is not bound

message.

Echo Esc-Ctrl-E

Displays the string typed in the command line. This command

is usually used when creating or editing executable MEmacs

script files.

Move to Edge of Window Shift-Cursor

By holding down Shift and a cursor key, MEmacs will move

the cursoi to the top, bottom, left, or right edge of the screen.

This is subject to the amount of text available.

Delete the Next Character Ctrl-D

Deletes the character at the current cursor position. This is the

same as pressing Del.

Delete the Previous Character Ctrl-H

Deletes the character to the left of the current cursor position.

This is the same as pressing Backspace.

Editors 9-61

Move to Next Line Ctrl-M

Inserts a newline character after the current cursor position

and moves the cursor to the start of the new line.

Move x number of Characters Ctrl-F

Ctrl-B

Allows you to move the cursor forward or backward a

specified number of spaces. The default value of this command

is one character. However, you can establish a higher value

by using Ctrl-U to set the argument value. Press Ctrl-F to move

forward the specified number of characters, or press Ctrl-B to

move backward.

Customizing MEmacs

When MEmacs is opened, it attempts to read the contents of an

Emacs pro file to see if there are any commands that it should

automatically execute. This is a convenient way of saving

commonly used commands, command sequences, or text

strings. You can actually have several Emacs pro files — a

global file that is used every time MEmacs is opened and more

specialized local files that are only used in certain instances.

(The Emacs_pro file does not already exist; you have to

create it.)

To create a global file of commands place the Emacs_pro file

in the S: directory. Local files can be put in any directory. If that

directory is the current directory when MEmacs is opened,

the commands in that particular local file will be executed.

9-62 Editors

When both local and global Emacs_pro files are present, the

local file overrides the global file.

For example:

Set Case On

Set-Key F11 "Dear Sirs:"

Set-Key F12"'S Workbench"

Set-Key F13"VB"

makes the following assignments:

Shift-Fl Type the text string Dear Sirs:.

Shift-F2 Search forward for the next occurrence of the

word Workbench. (The Set Case On commands

make any text searches case sensitive.)

Shift-F3 Display the list of buffers.

Remember, you must use Ctrl-Q to enter a Ctrl-key sequence.

For instance, to enter the *S character shown in the example,

you would have to press Ctrl-Q-Ctrl-S.

Editors 9-63

EDIT

EDIT processes multiple files line by line. EDIT moves

through the input, or source file, passing each line, after any

alterations, to a sequential output file, the destination file. An

EDIT run, therefore, makes a copy of the source file that

contains any changes you made with the editing commands.

Although EDIT usually processes the source file in a forward

sequential manner, it has the capability to move backward a

limited number of lines. This is possible because EDIT doesn't

write the lines to the destination file immediately, but instead

holds them in an output queue. The size of this queue depends

on the amount of memory available. If you want to hold more

information in the queue, you can use the OPT option of EDIT

to increase the amount. (This is described in the following

section, "Starting EDIT")

You can make more than one pass through the text.

EDIT allows you to:

• change parts of the source

• output parts of the source to other destinations

• insert material from other sources

• edit files larger than the available memory

~

9-64 Editors

Starting EDIT

You must start EDIT through a Shell. The correct Format and

Template are shown below:

Format: EDIT |FROM] <filename> |[TO] <filename>]

[WITH <filename>] [VER <filename>]

[(OPT P <lines> | W <chars>]

[PREVIOUS <lines>] WIDTH <chars>|]

Template: FROM/A,TO,WITH/K,VER/K,OPT/K,

WIDTH/N,PREVIOUS/N

The FROM argument specifies the source file that you want to

edit. You must specify a source file with EDIT although the

FROM keyword is optional. Unlike ED, you cannot use EDIT

to create a new file. If you attempt to create a new file,

AmigaDOS displays an error stating that it cannot find the

filename in the current directory.

The TO argument specifics the destination file to which EDIT

will send its output, including editing changes. If you omit the

TO argument, EDIT uses a temporary file. This temporary file

is renamed as, and will overwrite, the FROM file when editing

is complete.

The WITH keyword specifies a file containing editing

commands.

The VER keyword specifies the file to which EDIT sends error

messages and line verifications. If the VER argument is not

given, EDITuses the screen.

You can use the PREVIOUS and WIDTH options to increase or

decrease the amount of available memory. The PREVIOUS

option sets the number of previous lines available to EDIT to

the integer <n>. The WIDTH option sets the maximum

number of characters allowed on a line to <n>. EDIT

multiplies the number of previous lines by the maximum

number of characters (PREVIOUS * WIDTH) to determine the

available memory. The default values are PREVIOUS 40

WIDTH 120.

Editors 9-65

You can also use OPT P <n> and OPT W <n> to specify the

PREVIOUS and WIDTH options. However, do not use the OPT

keyword with PREVIOUS and WIDTH.

Using Edit

This section explains how EDIT processes information. It

explains:

• how input is handled

• what appears on the screen

• how output is handled

• the format of EDIT commands

• the types of arguments used by commands

The Current Line

As EDIT reads lines from the source file and writes them to the

destination file, the line that EDIT is working on at any time is

called the current line. When you start EDIT, the current line is

the first line of the source file. Some things to keep in mind:

• Every command that you enter refers to the current line.

• All text changes are made to the current line.

• New lines are inserted before the current line.

EDIT identifies each line in the source file by a unique line

number. This is not part of the information stored in the file.

EDIT computes the line numbers by counting the lines as they

are read. You can refer to a specific line by using its line

number.

EDIT distinguishes between original and non-original lines.

The original lines are the lines of the source file. A line that has

been read retains its original line number as long as it is in

9-66 Editors

main memory, even if you delete or add lines before or after it.

The line numbers remain unchanged until you renumber them

with the REWIND or = commands, explained on page 9-83.

Any lines that are inserted into the source, or original lines

that are split, are considered non-original lines and are not

assigned line numbers.

You can only refer to original lines when using commands that

take line numbers as arguments. EDIT moves forward, or

backward, according to whether the line number you specify is

before or after the current line. When searching for an original

line, EDIT passes over non-original lines.

Prompts

When EDIT is ready to accept a command, it displays a prompt

(:) and a cursor.

EDIT prompt

Usually, EDIT is run interactively, with the commands being

typed at the keyboard and all error messages and line

verifications appearing on the screen. Certain commands, such

as those that change the information in a line, cause EDIT to

Editors 9-67

display the revised line after the command is executed. This is

known as line verification. When a line is verified, the EDIT

prompt does not appear. Instead, the cursor appears on the line

below the verification. You can enter commands at the cursor;

you don't have to have the prompt. However, if you press

Return, the prompt will reappear.

The following circumstances cause line verification:

• When you type a new line of commands for a new

current line that EDIT has not yet verified or for a

current line that has changed since the last verification.

• When EDIT has moved past a line that it has changed

but not yet verified.

• When EDIT displays an error message.

Output Processing

EDIT sends revised lines and any information inserted into the

file to the output, or destination, file specified by the TO

argument. If no file is specified, EDITuses a temporary file that

is later renamed as the source file, EDIT does not send the

edited lines to the destination file immediately. Instead, the

lines are kept in an output queue in main memory. The

number of lines that can be held in this queue is determined by

EDIT's PREVIOUS option. (The default is 40 lines.)

Lines are written to the destination file as the output queue

hits its maximum number of lines. For instance, if the output

queue contains 40 lines and a new line is sent to the queue, the

oldest line in the queue is written to the destination file. Until

EDIT has actually written a line to the destination file, you can

move back and make it the current line again.

When EDIT reaches the last line of a source file, it creates an

extra blank line at the end of the file. This line has a line

number one greater than the number of lines in the file. EDIT

verifies the line by displaying the line number and an asterisk.

9-68 Editors

If this extra line is the current line, any commands to change

the line or to move forward in the file will result in an error.

Commands

An EDIT command is either a sequence of letters or a single

special character, such as #. If the command consists of more

than four letters, only the first tour letters of the name are

significant. For instance, You only need to type REWI to

execute the REWIND command. Commands may also be

followed by arguments.

Spaces between a command and the first argument, between

non-string arguments, and between commands are optional. A

space is only mandatory when it must separate two successive

items that could otherwise be treated as one, such as two

numbers or an alphabetic argument following an alphabetic

command.

EDIT commands arc not case-sensitive. They can be typed

either uppercase or lowercase.

You can enter a command in three ways:

• typing the commandls), then pressing Return.

• typing the final command argument, then pressing

Return.

• typing a semicolon or closing parenthesis.

Arguments

There are four different types of arguments you can use with

EDIT commands:

• strings

• qualified strings

• numbers

• switch values

Editors 9-69

Each of these is explained in the following sections, and you'll

learn more ahout the arguments as you encounter the

command sections.

Strings

A string is a sequence of up to 80 characters enclosed in

delimiters. A delimiter is a character that indicates the

beginning or end of a string. You can use any common English

punctuation characters, except the semicolon, and the four

arithmetic operators as delimiters. Acceptable examples arc:

The delimiter cannot appear in the string. For instance, you

can't use apostrophes to delimit a string that contains an

•—^ apostrophe. For example:

'it's'

will be recognized as two strings: it and s that are delimited

with apostrophes. However:

/it's/

will be recognized as one string: it's.

The final delimiter can be omitted if it is at the end of the

command line.

Below are some examples of strings:

Delimited String String

/A/ A

?Hello? Hello

+ String without final

delimiter String without final delimiter

Commands that take two string arguments use the same

delimiter for both strings and do not repeat it between the

arguments. The second string always specifics replacement

9-70 Editors

text. An example of this is the A command. The A command

inserts its second string after the first occurrence of the first

string. For example:

A 'Jingle/all the way

inserts all the way after the first occurrence of Jingle. (Remember

that the final delimiter does not have to be typed.)

Strings are case-sensitive. In the above example, EDIT would

look for Jingle with a capital f. If EDIT only found jingle an error

message would be displayed.

You can also use an empty, or null, string. Null strings are

commonly used with exchange commands to delete a string of

text. The E command replaces the first string with the second

string. For example:

E /slay/sleigh

replaces slay with sleigh. However, if you typed:

E /slay//

slay would be replaced with the null string. In other words, slay

would be deleted from the current line. If you were to specify a

null string after the A command, nothing would happen

because you've asked EDIT to insert nothing after the first

string.

Qualified Strings

In some cases, you may want to search for a string by its

context, such as whether it appears in the beginning or end of a

line. In this case, you must use a qualified string with the

command. A qualified string is an argument that is preceded by

a qualifier, one or more letters specifying the context.

Editors 9-71

The available qualifiers are:

B The string must appear at the beginning of the

line; cannot be used with E, L, or P. If B appears

with the null string, it matches with the

beginning of the line since it is not told to look

for anything.

E The string must be at the end of the line; cannot

be used with B, L, or P. If E appears with the null

string, it matches with the end of the line.

L EDIT will search for the string from the end of

the line to the beginning of the line (instead of

from right to left). If there is more than one

occurrence of the string in a line, L makes sure

that the last one is found. L cannot be used with

B, E, or P. If L appears with the null string, it

matches with the end of the line.

P The line must match the string precisely and

must not contain any other characters. P cannot

be used with B, E, or L. If P appears with a null

string, it matches an empty line.

U The search is not case-sensitive. It will match

any occurrence of the string regardless of

whether it occurs in uppercase, lowercase, or a

combination of the two.

Numbers

Line numbers are a special form of number and must always be

greater than zero. A period represents the current line and may

be used instead of the line number. An asterisk represents the

last line at the end of the source file. For example, the M

command takes a line number as its argument and makes that

line number the current line. So:

M*

instructs EDIT to move to the end of the source file.

9-72 Editors

Switch Values

Some EDIT commands must be "switched" on or off. In this

case, the command takes a single character, either + or-, as an

argument. The plus sign turns the command on, and the minus

sign turns a command off.

Multiple Commands

You can repeat a command by typing a number in front of it.

For example, the N command allows you to move forward to

the next line in the source file. Typing 4N moves you ahead

four lines, essentially repeating the N command four times.

If you use a number before a command that cannot be repeated,

it will simply execute once.

You can enter more than one command on the same line. You

do not need to put spaces between the commands unless the

two successive commands could be mistaken for one item. You

must separate the commands with a semicolon if a command

has a variable number of arguments, such as an exchange

command, and the next command could be mistaken as the

previous command's argument.

To repeat a series of commands, enclose the entire line in

parentheses. For instance:

6(E/:/; N)

Will exchange the next six occurrences of a colon with a

semicolon.

Command groups may not span more than one line of output.

If you type a command group that is longer than one line, EDIT

will only accept the commands up to the end of the first line.

Then, because EDIT does not find a closing parenthesis at the

end of that line, it displays the following error message:

Unmatched parenthesis

Editors 9-73

~

If you put a 0 before a command or a command group, it will be

repeated indefinitely or until EDIT reaches the end of the

source file.

EDIT Commands

This section explains the EDIT commands. The text

conventions used are listed below:

• Command names arc shown in uppercase although they

do not have to be entered that way.

• Angle brackets indicate that information must be

substituted. For example, <string> indicates that the

command takes a string argument.

• Square brackets indicate that the argument is optional.

For example, [<n>] indicates that the command can

take an optional numeric argument.

• An <n> represents a numeric argument.

• Slashes are used as delimiters for strings.

• Periods are used as delimiters for filenames (slashes

cannot be used since they are used to separate

filenames).

Selecting the Current Line

The commands in this section let you move through the file

and select the current line.

Move to a specific line number M <n>

The M command allows you to select a new current line by

specifying its line number. M takes a line number, period, or

asterisk as its argument. Only original lines can be accessed by

line number.

9-74 Editors

M <n> Moves to line <n> provided it is still in main

memory and makes it the current line.

M + EDIT moves through all the lines currently held

in memory until it reaches the last one. This last

line is then made the current line.

M - Makes the last line in the output queue the

current line. This is like telling EDIT to move

back as far as possible in main memory.

Move to the next line in the source file N

If you give a number before the N command, you can move

that number of lines forward.

N Moves to the next line and displays the line.

4N Moves four lines forward.

If you give the N command when on the last line of the source

file, EDIT creates an extra line at the end of the file. However, if

you try to use an N command when you are already on this

extra line, EDIT displays an error message, such as Input

Exhausted.

Move to the previous line in the source file P

You can move more than one line back be repeating P or by

giving a number before the P command.

P Moves to the previous line.

4P Moves back four lines.

It is only possible to go back to previous lines that EDIT has

not yet written to the destination file. EDIT usually lets you go

back 40 lines, unless this has been changed with the

PREVIOUS option.

You can combine the M command with N or P. For example:

M12; 3N

Moves you to line 12 of the file, then up 3 more lines.

Editors 9-75

Find F <string>

The F command allows you to select a current line by

specifying some of its content. For example:

/bells/

finds the next line containing bells and makes that the current

line. The search begins at the current line and moves forward

through the source file until the required line is found. If EDIT

reaches the end of the source file without finding a matching

line, it displays the message Source Exhausted.

You can use qualifiers with the F command to search for text in

a specific context. For example:

FL /bells/

restricts the search to the end of the lines.

Search Backward BF <string>

The BF command allows you to look backward through the

source file for a line containing the specified string. For

example:

BF /sleigh/

searches backward for the closest line containing sleigh.

BF starts at the current line and moves backward towards the

beginning of the file. If EDIT reaches the start of the output

queue without finding a matching line, it displays the message

No More Previous Lines.

Editing the Current Line

The commands in this section let you add new material, or

replace material, on the current line.

Insert <string2> after <stringl> A <stringl> <string2>

The A command inserts the second string after the first

occurrence of the first string.

9-76 Editors

For example, if the current line contained:

What fun it is to sing

then the following command:

A /to/laugh and/

would change it to:

What fun it is to laugh and sing

If the first string is a null string, EDIT inserts the second string

at the beginning of the line. You can use qualifiers to further

restrict the context of the first string. If the first string cannot

be found on the current line, a No Match error is given.

Insert <string2> before <string 1> B <stringl> <string2>

The B command inserts the second string before the first

occurrence of the first string. For example, if the current line

reads:

In a open sleigh

the following command:

B open s!eigh/one horse/

would change it to:

In a one horse open sleigh

If the first string is a null string, EDIT inserts the second string

at the beginning of the line. You can use qualifiers to further

restrict the context of the first string. If the first string cannot

be found on the current line, a No Match error is given.

Exchange <string2> for <stringl> E <stringl> <string2>

The E command replaces the first occurrence of the first string

with the second string. For example, if line 3 reads:

Oh what fun it is to slide

Editors 9-77

~ The command:

E fslide/rida

would change it to:

Oh what fun it is to ricte

To delete parts of a line, make the second string a null string.

For example:

E ,to ride/'

would change the line to:

Oh what fun it is

If the first string is a null string, the second string is inserted at

the beginning of the line. If the first string cannot be found on

the current line, a No Match error is given.

Inserting and Deleting Lines

The commands in this section let you insert new material

(non-original lines) and delete lines from the source file. You

can also insert complete files into the file.

Insert one or more lines I [<n>]

You can give the I command alone or with a line number,

period or asterisk. If given alone or followed by a period, EDIT

inserts the text before the current line. If given with an

asterisk, the text is inserted at the end of the file.

To indicate the end of your insertion, press Return, type Z, and

press Return again. For example:

Laughing all the way

z

inserts the line before line 8. Line 8 then becomes the current

line, as the newly inserted line is considered non-original and

is not assigned a line number.

If a filename is given after the I command, the contents of the

specified file are inserted before the current line.

9-78 Editors

If a line number is not specified after the I command, the new

information is inserted above the current line.

Delete one or more lines D [<n>]

To delete the current line, type D with no arguments. The

following line will become the new current line. To delete a

single line, specify the line number after the D command:

D8

deletes line 8. Line 9 will be the new current line.

To delete a range of lines, specify the lines numbers (inclusive)

after D:

0 9 20

deletes line 9 through to and including line 20. Line 21 will be

the new current line.

To delete everything from the current line through to the end

of the source file, type:

D. *

Delete all lines until the specified

string is found DF <string>

The DF command tells EDIT to delete successive lines from

the source file until it finds a line matching the given string.

That line then becomes the new current line. A DF command

with no argument, searches for the last string entered, deleting

all lines until it finds it.

Delete existing lines and replace with new text R [<n>]

The R (Replace) command lets you delete lines then insert new

ones. This is equivalent to using the D command, followed by

the I command.

To replace the current line, type:

R

<replacementtext>

Z

Editors 9-79

To replace one line, type the line number after R. For instance:

R5

< replacement text>

Z

deletes the existing text in line 5, replaces it with the specified

text, and makes line 6 the current line.

Change the terminator Z <string>

The terminator is a command that tells EDIT that it has

reached the end of any new text that is being inserted. As

shown above, the default command is Z. However, you can

change this by specifying a string after the Z command. The

string can be up to 16 characters and it is matched regardless of

the case of its characters. For example:

^■y Z/the end'

changes the terminator to the end. If you were entering an I

command, you would have to type:

-"

<new text>

the end

Show current information about EDIT SHD

The SHD (Show Data) command displays saved information

values, such as the last string searched for, the last command

entered, and the input terminator (usually Z unless changed by

the user).

Turn trailing spaces on/off TR + -

The TR command allows you to suppress any blanks that fall

at the end of lines. By default EDIT suppresses blanks (the TR

command is turned off). To preserve any end of the line blanks

in both the input and output lines, type:

TR +

9-80 Editors

Editing Line Windows

Usually EDIT acts on the entire current line. However, you can

define subsections of the line on which EDIT will execute all

subsequent commands. These line segments are called line

windows. In the descriptions of EDIT qualifiers, the beginning

of the line always means the beginning of the line window.

Whenever EDIT verifies a current line, it indicates the position

of the line window by displaying a > character directly beneath

the line. For example:

1.

Jingle bells, jingle bells

>

the line window contains the characters to the right of the

character pointer — ells, jingle bells. EDIT omits the pointer if

the line window begins at the start of the line. ^~s

The following commands control the position of the character

pointer:

Moves the pointer one character to the

right.

Moves the pointer one character to the left.

PR Resets the pointer to the start of the line.

PA <string> Moves the pointer to the first character

after the specified string.

<string> Moves the pointer to the first character

before the specified string.

The following commands change the character at the current

pointer, then move the pointer:

$ Makes the character at the pointer lowercase,

then moves the pointer one character to the

right.

% Makes the character at the pointer uppercase,

then moves the pointer one character to the

right.

Editors 9-81

The (underscore) command deletes the

character at the pointer, making it into a space,

then moves the pointer one character to the

right.

Deletes the character at the pointer, then moves

the rest of the line one character to the left. To

delete several characters, specify a number

before the #. For example:

5#

deletes the next five characters in the window.

You can use a combination of the above commands to edit a

line character by character.

Some other commands let you insert and exchange text on the

current line, similar to the A, B, and E commands explained

earlier. However, when the operation is complete, the

character pointer is moved.

Insert <string2> after <stringl> AP <stringl> <string2>

The pointer is moved after <string2>.

Insert <string2> before <stringl> BP <stringl> <string2>

The pointer is moved after <string2>.

Exchange <stringl> with <string2> EP <stringl> <string2>

The pointer is moved after <string2>.

Delete Till After DTA <string>

Deletes all the text from the beginning of the line or the

character pointer to end of the specified string.

Delete Till Before DBA <string>

Deletes all the text from the beginning of the line or the

character pointer stopping just before the specified string.

9-82 Editors

Delete From After DFA <string>

Deletes all the text from just after a specified string to the end

of the line.

Delete From Before DFB <string>

Deletes all the text starting with the specified string to the end

of the line.

Splitting and Joining Lines

The commands in this section let you split a line into more

than one line and join together two or more successive lines.

Split line before <string> SB <string>

The SB command splits the current line before the specified

string. EDITsends the first part of the line to the output queue.

The remainder of the line is made into a new, non-original

current line. For example, if the current line is:

Bells on bob-tail ring, making spirits bright

The command:

SB /making/

splits the line before making. Making spirits bright will become the

new current line.

You can also use qualifiers with SB to restrict the context of the

string.

Split line after <string> SA <string>

The SA command splits the current line after the specified

string. EDITsends the first part of the line to the output queue.

The remainder of the line becomes the new current line.

You can use qualifiers with SB to restrict the context of the

string.

Editors 9-83

~

"

Join two lines CL [<string>]

The CL (Concatenate Lines] command joins the current line

with the next line of the source file. The <string> argument is

optional. However, if a string is specified, it will be added to

the end of the current line, then that entire line will be joined

with the next line in the source file. For example, if the current

line and following line are:

A sleighing

tonight!

the command:

CL /song/

will add song to the end of the current line and join it with the

subsequent line. The result will be:

A sleighing song tonight!

Renumbering Lines

The commands in this section let you renumber the lines of

the source file to include non-original lines and to update a file

that has been heavily edited.

Renumber source lines = <n>

The = command sets the current line number to <n>. If you

then move to the lines below <n>, EDIT renumbers all the

following original and non-original lines. However, if you

move from <n> to previous lines, EDIT marks all the previous

lines in the output queue as non-original.

Return to the beginning source file REWIND

The REWIND command moves back through the source file so

that line 1 becomes the current line. EDIT scans the rest of the

source file, then writes the lines to the destination file. The

destination file is then closed and re-opened as a new source

file. Any non-original lines will now be recognized as original

lines.

9-84 Editors

You do not have to type the complete word "REWIND"; the

first four letters suffice.

Verifying Lines

Normally, EDIT is operating in an interactive state and is

verifying lines as a result of various commands. The

commands in this section describe different ways of verifying

lines.

T\irn Verification on/off V + I -

The V command allows you to turn off line verification, the

lines will not be displayed on the screen. To turn verification

off, type:

v-

To turn it back on, type:

v +

Verify the current line ?

The ? command allows you to verify the current line. The line

number and the contents of the line will be shown on the

screen.

Verify the current line with character indicators !

If a binary file is being edited, non-graphic characters will be

represented with question marks (??). The ! command produces

two lines of verification. In the first line, EDIT replaces all non

graphic characters with the first character of their hexadecimal

value. In the second line, EDIT displays a minus sign under all

the positions corresponding to uppercase letters and the second

hexadecimal digit in the positions corresponding to non

graphic characters. All other positions contain space

characters.

Editors 9-85

~

Inspecting the Source File

The following commands tell EDIT to advance through the

source file, sending the lines it passes to the verification file as

well as to the normal output. These commands are known as

type commands because they allow you to display lines on the

screen. The lines are also passed to the output queue. After the

last line is typed, it becomes the new current line.

Type <n> lines to the screen T<n>

The T command types the specified number of lines to the

screen. The first line typed is the current line.

If you omit the <n>, typing continues until the end of the

source file. You can interrupt the command by pressing Ctrl-C.

Type the lines in the output queue TP

The TP (Type Previous) command displays the lines currently

held in the output queue.

Type until EDIT has replaced all the lines

in the output queue TN

The TN (Type Next) command types from the current line

forward until all the lines in the output queue are replaced. In

other words, if the output queue holds 40 lines and the current

line is 60, TN will type from line 60 through to line 100. Lines

60-100 will now be in the output queue. The previous contents

(lines 20-601 are sent to the destination file.

Type with line numbers TL <n>

The TL command is similar to the Tcommand in that it types

the specified number of lines. However, TL also displays the

line numbers. Inserted and split lines do not have line

numbers, so EDIT displays + + + + instead.

Remember that you can always use the + command to

renumber non-original lines.

9-86 Editors

Making Global Changes

Global changes are changes that take place automatically as

EDIT scans the source file in a forward direction. You can start

and stop global changes with the commands described in this

section.

The following commands automatically apply an A, B, or E

command, as appropriate, to any occurrence of <stringl> in a

new current line. They also apply to the current line that is in

effect when the command is given.

GA [qualifier] <stringl> <string2>

GB [qualifier] <stringl> <string2>

GE [qualifier] <stringl> <string2>

For instance, if you want to change DFO: to DF2: throughout

an entire file, type:

GE /DF0:/DF2:/

Cancel a global command CG [<id number>[

The CG command cancels a global command. When a global

operation is set up with the GA, GB, or GE command, the

operation is given an identification number. This

identification number, such as Gl, is output to the verification

file (or the screen if EDIT is interactive!.

If no argument is given with CG, all global operations arc

cancelled. To only cancel a specific operation, specify the

identification number after the CG command.

Suspend a global command SG [<id number>]

The SG command suspends a global command. If no argument

is given, all global operations are suspended. To only suspend a

specific operation, specify the identification number.

Editors 9-87

Enable a global command EG [<id number]

The EG command resumes a global operation that had been

suspended with the SG command. As with the other global

commands, unless a specific identification number is

specified, all global commands will be resumed.

Show global commands SHG

The SHG command displays the current global commands and

their identification numbers. It also gives the number of times

each global search string was matched. For example:

shg

1 3GE/DRWDF1:/

Changing Command, Input, and Output Files

The following section describes commands that can change

the files that you set up when you started EDIT from the Shell.

These files are:

• the command file — started with the WITH option

• the input file — the source file specified with FROM

• the output file — the destination file specified with TO

Changing the Command File C <filename>

The C command lets you read EDIT commands from a

specified file. Since AmigaDOS uses a slash (/} to separate

filenames, use a different character, such as a period or

question mark, to delimit the file. For example:

C .:T/xyz.

reads the commands from the XYZ file stored in the T

directory.

When EDIT has executed all the commands in the specified

file, it closes the file. You can then enter commands through

the keyboard.

9-88 Editors

Changing the Input File FROM <filename>

The FROM command lets you read lines from another source

file. For example:

FROM .:S'Script.

allows you to read lines from the Script file in the S directory.

The current line remains current and is read from the original

source file; however, the next line will be read from the Script

file.

EDIT does not close the original source file. You can reselect

the source file by entering the FROM command without an

argument.

Closing a File CF <filename>

The CF command lets you close the destination file that you

originally specified with the TO command. You can then open

that file for input. You can also use the CF command to close a

new input file that you had opened.

If you close a file, then reopen it, EDIT starts reading from the

first line of that file, not from the line that it was on when you

closed it.

You should always close files that you are finished working

with so that the memory used by those files can be used by the

system.

An example of using the FROM and CF commands is shown

below:

Command

M10

FROM .XYZ.

Action

Pass lines 1-9 in the original source file

to the output queue.

Select the XYZ file for new input; line

10 of the original source file remains

current.

Editors 9-89

M6

FROM

M14

FROM .XYZ.

M*

FROM

Pass line 10 from the original file, then

pass lines 1- 5 from the XYZ file to the

output queue. Line 6 of XYZ is the new

current line.

Rcselect the original source file.

Pass line 6 from XYZ, then lines 11-13

from the original source file to the

output queue. Line 14 of the source file

is the new current line.

Rcselect file XYZ. Line 14 of the source

file is still the current line.

Pass line 14 of the source file and all

remaining lines of file XYZ to the output

queue, An extra line will be added to the

end of file XYZ. That line will be the

new current line.

Reselect the original source file. The

extra line added to file XYZ will still be

the current line.

CF.XYZ. Close file XYZ.

M* Pass the remaining lines of the source

file (lines In to the end of the file) to the

output queue.

Changing the Output File TO <filename>

The TO command lets you specify a different file as the

destination file. When EDIT executes a TO command, it writes

out the existing queue of output lines to the new TO file.

9-90 Editors

EDIT will continue to use the new TO file until another file is

specified. To reselect the original destination file, give the TO

command with no argument. Although the alternate output

file will not be used, it will remain open. To add additional

lines to it, select it again with the TO <filename> command.

Command Action

Mil Passes lines 1-10 of the source file to the

original destination file.

TO .XYZ. Makes XYZ the new output file.

M21 Passes lines 11-20 to file XYZ.

TO M31 Makes the original destination file current,

and passes lines 21 to 30 to it.

TO .XYZ. Makes XYZ the current output file.

M41 Passes lines 31 to 40 to XYZ.

TO Makes the original desination file current.

These input/output commands are useful when you want to

move part of the source file to a later place in the output. For

example:

Command Action

TO .XYZ. Sends the output queue to file XYZ.

1000N Advances through the next 1000 lines of the

source file.

TO Selects the original destination file.

CF .XYZ. Closes the XYZ file.

12000 .XYZ. Inserts the 1000 lines from the source file that

were sent to file XYZ back into the source file

above line 2000.

Editors 9-91

—

n

Stop executing the command file Q

The Q command stops EDIT from executing the current

command file specified with the WITH keyword or with the C

command. EDIT reverts to any previous command file. A Q at

the outermost level is equivalent to the W command.

Ending EDIT

The commands in this section explain how to exit EDIT.

Exit, saving changes WINDUP

The W (Windup) command exits EDIT, saving all changes to

the destination file specified by TO. EDIT exits when it has

reached the end of the source, closed all the files, and

relinquished the memory.

If you started EDIT without specifying a destination file, EDIT

renames the temporary destination file it created with the

same name as the original source file. It renames the original

source file as :T/Edit-backup. This backup file is only available

until the next time you run EDIT.

Exit, without saving changes STOP

The STOP command stops EDIT immediately without saving

any changes to the source file. STOP prevents EDIT from

overwriting the original source file, ensuring that no changes

are made to the original input information,

Chapter 10. AREXX

Programming Language

Introduction

AREXX is a programming language designed to offer flexibility

to customize your working environment. AREXX acts as a

central huh through which applications may send data and

commands to each other. This allows software created by

different companies to interact and, in turn, allows the user

to create custom applications by integrating off-the-shelf

software products. For example, with AREXX it is possible to

set up a telecommunications package to dial an electronic

bulletin board, download financial data, and then pass that

data to a separate spreadsheet for statistical analysis

automatically, without user intervention.

AREXX is also useful in writing small programs, called

scripts or macros, that allow the automation of repetitive

tasks. A script or macro can be written to automate a

telecommunications program login or to transfer text from

a wordprocessor into a desktop publishing program.

The complete AREXX programming language is provided on

the floppy disks included with this manual. The AREXX

software is also written to your Amiga's hard disk

(if applicable).

10-2 AREXX

Who is AREXX For?

AREXX is for the user who has become well acquainted with

the Amiga. A basic understanding of both Workbench and

AmigaDOS will aid in the understanding of how AREXX

works and how it can be put to use. Chapters 1 through 9 cover

the fundamentals of Workbench and AmigaDOS.

AREXX is used to customize the Amiga's working

environment, and one must be familiar with that environment

before it can be tailored to suit one's needs. Using ready-made

AREXX programs and scripts does not require previous Amiga

experience, but a working knowledge of the Amiga's operation

will permit you to change the scripts to suit your needs.

Experienced Amiga users will find that AREXX can provide

more control over their working environment. In many cases

AREXX is easier to work with and more powerful than

AmigaDOS, and AREXX can be used to enhance or replace

pre-existing AmigaDOS commands and scripts. AREXX can

also be used to tie applications together to create a more

efficient employment of resources in the form of integrated

applications.

AREXX gives the Amiga a programming language that can be

universally understood by both AmigaDOS and applications

run on the Amiga. This is an important advancement for

both the development of Amiga software and the Amiga

programmer. Software developers, who understand the power

and flexibility of AREXX, will recognize the advantage in

adding an AREXX port to their applications.

AREXX 10-3

What Do You Have to Know
to Use AREXX?

Before using AREXX, you should know a few things about the

Amiga and its operation. You need to know how to:

1) Open a Shell and enter AmigaDOS commands (See

Chapter 7 for full details.}

2) Use a text editor (There are several editors included with

your Amiga software. Information on editors can be found

in Chapter 9.)

3) Create a User-startup file (The User-startup is covered in

Chapter 7 and is created using one of the editors covered

in Chapter 9.)

Chapter Organization

This chapter will introduce you to AREXX, tell you how to

begin using it, and provide a reference section of AREXX

commands. This chapter is arranged in the following order:

• Introduction — Gives an overview of AREXX, its

implementation on the Amiga, and tells you how to get

started using it.

• Elements of AREXX — Introduces the language

structure and syntax. (Page 10-26)

• Instructions — Describes the action statements of

AREXX. (Page 10-50)

• Commands —- Describes the program statements of

AREXX. (Page 10-74)

• Functions — Explains how functions are called and

documents the Built-in function libraries. (Page 10-82)

10-4 AREXX

• Support library Functions — Details how to open the

AREXX library and describes each supported function.

{Page 10-129}

• Tracing and Interrupts — Describes the source-level

debugging features used in the development and testing

of programs. (Page 10-134)

• Parsing and Templates — Describes the instructions

used to extract patterns of information from strings.

(Page 10-146)

• REXXC Directory — Includes descriptions of the

command utility programs contained in this

directory. (Page 10-154)

• Error Messages — Lists the error messages issued by the

interpreter. (Page 10-157)

Further information on learning and using AREXX can be

found in the following publications:

Modern Programming Using Rexx, by R. P. O'Hara and

D. G. Gomberg, Prentice-Hall, 1985

The Rexx Language: A Practical Approach to

Programming, by M. F. Cowlishaw, Prentice-Hall, 1985.

In this chapter, AREXX instructions, functions and commands

appear in boldface type. This is to distinguish them from the

rest of the text. These words are not included in the Glossary at

the end of this manual.

AREXX on the Amiga

Because AREXX can tie applications together and have them

communicate with each other, it has been made an integral

part of the Amiga operating system beginning with the release

of V2.0. Specifically, AREXX uses two important features in

the Amiga's operating system to allow creation of customized

integrated software: multitasking and interprocess

communication.

AREXX 10-5

Multitasking

Multitasking is the ability to run more than one program at a

time. This ability is built into the Amiga. For example, you can

simultaneously edit a file, format a disk, and adjust your

screen's colors.

Interprocess Communication

Interprocess communication (or IPC for short) refers to a

computer's ability to allow the exchange of information

between currently operating programs. This is efficient as it

allows the updating of information without tedious steps. For

instance, the Amiga makes it possible to transfer information

between two programs which are concurrently running.

Interprocess Communication and Ports

Interprocess communication occurs through message ports

attached to each program. A message port is an address

contained in an application that can receive and send

messages. A message sent to AREXX from an application will

be directed by the Amiga operating system to the AREXX

message port. A message sent from AREXX to an application

occurs in a like manner. Each message port has a name (usually

the name of the program), and sending a message requires the

use of the port's name in an AREXX script.

~

10-6 AREXX

The order of operations in the sending and receiving of a

message is briefly described below:

1) An application opens a message port

2) The application waits to receive a message

3) The Amiga lets the application know that a message has

arrived

4) The application acts on the message

5) The application lets the message's sender know that the

message has been received and processed

These five steps are critical in interprocess communication,

especially the final step of letting the sender know that the

message has been received and processed.

Multitasking and Interprocess Communication

Together

Multitasking and interprocess communication are critical in

the creation of customized integrated software. Without the

Amiga's ability to run several programs at once, and have these

programs talk to each other, the idea of customized integrated

software would remain just an idea. The final link is AREXX.

AREXX allows you to control and modify how specific

programs run in order of operation and how these programs

communicate with each other. By writing simple AREXX

scripts, you can gain control and flexibility in the use of

applications. This flexibility will allow you to specifically

tailor your working environment.

AREXX 10-7

What is AREXX?

AREXX is the Amiga version of the IBM Rexx programming

language. AREXX, like Rexx, is a powerful yet easy-to-use

programming language that is especially useful as a scripting

language. A script is a small program that instructs the

operating system to perform a series of actions. Scripting

languages are used to control and modify applications and to

direct how they interact with other applications.

AREXX is an interpreted language. Interpreted languages are

written in simple, ASCII characters and are composed one line

at a time. This makes them easy to learn and work with. The

interpreter in AREXX is RexxMast. If RexxMast finds an error

while translating or executing a line, it will halt execution and

return an error message. This interactive testing is both a

learning tool and an aid in the production of programs. It will

tell you exactly where an error has occurred.

Starting AREXX on the Amiga

RexxMast (the AREXX interpreter) is initialized when you

boot your Amiga (this includes both hard and floppy disk

boots). From this point AREXX can be run in two ways:

automatically or manually.

"

10-8 AREXX

Automatically

If you have a factory-installed hard disk drive, the AREXX

software is written to your hard drive, and RexxMast is started

when you boot your Amiga. To begin using AREXX, simply go

into a text editor and start entering your program.

Manually

If the necessary AREXX files have been deleted from your

Startup-sequence, you will be starting AREXX manually There

are two ways to start AREXX manually: through the Shell or

through the RexxMast icon.

Starting AREXX Through the Shell

To start AREXX manually through the Shell, open a Shell and

enter:

RexxMast

A message will appear notifying you that RexxMast is now

running. To start using AREXX, simply go into a text editor

and begin entering your program or script.

Starting AREXX by Icon

To start AREXX manually by icon, open the System drawer and

double-click on the RexxMast icon. A message will appear

notifying you that RexxMast is now running. To start using

AREXX, simply go into a text editor and begin entering your

program or script.

AREXX 10-9

~
Setting AREXX to Start Automatically

AREXX can be set to start automatically by modifying your

User-startup file (information on modifying files is located in

Chapter 7) and assigning REXX (details on assigns can be found

in Chapter 8) using the ED editor (details on the ED editor are

located in Chapter 9). Here's how you do it:

1) Open a Shell and enter:

ed s:user-startup

An empty window called user-startup will appear.

2) Enter the following lines into the User-startup:

assign REXX: S:

rexxmast >NIL:

3) When the Amiga is first turned on it looks for a path

(details on paths can be found in Chapter 7) of directories.

This path tells the Amiga where the boot files are. Enter

the following path exactly as shown below:

Path sys:system sys:rexxc add

4) Save this User-startup file and exit ED. AREXX will now

start automatically and be ready for immediate use each

time you boot your Amiga.

Example #1

The following AREXX Terms are used in Example #1:

r comment line */

if

then

~ (tilde)

open

CLOSE

exit

call

writeln

readln

10-10 AREXX

Example #1 is entered using a text editor and then executed

through the Shell by entering the program name, preceded by

the rx command. Now use MEmacs to enter the example

exactly as shown; a discussion of the example follows.

Incorrectly entering this example will cause at least one error

message to appear.

Open a Shell and, at the command prompt, enter:

memacs rexx:window.rexx

By entering the information exactly as it is shown, the AREXX

program will be named Window.rexx, and the MEmacs editor

will appear ready to accept this AREXX example. Note that the

first line of this program is a comment line which tells AREXX

that the following information is part of an AREXX program

named Window.rexx. Do not enter the numbers to the left of

each line. They are intended only as reference for the

discussion that follows.

1. I* Window.rexx This is Example #1 */

2. /* prepare window, but exit if we can't open it */

3. "if - open'^'console'/coniO/O^O^OO/RexxWindow/CLOSE'/W1]

4. then exit 20

5. /* Write some text into the window */

6. call writeln 'console', 'Hello, world'

7. call writeln 'console', 'Press RETURN to exit'

8. /* Wait for user to enter anything; discard result */

9. call readln 'console'

10. f* All done. Ordinarily we would "close 'console'" and then

11. "exit", but AREXX does that automatically.

12. 7

Once the above example is entered exactly as listed, recheck it

just to make sure, especially the instances of spacing and single

or double quotes.

EXAMPLE #1 Window.rexx — What each program line means

1. /* Window.rexx 7

This is the AREXX comment line, with which all AREXX

programs begin. AREXX will not execute any program that

does not begin with a comment line. Note that the comment

line begins with a /* and ends with a */.

2. I* prepare window, but exit if we can't open it 7

Line 2 is another comment line that tells what will happen in

Lines 3 and 4.

3. if" open('console7con:0/0/640/200/RexxWindow/CLOSE\'W')

Line 3. illustrates a common programming function: the if...

then conditional statement. The program asks AREXX to open

a window with the given specifications and to treat this

window as a file which will be written to. The ~ (tilde)

character in front of open is an operator that literally translates

to a "logical NOT." This means the statement should read, "if

you cannot open ..."

4. then exit 20

Line 4 is a continuation of Line 3. It serves as the second half of

the if... then conditional statement, namely if AREXX cannot

open a window then it will stop execution and return an error

code of 20.

5. I* Write some text into the window */

Again this is a comment line. Note that AREXX doesn't pay

any attention to comments, but it does require that the

program begin with a comment line.

6. call writeln 'console', 'Hello, world'

AREXX 10-11

10-12 AREXX

Call is an instruction which begins executing a function and

disregards anything the function may return. The function

writeln tells AREXX to display the phrase 'Hello, world' in the

window created by open in Line 3.

7. call writeln 'console', 'Press RETURN to exit'

Line 7 works similarly to Line 6, but displays 'Press RETURN

to exit.'

8. r Wait for user to enter anything; discard result"/

Line 8 is another comment line.

9. call readln 'console'

Call is an instruction that requests the function readln.

AREXX then waits for the user to press RETURN, and reads

RETURN from the console.

10. through 12.

Lines 10. and 11. are comment lines. Line 12. ends with the "/

characters; these three lines are not required for proper

execution.

Since the program was named prior to it being entered in

MEmacs, all that needs to be done is to save and exit.

Simultaneously press Ctrl X and then Ctrl F to save and to exit

(see Chapter 9 for more MEmacs commands.) This will save

the program named Window.rexx, exit MEmacs, and return to

the Shell command prompt.

^

AREXX 10-13

~

Displaying Output

AREXX Terms

.rexx

To display the output of this program, enter the following at

the Shell command prompt:

rx Window.rexx

The output will appear in a window named RexxWindow. The

output is:

Hello, world

Press RETURN to exit

When you press RETURN, the window will close and the

program will exit. This program can be run in the future by

entering:

rx Window.rexx

Naming AREXX Programs

AREXX programs can be named anything, but adopting a

simple naming convention will make program management

easier. Programs run from the Shell should have the .rexx

extension to distinguish them from files run from other

applications. Note that entering "rx Window" is equal to

entering "rx Window.rexx."

.-1/

10-14 AREXX

Where Do AREXX Programs Go?

AREXX programs are usually stored in rexx:, but any directory

can be used. The above program is stored in rexx: because you

can run it without typing a path, and you will have all of your

AREXX programs stored together. In addition, most

applications search rexx: for AREXX macros.

AREXX System Files

The AREXX system files are provided on floppy disk and hard

disk (if applicable). AREXX files are composed of shared

libraries, the resident program (interpreter), and command

utilities. Listed below is each file and its location on the

Workbench disk.

SYSrLIBS Directory

rexxsyslib.library

rexxsupport. library

mathieedoubbas.library

SYSTEM: Directory

RexxMast

AREXX 10-15

SYS:Rexxc Directory

HI

RXC

RXSET

TCO

TS

RX

RXLIB

TCC

TE

WaitForPort

Rexx:

This is a name which has been assigned to the directory which

will be used to store your AREXX programs. This is where

Example #1, Window.rexx, was stored.

Language features

Highlights of the AREXX programming language are:

• Command interface — AREXX provides you with another

method of communication with programs. Through the

command interface, AREXX can issue commands to any

software that contains an AREXX port; this allows

modification of its use and capabilities.

• Control of AmigaDOS — AREXX can be used to talk with

and manipulate AmigaDOS. AREXX can replace many

AmigaDOS scripts and in many instances is more

powerful than AmigaDOS.

10-16 AREXX

• Tracing and Debugging — AREXX has source-level

debugging facilities that allow you to view a program step-

by-step, thus reducing time required to develop and test

programs. Tracing (or the internal interrupt system)

permits the special handling of errors that would normally

cause the program to prematurely abort.

• Interpreted Execution — The read-and-execute ability of

AREXX skips the extra step of compiling a program. This

simplifies learning and prototyping.

• Automatic Resource Management — AREXX

automatically handles internal memory allocation related

to the creation and removal of strings and other data.

• Typeless Data — Data is treated as individual character

strings and variables do not have to be declared prior to

use.

• Function Libraries — External function libraries are used

to extend the capabilities of the language, or used as a

bridge to other programs.

Program Examples

Before introducing the structure and syntax of the language,

let's look at a few AREXX sample programs. Readers familiar

with other high-level programming languages should find

many points of similarity between AREXX and other

languages. In the examples that follow, new terms are

highlighted in the text as they are introduced, and will be

covered in depth in the next few sections.

AREXX 10-17

"

These short programs can be created using any text editor (like

ED, MEmacs, etc.) or a word processor and then run from the

Shell. If you use a word processor remember to save your

program as a text (ASCII) file.

We'll begin with a program that displays a message on the

console screen. Enter the following program in your text editor.

Sample 1. Topic

/* A simple program */

say 'Amiga, The Computer For the Creative Mind.'

Save this program as "Rexx:Amiga.rexx".

Now, to run the program, go to your Shell and enter:

rx amiga

Remember that even though the full path and program name is

"Rexx.Amiga.rexx" you don't need to type the "rexx:" prefix

or the .rexx extension if the program has been saved in REXX:.

You should see the following in your Shell window:

Amiga, The Computer For the Creative Mind.

This program consists of a comment line that describes the

program and an instruction that displays text on the console.

AREXX programs must begin with a comment line.

The initial "/*" says "I'm an AREXX program" to the

interpreter when it searches for a program (or conversely,

without the "/*" AREXX will not view it as an AREXX

program). So remember to always begin your programs with a

comment line. AREXX basically ignores comment lines when

it executes a program. However, comment lines are extremely

useful to you and others who may be reading your programs.

When used wisely, they help make sense out of your program.

10-18 AREXX

Instructions

Instructions are language statements that denote a certain

action to be performed and always start with a symbol, in this

case the word say. Symbols are translated to uppercase when

the program is run, so the symbol say here is equivalent to

SAY. Following say is an example of a string, which is a series

of characters surrounded by quotes ('}. Double quotes (") could

also have been used to define the string.

In the next program we'll display a prompt for input and then

read some information from the user. Each line (1 through 4) is

numbered for reference. Do not enter these reference numbers.

Sample 2. Function

1. /' Calculate age in days 7

2. say'Please enter your age':

3. pull age

4. say 'You are about' age"365 'days old'

Save this program as REXX:Age.rexx and run it with the

command

rxage

The program begins with a comment line (Line 1) that

describes what the program will do.

Line 2 uses the SAY instruction to display a request for input

on the console. Line 3 uses the PULL instruction to read a line

of input from the user, which in this case is the user's age. The

PULL instruction in line 3 takes the input, converts it to upper

case letters (if necessary), and stores it in a variable. Variables

are symbols which may be assigned a value. You may

arbitrarily choose a variable name (see pages 10-27 and 10-28

for full details), but it always helps to choose a descriptive

AREXX 10-19

name. Line 3 uses the name age to hold the number which

you entered. Line 4 multiplies the variable age by 365 (the

approximate number of days in a year) and issues the SAY

instruction to display the result.

Note that the variable age did not have to be declared as a

number, because its value was checked when it was actually

used in the expression (this is what is meant by typeless data).

To see what would happen if age wasn't a number, try

rerunning the program with a non-numeric entry for the age.

The resulting error message shows the line number and type of

error that occurred, after which the program ends.

Sample 3. Do

The next program introduces the do instruction, which allows

program statements to be executed repeatedly. It also

illustrates the exponentiation operator, which is used to raise

a number to an integral power. Remember that the first line

of your program should be a comment line. Enter the

program in your text editor or word processor and save it as

REXXxalc.rexx. Then use the command rx calc to run the

program.

I* Calculate some squares and cubes */

do i = 1 to 10 I* 10 iterations 7

sayi i**2 l**3 f* calculations V

end I* end of loop 7

say 'all done'

The do instruction causes all the statements between the do

and end instructions to be executed 10 times. The variable i is

the index variable for the loop and is incremented by 1 for each

iteration (repetition). The number following the symbol to is

the limit for the do instruction and could have been a variable

or a full expression rather than just the constant 10.

10-20 AREXX

Note that the statements within the loop have been indented.

This is not required by the language, but it makes the program

more readable, because you can easily visualize where the loop

starts and stops. Also notice that you can include a comment

on any line of your program as long as the comment begins

with the symbol "/*" and ends with the symbol "*/", which

tells the AREXX interpreter that the characters contained

within those symbols are to be ignored. Although AREXX

ignores a comment, the comment is quite useful in explaining

what a line in a given program is doing. As noted above, it's

also good practice to include descriptive comments in your

programs; it helps you and others better understand the

program.

Sample 4. If

The if instruction allows statements to be conditionally

executed. The numbers from 1 to 10 are classified as even or

odd by dividing them by 2 and then checking the remainder.

I* Even or odd? 7

do i = 1 to 10 /* Begin loop — 10 iterations */

if i//2 = 0 then type - 'even'

else type = 'odd'

say i 'is' type

end I* End loop */

This example introduces the // arithmetic operator, which

calculates the remainder after a division operation. The if

instruction tests whether the remainder is 0 and if the test

turns out to be true, executes the then branch, thereby setting

the variable type to even. If the remainder was not 0, the

statement is false and the program will skip over the then

branch and execute the else branch, thereby setting the

variable type to odd.

Notice that the variable type is being assigned not to a number

but to a string (either even or odd).

AREXX 10-21

~
Sample 5. Function

The next example introduces the concept of a function, a group

of statements that can be executed by mentioning the function

name in a suitable context. Functions allow you to build large

complex programs from smaller modules. Functions also

permit the same code for similar operations in a different

program.

Functions are specified in an expression as a name followed by

an open parenthesis. One or more expressions called

arguments may follow the parenthesis. These arguments pass

information to the function for processing. Save this program

as rexx:square.rexx and run the program using the rx

command.

/* Defining and calling a function */

do i - 1 to 5

say i square(i) I* call the "square" function 7

end

exit /* all done V

square: I* function name */

argx /* get the argument 7

return x' '2 I* square it and return */

The function square is defined in the lines following the label

square: up through the entire return instruction. It is here

where the actual squaring of the values will be calculated.

Two new instructions are introduced here: arg retrieves the

value of the argument string (in this case "i") and return passes

the function's result back to the point where the function was

called.

Let's follow how this program executes.

• A loop is set up (do, end) with an index variable "i" that

will increment by 1. The loop will iterate (repeat) five

times.

10-22 AREXX

• In this loop is an expression that calls a function when

the expression is evaluated and displays the function's

result using the say instruction.

• Once the function is called, the program looks for the

function label (square:), then it retrieves the argument,

in this case "i", performs a calculation (squares it) and

returns to the place where the function was called (the

line within the do/end loop).

• The exit instruction will end the program after the

program finishes its last loop.

Sample 6. Trace

The next instruction will help you check your program for

errors. This new instruction called trace activates a tracing

feature of AREXX.

/* Demonstrate "results" tracing 7

trace results

sum = 0 ; sumsq = 0;

do i = 1 to 5

sum = sum + i

sumsq = sumsq + i"2

end

say 'sum =' sum 'sumsq =' sumsq

When you run this program, the console displays the source

lines as they are executed and shows the final results of

expressions. The result is sum = 15 and sumsq = 55. This

makes it easy to tell what the program is really doing, and

helps reduce the time required to develop and test a new

program.

One minor point is illustrated in the above program: the third

line shows two distinct statements separated by a semicolon (;).

The semicolon is an example of a special character, characters

that have particular meaning within AREXX programs.

AREXX 10-23

~

~

Sample 7. Grades

Enter and study the following program, which calculates the

final grade for a given student. It prompts the user for 4 essay

grades, a class participation grade, and then calculates the final

grade based on the following percentages:

The average of Essay 1 and Essay 2 is worth 30% of the final

grade. The average of Essay 3 and Essay 4 is worth 45% of the

final grade. Participation is worth 25% of the final grade.

/" grading program */

say "Hello, I will calculate your grades for you."

response = 0

do while response" = "Q" I* loop while response isn't 'Q' •/

say "Please enter all grades for the student"

say "Essay 1:"

pull es1

say "Essay 2:"

pull es2

say "Essay 3:"

pull es3

say "Essay 4:"

pull es4

say "Participation:"

pull p

Final = (((es1 + es2)/2)*.3) + (((es3 + es4)/2)\45) + (p\25)

say "Your final grade for this student is. . ." Final

say "Would you like to continue? (Q for quit)"

pull response

end

exit

NOTE: "Pull" in the third to last line of the program will

return uppercase letters.

10-24 AREXX

After the program displays the final grade it asks the user if he

would like to continue. The response is pulled and if it does

not equal Q (quit), the loop continues. If the response equals Q,

then the program quits the loop and exits. This way, you don't

have to run the program again and again for each student. The

program is only invoked once and you can continue until all

the students' final grades have been calculated.

The following sections will present further information on the

language statements illustrated here and will introduce others

that have not yet been shown. AREXX is a relatively small

language and there arc relatively few words and rules to leam.

Review and Additional Notes

• To manually start the AREXX server, double-click on the

RexxMast icon or type the RexxMast command at a

Shell prompt. Usually RexxMast will start from the hard

disk when the Amiga is first turned on.

• To run AREXX programs, type the command rx followed

by the program name (e.g., rx test will run the program

rexx:test.rexx).

• Short programs (i.e., a one-line program! can be entered

directly at the command line by enclosing the program

line in double quotes. For example, the following

program will print five files named myflle.l through

myfile.5

rx "do i = 1 to 5; address command 'copy my file.' Hi'pit:'; end"

• When using a program that interfaces with AREXX, you

can run AREXX programs from within that application

by using either the menu or command options of that

program. Refer to the application's documentation for

more information.

AREXX 10-25

• The REXX server can be closed by issuing the rxc

command at the Shell prompt. This is usually

unnecessary as AREXX consumes little memory.

• You can declare a system-wide directory for frequently

used AREXX programs by assigning the name REXX: to

the appropriate directory. For example, assign rexx:

DF0:rexx.

• For advanced users: The REXX server also supports an

additional host port (named AREXX) for launching

asynchronous commands. A command sent to the

AREXX port will return immediately without indicating

an error, making it roughly the same as "run rx

<program>", but without the overhead of an extra Shell

^ process.

• Workbench Execution. The rx command can be

launched from either a tool or a project icon. It accepts

tooltypc arguments using CONSOLE for a window

specification and CMD for a command string. If no

CMD string is supplied, the command will attempt to

execute the (project) file as an AREXX program. The rx

command will also attempt to start RexxMast if it's not

active.

For example:

Icon type: Project

Default Tool: sys:rexxc/rx

Possible Tool Types:

Console = con:0/0/64O/2OO/Example/Close

CMD = rexxprogram arg1 arg2

• Rxlib Command Utility. The rxlib command opens a

function library so that it can be called from AREXX and

can also be used to list the currently-defined functions.

The command syntax is:

rxlib library-name priority offset version

10-26 AREXX

The priority argument gives the search priority and must be in

the range -100 to 100 inclusive. The offset argument is the

actual integer offset to the library's entry point and should be

documented with each library. The version is the required

library version and can usually be omitted, as the default is to

load any version.

Caution: Calling a library with the incorrect entry point may

crash the system. Anyone developing an external function

library should carefully document the offset to the query (look

up) entry.

For example:

rxlib rexxsupport.library 0 -30 0

The rexxsyslib. library is automatically opened.

Elements of AREXX

This section introduces the rules and concepts that make up

the AREXX language. The intent here is to convey a practical

understanding of how AREXX's elements fit together to form

programs rather than to present an overly formal language

definition.

AREXX 10-27

Format

AREXX programs are composed of ASCII characters and may

be created using any text editor. No special formatting of the

program statements is required or imposed on the programmer.

NOTE: AREXX supports the extended ASCII character set [as,

a, etc.). These extended characters are recognized as ordinary

printing characters and will be correctly mapped from

lowercase to uppercase. However, they are not considered as

AREXX symbol characters.

Tokens

Tokens are the smallest distinct entities or words of the

language. A token may be a series of characters, as in the

symbol MyName, or just a single character like the " + "

operator. Tokens can be categorized as follows:

• comments

• symbols

• strings

• operators

• special characters

Comment Tokens. Any group of characters beginning with the

sequence "/*" and ending with "*/" defines a comment token.

Comments may be placed anywhere in a program and cost

little in terms of execution speed, since the interpreter ignores

them when it scans the program. Comments may be "nested"

within one another, but each "/*" must have a matching "'/"

in the program. For example:

/* Your basic comment */

/* a /* nested! */ comment */

Each AREXX program must begin with a comment line.

10-28 AREXX

Symbol Tokens. Any group of the characters a-z, A-Z, 0-9, and

.!?$_ defines a symbol token. Symbols are translated to

uppercase as the interpreter scans the program, so the symbol

MyName is equivalent to MYNAME. Four types of symbols

are recognized:

• Fixed symbols begin with a digit (0-9) or a period (.).

• Simple symbols do not begin with a digit and do not

contain any periods.

• Stem symbols have exactly one period at the end of the

symbol name.

• Compound symbols include one or more periods in the

interior of the name.

Stems and compound symbols have special properties that

make them useful for building arrays and lists.

Symbol Values. The value used for a fixed symbol is always the

symbol name itself (as translated to uppercase). Simple, stem,

and compound symbols are called variables and may be

assigned a value during the course of the program execution. A

variable is uninitialized if it has not yet been assigned a value;

the value used for an uninitialized variable is just the variable

name itself.

For example:

123.45 /" a fixed symbol */

MyName /* a simple symbol "/

a. /* a stem symbol */

a.1 .Index /* a compound symbol */

String Tokens. A group of characters beginning and ending

with a quote (') or double quote (") delimiter defines a string

token. The delimiter character itself may be included within

the string by a double-delimiter sequence {'' or " "].

AREXX 10-29

The number of characters in the string is called its length, and

a string of length zero is called a null string. A string is treated

as a literal in an expression; its value is just the string itself.

Strings followed immediately by an "X" or "B" character that is

not part of a longer symbol are classified as hex or binary

strings, respectively, and must be composed of hexadecimal

digits (0-9, A-F) or binary digits (0,1). Blanks are permitted at

byte boundaries for added readability, Hex and binary strings

are convenient for specifying non-ASCII characters and for

machine-specific information like addresses in a program.

They are converted immediately to the packed (machine

compressed) internal form.

For example:

"Now is the time" /* a simple example 7

I* a null string "I

'CarTtyou see??' /' Can't you see?? 7

'4A3BC0'X r a hex string 7

'00110111 'b r binary for the character 7' 7

Operators. The characters - +-'/ = ><&! may be combined

in the sequences shown in the following table to form operator

tokens. Operator sequences may include leading, trailing and

embedded blanks, all of which are removed when the program

is scanned. In addition to the above characters, the blank

character is treated as a concatenation operator or special

character.

Each operator has an associated priority that determines the

order in which operations will be performed in an expression.

*"N Operators with higher priorities (8) are performed before those

with lower priorities (1).

10-30 AREXX

Sequence Priority
o

+ 8

8

7

6

/ 6

/o 6

// 6

+ 5

5

II 4

(blank) 4

3
_^ _ Q

3
__ o

> 3

> = or ~ < 3

< 3

< = or ~ > 3

& 2

1

A or && 1

M JCUUC1IV.C5

Operator Definition

Logical NOT

Prefix Conversion

Prefix Negation

Exponentiation

Multiplication

Division

Integer Division

Remainder

Addition

Subtraction

Concatenation

Blank Concatenation

Exact Equality

Exact Inequality

Equality

Inequality

Greater Than

Greater Than or Equal To

Less Than

Less Than or Equal To

Logical AND

Logical Inclusive OR

Logical Exclusive OR

Special Character Tokens. The characters:{);, are each treated

as a separate special character token and have particular

meanings within an AREXX program. Blanks adjacent to these

special characters are removed, except for those preceding an

open parenthesis or following a closed parenthesis.

AREXX 10-31

Colon (:) A colon, if preceded by a symbol token, defines a

label within the program. Labels are locations in the program

to which control may be transferred under various conditions.

Opening and Closing Parentheses {[)) Parentheses are used

in expressions to group operators and operands into

subexpressions in order to override the normal operator

priorities. An open parenthesis also serves to identify

a function call within an expression. A symbol or string

followed immediately by an open parenthesis defines a

function name. Parentheses must always be balanced within

a statement.

Semicolon (,-) The semicolon acts as a program statement

terminator. Several statements may be placed on a single

source line if separated by semicolons.

Comma I,) A comma token acts as the continuation character

for statements that must be entered on several source lines. It

is also used to separate the argument expressions in a function

call.

Clauses

Tokens arc grouped together to form clauses, the smallest

language unit that can be executed as a statement. Each

AREXX clause can be classified as follows:

• null

• label

• assignment

• instruction

• command

The classification process is very simple, since no more than

two tokens are required to classify any clause. Assignment,

instruction, and command clauses are statements.

10-32 AREXX

Null Clauses. Lines consisting only of blanks or comments are

called null clauses. They have no function in the execution of a

program, except to aid its readability and to increment the

source line count. Null clauses may appear anywhere in a

program.

For example:

/* perform annuity calculations '/

This comment line is a null clause.

Label Clauses. A symbol followed immediately by a colon (:)

defines a label clause. A label acts as a placemarker in the

program, but no action occurs with the execution of a label.

The colon is considered as an implicit clause terminator, so

each label stands as a separate clause. Label clauses may appear

anywhere in a program.

For example:

start: /* begin execution *i

syntax: /* error processing *l

The above lines end with a colon, signifying a specific place in

the program.

Assignment Clauses. Assignments are identified by a variable

symbol followed by an " = " operator. In this context the " = "

operator's normal definition (an equality comparison) is

overridden and it becomes an assignment operator. The

tokens to the right of the " = " are evaluated as an expression

and the result is assigned to (becomes the value of] the variable

symbol.

For example:

when = 'Now is the time'

answ = 3.14 * fact(5)

In the above lines the equality comparison definition is

superseded and the equal sign (=) instead assigns the value

AREXX 10-33

'Now is the time' to the variable 'when', and assigns the result

of 3.14 * fact(5) to the variable 'answ'.

Instruction Clauses. Instructions begin with certain keyword

symbols, each of which denote a particular action to be

performed. Instruction keywords are recognized only at the

beginning of a clause and may otherwise be used freely as

symbols (although such use may become confusing at times).

For example:

drop a b c /* reset variables */

say 'please' /* a polite program 7

if j > 5 then leave; /* several instructions "/

Command Clauses. Commands are any AREXX expression

that can't be classified as one of the preceding types of clauses.

The expression is evaluated and the result is issued as a

command to an external host, which might be the native

operating system (like AmigaDOS) or an application program.

For example:

'delete' "myfile1 I* a DOS command 7

■jump' current + 10 /"an editor command? 7

In the first example the command 'delete' is not recognized as

an AREXX command; it is sent to the external host, in this

case AmigaDOS which does understand the command.

Similarly, the 'jump' command in the second example is

supposedly understood by the external host — in this case a

text editor. See also ADDRESS ().

Multiple Clauses

Several clauses can be placed on a single line by separating

them with semicolons (;).

10-34 AREXX

Clause Classification

The process by which program lines are divided into clauses

and then classified is important in understanding the operation

of an AREXX program. The language interpreter splits the

program source into groups of clauses as the program is read,

using the end of each line as a clause separator and applying the

continuation rule as required. These groups of one or more

clauses are then tokenizcd and each clause is classified into

one of the above types. Note that seemingly small syntactic

differences may completely change the semantic content of a

statement. For example,

SAY'Hello, Bill'

is an instruction clause and will display "Hello, Bill" on the

console, but

"SAY'Hello, Bill'

is a command clause, and will issue "SAY Hello, Bill" as a

command to an external program. The presence of the leading

null string changes the classification from an instruction

clause to a command clause.

Clause Continuation

The end of a source line normally acts as the implicit end of a

clause. A clause can be continued on the next source line by

ending the line with a comma (see Multiple Clauses). The

comma is ignored by the program, and the next line is

considered as a continuation of the clause. There is no limit to

the number of continuations that may occur (except for those

limits imposed by the command buffer). String and comment

tokens are automatically continued if a line ends before the

closing delimiter has been found, and the newline (i.e., enter)

character is not considered to be part of the token.

AREXX 10-35

Expressions

Expression evaluation is an important part of AREXX programs

since most statements include at least one expression.

Expressions are composed of:

• Strings. Used as literals (the values as shown in

uppercase) in an expression; their value in an operation

is just the string itself.

• Symbols. Fixed symbols arc also literals (remember that

symbols are always translated to uppercase), but variable

symbols may have an assigned value.

• Operators. Operator tokens represent the predefined

operations of AREXX; each operator has an associated

priority that determines the order in which operations

will be performed.

• Parentheses. Parentheses may be used to alter the

normal order of evaluation in the expression or to

identify function calls. A symbol or string followed

immediately by an open parenthesis define the function

name, and the tokens between the opening and (final)

closing parenthesis form the argument list for the

function.

For example, the expression "J 'factorial is' fact(J)" is composed

of a symbol J, a blank operator, the string 'factorial is', another

blank, the symbol fact, an open parenthesis, the symbol J

again, and a closing parenthesis. FACT is a function name and

(J) is its argument list, in this case the single expression J.

10-36 AREXX

Symbol Resolution

Before the evaluation of an expression proceeds, the interpreter

must obtain a value for each symbol in the expression. For

fixed symbols the value is just the symbol name itself, but

variable symbols must be looked up in the current symbol

table. In the example above, the expression after symbol

resolution would be "3 'factorial is' FACT(3)" assuming that

the symbol J had the value 3.

Suppose that the previous example above had been "FACT(J)

'is' J 'factorial'." Would the second occurrence of symbol J still

resolve to 3 in this case; In general, function calls may have

"side effects" that include altering the values of variables, so

the value of J might have been changed by the call to FACT. In

order to avoid ambiguities in the values assigned to symbols

during the resolution process, AREXX guarantees a strict left-

to-right resolution order. Symbol resolution proceeds

irrespective of operator priority or parenthetical grouping. If a

function call is found, the resolution is suspended while the

function is evaluated. Note that it is possible for the same

symbol to have more than one value in an expression.

Order of Evaluation

After all symbol values have been resolved the expression is

evaluated based on operator priority and subexpression

grouping. Operators of higher priority are evaluated first.

AREXX does not guarantee an order of evaluation among

AREXX 10-37

~
operators of equal priority, and does not employ a "fast path"

evaluation of boolean operations. For example, in the

expression

(1 = 2) & (FACT(3) = 6)

the call to the FACT function will be made since the first term

of the AND (&.) operation is 0. This example points out that

AREXX will continue reading left to right, even though the

given example is false and will return a value of 0.

Numbers and Numeric Precision

An important class of operands are those representing

numbers. Numbers consist of the characters 0-9,.+ —, and

blanks; e or E may follow a number to indicate exponential

notation, in which case it must be followed by a (signed)

integer.

Both string tokens and symbol tokens may be used to specify

numbers. Since the language is typeless, variables do not have

to be declared as "numeric" before use in an arithmetic

operation. Instead, each value string is examined when it is

used to verify that it represents a number. The following

examples are all valid numbers:

33

"12.3"

0.321e12

' + 15. '

Note that leading and trailing blanks are permitted and that

blanks may be embedded between a " + " or" - " sign and the

number body (but not within the body).

10-38 AREXX

Boolean Values

The numbers 0 and 1 are used to represent the boolean values

False and True, respectively. The use of a value other than 0 or

1 when a boolean operand is expected will generate an error.

Any number equivalent to 0 or 1, for example "0.000" or

"0.1E1", is also acceptable as a boolean value.

Numeric Precision

AREXX allows the basic precision used for arithmetic

calculations to be modified while a program is executing. The

number of significant figures used in arithmetic operations is

determined by the Numeric Digits setting and may be

modified using the NUMERIC instruction.

The number of decimal places used for a result depends on the

operation performed and the number of decimal places in the

operands. Unlike many languages, AREXX preserves trailing

zeroes to indicate the precision of the result. If the total

number of digits required to express a value exceeds the current

Numeric Digits setting, the number is formatted in

exponential notation. Two such formats are provided:

• In SCIENTIFIC notation, the exponent is adjusted so

that a single digit is placed to the left of the decimal

point.

• In ENGINEERING notation, the number is scaled so

that the exponent is a multiple of 3 and the digits to the

left of the decimal point range from 1 to 999.

The numeric precision and format can be set using the

NUMERIC instruction (See page 10-61).

AREXX 10-39

Operators

^

Operators can be grouped into four categories:

• Arithmetic operators require one or two numeric

operands and produce a numeric result.

• Concatenation operators join two strings into a single

string.

• Comparison operators require two operands and produce

a boolean (Oor 1) result.

• Logical operators require one or two boolean operands

and produce a boolean result.

Arithmetic Operators. The arithmetic operators are listed in

the Table below. Note the inclusion of the integer division (%)

and remainder (//) operators, along with the usual arithmetic

operations. The result of an arithmetic operation is always

formatted based on the current Numeric Digits setting and

will never have leading or trailing blanks.

Sequence

+

-

* *

•

/

%

II

+

-

Priority

8

8

7

6

6

6

6

5

5

Operation

Prefix Conversion

Prefix Negation

Exponentiation

Multiplication

Division

Integer Division

Remainder

Addition

Subtraction

10-40 AREXX

NOTE: The -* (arrow) used in program examples

throughout this chapter is to be understood as

"evaluates as." This -* (arrow) will not be displayed

when a program is run. It is used for clarification

purposes only. See examples below.

Prefix Conversion (+}. This unary (the positive or negative

sign on a number) operator converts the operand to an internal

numeric form and formats the result based on the current

Numeric Digits settings. This causes any leading and trailing

blanks to be removed and may result in a loss of precision.

For example:

+ '3.12'

+ 1.5001

3.12

1.500 I* If digits = 3*/

Prefix Negation (-). This unary operator negates the operand.

The result is formatted based on the current Numeric Digits

setting.

For example:

-'3.12' - -3.12

-1.5E2 - -150

Exponentiation [**). The left operand is raised to the power

specified by the right operand, which must be an integer. The

number of decimal places for the result is the product of the

exponent and the number of decimal places in the base.

AREXX 10-41

For example:

2**3

3**-1

0.5**3

^8

- .333333333

-0.125

Multiplication (*). The product of two numbers is computed.

The number of decimal places for the result is the sum of the

decimal places of the operands.

For example:

12*3 -36

1.5* 1.50 -2.250

Division (/]. The quotient of two numbers is computed. The

number of decimal places for the result depends on the current

setting of Numeric Digits; the number is formatted to the

maximum precision required.

For example:

6/3 -2

8/3 -2.66666667

Integer Division (%). The quotient of two numbers is

computed, and the integer part of the quotient is used as the

result.

For example:

5 % 3 - 1

-8%3 --2

Remainder (//). The result is the remainder after the two

operands are divided. The remainder for "a//b" is calculated as

"a-(a%b)*b". If both operands are positive integers, this

operation yields the usual modulo result.

For example:

5 // 3 - 2

-5//3 --2

5.1//0.2 -0.1

10-42 AREXX

Addition {+). The sum of two numbers is computed. The

number of decimal places for the result is the larger of the

decimal places of the operands.

For example:

12 + 3 -15

3.1 + 4.05 -7.15

Subtraction (-}. The difference of two numbers is computed.

As in the case of addition, the number of decimal places for the

result is the larger of the decimal places of the operands.

For example:

12-3 -9

5.55 - 1.55 -4.00

Concatenation Operators. AREXX defines two concatenation

operators, both of which require two operands. The first,

identified by the operator sequence " || ", joins two strings into

a single string with no intervening blank. The second

concatenation operation is identified by the blank operator and

joins the two operand strings with one intervening blank.

An implicit concatenation operator is recognized when a

symbol and a string are directly abutted in an expression.

Concatenation by abuttal uses the " || " operator, and behaves

exactly as though the operator had been provided explicitly.

For example:

'why me,' || 'Mom?' - why me,Mom?

'good' 'times' — good times

one'two'three -> ONEtwoTHREE

Comparison Operators. Comparisons are performed in one of

three modes and always result in a boolean value (0 or 1).

• Exact comparisons proceed character-by-character,

including any leading blanks that may be present.

AREXX 10-43

~

• String comparisons ignore leading blanks and add blanks

to the shorter string if necessary.

• Numeric comparisons first convert the operands to an

internal numeric form using the current Numeric Digits

setting and then perform a standard arithmetic

comparison.

Except for the exact equality and exact inequality operators, all

comparison operators dynamically determine whether a string

or numeric comparison is to be performed. A numeric

comparison is performed if both operands are valid numbers.

Otherwise, the operands are compared as strings.

p

Sequence Priority Operation

_ T

— = = 3

3

—— 3

> 3

> = or - < 3

< 3

< = or ~ > 3

Exact Equality
Exact Inequality

Equality
Inequality

Greater Than

Greater Than or

Equal

Less Than

Less Than or

Equal

Mode

Exact

Exact

String/Numeric

String/Numeric

String/Numeric

String/Numeric

String/Numeric

String/Numeric

Logical (Boolean) Operators. AREXX defines the four logical

operations NOT, AND, OR, and Exclusive OR, all of which

require boolean operands and produce a boolean result. (Refer

to the Glossary at the back of this manual for an explanation of

boolean.) Boolean operands must have values of cither 0 (False)

or 1 (True). An attempt to perform a logical operation on a non-

boolean operand will generate an error.

10-44 AREXX

Logical Operators

Sequence Priority Operation

8 NOT (Inversion)

& 2 AND

1 OR

or && 1 Exclusive OR

Stems and Compound Symbols

Stems and compound symbols have special properties that

allow for some interesting and unusual programming. A

compound symbol can be regarded as having the structure

stem.nj.ri2.n3.. . nk where the leading name is a stem symbol

and each node n}. .. nk is a fixed or simple symbol. Whenever

a compound symbol appears in a program, its name is

expanded by replacing each node with its current value as a

(simple) symbol. The value string may consist of any

characters, including embedded blanks, and is not converted to

uppercase. The result of the expansion is a new name that is

used in place of the compound symbol. For example, if J has

the value 3 and K has the value 7, then the compound symbol

A.J.K will expand to A.3.7.

Stem symbols provide a way to initialize a whole class of

compound symbols. When an assignment is made to a stem

symbol, it assigns that value to all possible compound symbols

derived from the stem. Thus, the value of a compound symbol

depends on the prior assignments made to itself or its

associated stem.

AREXX 10-45

Compound symbols can be regarded as a form of associative or

content-addressable memory. For example, suppose that you

needed to store and retrieve a set of names and telephone

numbers. The conventional approach would be to set up two

arrays NAME and NUMBER, each indexed by an integer

running from one to the number of entries. A number would be

looked up by scanning the name array until the given name

was found, say in NAME.12, and then retrieving NUMBER.12.

With compound symbols, the symbol NAME could hold the

name to be looked-up, and NUMBER.NAME would then

expand to NUMBER.CBM (for example], which would be the

corresponding number.

Of course, compound symbols can also be used as conventional

indexed arrays, with the added convenience that only a single

assignment (to the stem) is required to initialize the entire

array.

Enter the following phonebook program and save it as

"rexx:phone.rexx".

/* A simple telephone phone book to */

/* demonstrate compound variables */

if arg() - = 1 then do

say'USAGE: rx phone name'

exit 5

end

/* open window to display phone numbers/addresses in */

call open out,"con:0/0/64O/60/AREXX Phonebook"

^-^ if - result then do

say "Open failure . . . sorry"

exit 10

end

10-46 AREXX

I* number definitions*/

number. => '(not found)'

number.wsh = '(555)001-0001'

addr. = '(not found)'

number.CBM = '(555)002-0002'

addr.CBM = '1200 Wilson Dr., West Chester, PA 19380'

I* (work is done here) 7

arg name /* the name V

call writeln out.name || " 's number is" number.name

call writeln out,name|| '"s address is" addr.name

call writeln out,"Press RETURN to exit"

call readln out

exit

NOTE: If you are new to AREXX you may wish to skip ahead

to Instructions on page 10-50. The information beginning with

The Execution Environment and ending with Resource

Tracking on page 10-49 is intended for advanced Amiga users.

This information assumes a working knowledge of the Amiga

operating system and familiarity with the ROM Kernel

Manuals published by Addison Wesley.

The Execution Environment

The AREXX interpreter provides a uniform execution

environment by running each program as a separate process in

the Amiga's multitasking operating system. This allows for a

flexible interface between an external host program and the

interpreter, as the host can either proceed concurrently with its

operations or can simply wait for the interpreted program to

finish.

AREXX 10-47

The External Environment

The external environment of a program includes its process

structure, input and output streams, and current directory.

When each AREXX process is created, it inherits the input and

output streams and current directory from its client, the

external program that invoked the AREXX program. The

current directory is used as the starting point in a search for

a program or data file.

External Programs. The external environment usually includes

one or more external programs with which the AREXX

program may communicate. Any program that supports a

suitable interface (AREXX port) can receive commands from

AREXX programs.

The Internal Environment

The internal environment of an AREXX program consists of a

static global structure and one or more storage environments.

The global data values are fixed at the time the program is

invoked and include the argument strings, program source

code, and static data strings. The storage environment includes

the symbol table used for variable values, the numeric options,

trace options, and host address strings. While the global

environment is unique, there may be many storage

environments during the course of the program execution.

Each time an internal function is called a new storage

environment is activated and initialized. The initial values for

most fields are inherited from the previous environment, but

values may be changed afterwards without affecting the

caller's environment. The new environment persists until

control returns from the function.

10-48 AREXX

Argument Strings. A program may receive one or more

argument strings when it is first invoked. These arguments

persist for the duration of the program and are not altered. The

number of arguments a program receives depends in part on the

mode of invocation. AREXX programs invoked as commands

normally have only one argument string, although the

"command tokenization" option may provide more than one.

A program invoked as a function can have any number of

arguments if called as an internal function, but external

functions are limited to a maximum of 15 arguments.

The argument strings can be retrieved using either the ARG

instruction or the ARG() Built-in function. ARG() can also

return the total number of arguments, or the status (as "exists"

or "omitted") of a particular argument.

The Symbol Table. Every storage environment includes a

symbol table to store the value strings that have been assigned

to variables. This symbol table is organized as a two-level

binary tree, a data structure that provides an efficient look-up

mechanism. The primary level stores entries for simple and

stem symbols and the secondary level is used for compound

symbols. All of the compound symbols associated with a

particular stem are stored in one tree, with the root of the tree

held by the entry for the stem.

Symbols are not entered into the table until an assignment is

made to the symbol. Once created, entries at the primary level

are never removed, even if the symbol subsequently becomes

uninitialized. Secondary trees are released whenever an

assignment is made to the stem associated with the tree.

AREXX 10-49

Input and Output

Most computer programs require some means of

communicating with the outside world, either to accept input

data or to pass along results. The REXX language includes only

a minimal specification of input and output (I/O) operations,

leaving the choice of additional functionality to the language

implementor. This is in keeping with the design of many

computer languages. For instance, the C language has no

statements dedicated to I/O, but instead relies on a

standardized set of I/O functions.

AREXX extends the I/O facilities of REXX by providing Built-

in functions to manipulate external files. Files are referenced

by a logical name associated with the file when it is first

opened. The initial input and output streams are given the

names STDIN (Standard Input) and STDOUT (Standard

Output).

AREXX maintains a list of all of the files opened by a program

and automatically closes them when the program finishes.

There is no theoretical limit to the number of files that may be

open simultaneously, although there is a limit imposed by

available memory.

Resource Tracking

AREXX provides complete tracking for all of the dynamically

allocated resources that it uses to execute a program. These

resources include memory space, DOS files, and related

structure, and the message port structure supported by

AREXX. The tracking system was designed to allow a program

to shut down at any point (perhaps due to an execution error

without leaving any hanging resources.

10-50 AREXX

Instructions

It is possible to go outside of the interpreter's resource tracking

net by making calls directly to the Amiga's operating system

from within an AREXX program, In this case it is the

programmer's responsibility to track and return any resources

allocated outside of the AREXX resource tracking system.

AREXX provides a special interrupt facility so that a program

can retain control after an execution error, perform the required

cleanup, and then make an orderly exit.

Instruction clauses are identified by an initial keyword symbol

that is not followed by a colon (:) or an equals {=) operator.

Each instruction signifies a specific action and may be

followed by one or more subkeywords, expressions, or other

instruction specific information. Instruction keywords and

subkeywords are recognized only in this specific context and

are therefore not "reserved words" in the usual sense of the

term. Keywords may be used freely as variables or function

names, although such usage may become confusing at times.

In the descriptions that follow, keywords are shown in

uppercase and optional parts of the instruction are enclosed in

brackets. Alternative selections are separated by a vertical bar

(|) and required alternatives are enclosed in braces ({}).

ADDRESS

Usage: ADDRESS [symbol | string \ [[VALUE] [expression!!

This instruction specifies a host address for commands issued

by the interpreter. A host address is the name associated within

an external program to which commands can be sent. External

AREXX 10-51

~
hosts are described on page 10-75. AREXX maintains two host

addresses: a current and a previous value. Whenever a new host

address is supplied, the previous address is lost and the current

address becomes the previous one. These host addresses are

part of a program's storage environment and are preserved

across internal function calls. The current address can be

retrieved with the Built-in function ADDRESS (). There are

four distinct forms for the ADDRESS instruction:

• ADDRESS {string \ symbol} expression. The expression

is evaluated and the result is issued to the host specified

by the string or symbol, which is taken as a literal. No

changes are made to the current or previous address

strings. This provides a convenient way to issue a single

command to an external host without disturbing the

current host addresses. The return code from the

command is treated as it would be from a command

clause.

• ADDRESS [string \ symbol}. The string or symbol,

taken as a literal, specifies the new host address. The

current host address becomes the previous address.

• ADDRESS /VALUE/ expression. The result of the

expression specifies the new host address and the

current address becomes the previous address. The

VALUE keyword may be omitted if the first token of the

expression is not a symbol or string.

• ADDRESS. This form interchanges the current and

previous hosts. Repeated execution will therefore

"toggle" between the two host addresses.

For example:

address edit /* set a new host address */

address edit 'top' /* move to the top */

address VALUE edit in /* compute a new host address 7

address /• swap current and previous */

10-52 AREXX

ARG

Usage: ARG [template] ^template...]

ARG is a shorthand form for the PARSE UPPER ARG

instruction. It retrieves one or more of the argument strings

available to the program and assigns values to the variables

in the template. The number of argument strings available

depends on the whether the program was invoked as a

command or a function. Command invocations normally have

only one argument string, but functions may have up to 15.

The argument strings are not altered by the ARG instruction.

ARG will return uppercase letters.

For example:

arg first,second /" fetch arguments */

The structure and processing of templates is described briefly

with the PARSE instruction.

BREAK

Usage: BREAK

The BREAK instruction is used to exit from the range of a

DO instruction or from within an INTERPRETed string and is

valid only in these contexts. If used within a DO statement,

BREAK exits from the innermost DO statement containing the

BREAK. This contrasts with the otherwise similar LEAVE

instruction, which exits only from an iterative DO.

For example:

CO

lfi>3

a = a

y.a =

end

then break

+ 1

name

r

/"

r

begin block"/

all done? V

end block"

ARBXX 10-53

rN call

Usage: CALL {symbol | string} [expression] ^expression,... J

The CALL instruction is used to invoke an internal or external

function. The function name is specified by the symbol or

string token, which is taken as a literal. Any expressions that

follow are evaluated and become the arguments to the called

function. The value returned by the function is assigned to the

special variable RESULT. It is no: an error if a result string is

not returned. In this case the variable RESULT is DROPped

(becomes uninitialized).

The linkage to the function is established dynamically at the

time of the call. AREXX follows a specific search order in

attempting to locate the called function.

For example:

call center name,length+ 4,' + '

DO

Usage: DO //var = expj\[expj /TO expj /BY exp]J /TOR expj

/FOREVER^ /WHILE exp | UNTIL expj

The DO instruction begins a group of instructions to be

executed as a block. The range of the DO instruction includes

all statements up to and including an eventual END

instruction. There are two basic forms of the instruction:

• The DO keyword by itself defines a block of instructions

to be executed once.

• If any iteration specifiers follow the DO keyword, the

block of instructions is executed repeatedly until a

termination condition occurs.

An iterative DO instruction is sometimes called a loop, since

the interpreter "loops back" to perform the instruction

repeatedly. The various parts of the DO instruction are

described below.

10-54 AREXX

Initializer expression. An initializer expression of the form

"variable = expression" defines the index variable of the loop.

The expression is evaluated when the DO range is first

activated and the result is assigned to the index variable. On

subsequent iterations an expression of the form "variable =

variable + increment" is evaluated, where the increment is the

result of the BY expression. If specified, the initializer

expression must precede any of the other subkeywords.

BY expression. The expression following a BY symbol defines

the increment to be added to the index variable in each

subsequent iteration. The expression must yield a numeric

result, which may be positive or negative and need not be an

integer. The default increment is 1.

TO expression. The result of the TO expression specifies the

upper [or lower) limit for the index variable. At each iteration

the index variable is compared to the TO result. If the

increment (BY result) is positive and the variable is greater

than the limit, the DO instruction terminates and control

passes to the statement following the END instruction. The

loop terminates if the increment is negative and the index

variable is less than the limit.

FOR expression. The FOR expression must yield a positive

whole number when evaluated and specifies the maximum

number of iterations to be performed. The loop terminates

when this limit is reached irrespective of the value of the index

variable.

FOREVER. The FOREVER keyword can be used if an iterative

DO instruction is required but no index variable is necessary.

The loop will be terminated by a LEAVE or BREAK instruction

contained within the loop body.

WHILE expression. The WHILE expression is evaluated at the

beginning of each iteration and must result in a boolean value.

The iteration proceeds if the result is 1 (or true|; otherwise, the

loop terminates.

AREXX 10-55

UNTIL expression. The UNTIL expression is evaluated at the

end of each iteration and must result in a boolean value. The

instruction continues with the next iteration if the result is 0

(or false), and terminates otherwise.

The initializer BY, TO and FOR expressions are evaluated only

when the instruction is first activated, so the increment and

limits are fixed throughout the execution. Note that a limit

need not be supplied. For example, the instruction "DO i = l"

will simply count away forever. Note also that only one of the

WHILE or UNTIL keywords can be specified.

For example:

f* Examples of DO */

limit - 20; number = 1

^^ do i = 1 to limit for 10 while number < 20

number = i'number

say "Iteration" i "number = " number

end

number = number/3.345; i = 0

do number for limit/5

i = i + 1

say "Iteration" i "number= " number

end

This is the output:

Iteration 1 number = 1

Iteration 2 number = 2

Iteration 3 number - 6

Iteration 4 number = 24

Iteration 1 number - 7.17488789

Iteration 2 number = 7.17488789

Iteration 3 number = 7.17488789

Iteration 4 number = 7.17488789

NOTE: If a FOR limit is also present, the initial expression is

still evaluated, but the result need not be a positive integer.

~

10-56 AREXX

For example:

do 5; say hi; end

DROP

Usage: DROP variable [variable . .. j

The specified variable symbols are reset to their uninitialized

state, in which the value of the variable is the variable name

itself. It is not an error to DROP a variable that is already

uninitialized. DROPping a stem symbol is equivalent to

DROPping the values of all possible compound symbols

derived from that stem.

For example:

a = 123

drop a b

say a b

/* assign a value */

/* drop some

/* — A B */

ECHO

Usage: ECHO [expression]

The ECHO instruction is a synonym for the SAY instruction. It

displays the expression result on the console.

For example:

echo ■'You don't SAY!"

ELSE

Usage: ELSE /;/ [conditional statement}

The ELSE instruction provides the alternative conditional

branch for an IF statement. It is valid only within the range of

an IF instruction and must follow the conditional statement of

the THEN branch. If the THEN branch wasn't executed, the

statement following the ELSE clause is performed.

AREXX 10-57

~

~

ELSE clauses always bind to the nearest (preceding) IF

statement. It may be necessary to provide "dummy" ELSE

clauses for the inner IF ranges of a compound IF statement in

order to allow alternative branches for the outer IF statements.

In this case it is not sufficient to follow the ELSE with a

semicolon or a null clause. Instead, the NOP (no-operation)

instruction can be used for this purpose (see NOP on page

10-61).

For example:

if i > 2 then say 'really?'

else say 'I thought so'

END

Usage: END [variable]

The END instruction terminates the range of a DO or SELECT

instruction. If the optional variable symbol is supplied, it is

compared to the index variable of the DO statement (which

must therefore be iterative). An error is generated if the

symbols do not match, so this provides a simple mechanism

for matching the DO and END statements.

For example:

do i = 1 to 5 /* index variable is i 7

say i

end i f* end "i" loop */

EXIT

Usage: EXIT [expression}

The EXIT instruction terminates the execution of a program

and is valid anywhere within a program. The evaluated

expression is passed back to the caller as the function or

command result.

10-58 AREXX

Results Processing. The processing of the EXIT result depends

on whether a result string was requested by the calling program

and whether the current invocation resulted from a command

or function call. If a result string was requested, the expression

result is copied to a block of allocated memory and a pointer to

the block is returned as the secondary result of the call.

If the caller did not request a result string and the program was

invoked as a command, then an attempt is made to convert the

expression result to an integer. This value is then returned as

the primary result, with 0 as the secondary result. This allows

the EXIT expression to be interpreted as a return code by the

caller. Refer to Chapter 7, "Using AmigaDOS" for information

on return codes.

For example:

exit /* no result needed */

exit 12 /* an error return? */

IF

Usage: IF expression /THEN/ /;/ [conditional statement]

The IF instruction is used in conjunction with THEN and ELSE

instructions to conditionally execute a statement. The result

of the expression must be a boolean value. If the result is 1

(TVue), the statement following the THEN symbol is executed;

otherwise, control passes to the next statement (which might

be an ELSE clause). The THEN keyword need not immediately

follow the IF expression, but may appear as a separate clause.

The instruction is actually analyzed as "If expression; THEN;

statement;". The expression following the IF statement

establishes the test condition that determines whether

subsequent THEN or ELSE clauses will be performed.

Any valid statement may follow the THEN symbol. In

particular, a "DO;... END;" group allows a series of

statements to be performed conditionally.

AREXX 10-59

^^^ For example:

if result < 0 then exit /* all done? 7

INTERPRET

Usage: INTERPRET expression

The INTERPRET command treats the expression as though it

were a source statement block in your program. The expression

is evaluated and the result is executed as one or more program

statements. The statements are considered as a group, as

though surrounded by a "DO;...; END" combination. Any

statements can be included in the INTERPRETed source,

including DO or SELECT instructions.

An INTERPRET instruction activates a control range when it

is executed, which serves as a boundary for LEAVE and

ITERATE instructions. These instructions can therefore be

used only with DO-loops defined within the INTERPRET. The

BREAK instruction can be used to terminate the processing of

INTERPRETed statements. While it is not an error to include

label clauses within the interpreted string, only those labels

defined in the original source code are searched during a

transfer of control.

The INTERPRET instruction can be used to construct

programs dynamically and then execute them. Program

fragments may be passed as arguments to functions, which

then INTERPRETS the fragments.

For example:

inst = 'say' /• an instruction 7

interpret inst hello /* . . . "say HELLO" "/

10-60 AREXX

ITERATE

Usage: ITERATE [variable]

The ITERATE instruction terminates the current iteration of a

DO instruction and begins the next iteration. Effectively,

control passes to the END statement and then (depending on

the outcome of the UNTIL expression) back to the DO

statement. The instruction normally acts on the innermost

iterative DO range containing the instruction. An error results

if the ITERATE instruction is not contained within an

iterative DO instruction.

The optional variable symbol specifies which DO range is to be

exited, in the event that several nested ranges exist. The

variable is taken as a literal and must match the index variable

of a currently active DO instruction. An error results if no such

matching DO instruction is found.

For example:

do i = 1 to 5

if i = 3 then iterate i

say i

end

-1,2,4,5

LEAVE

Usage: LEAVE [variable!

LEAVE forces an immediate exit from the iterative DO range

containing the instruction. An error results if the LEAVE

instruction is not contained within an iterative DO

instruction.

The optional variable symbol specifies which DO range is to be

exited, in the event that several nested ranges exist. The

variable is taken as a literal and must match the index variable

of a currently active DO instruction. An error results if no such

matching DO instruction is found.

AREXX 10-61

For example:

do i = 1 to limit

if i > 5 then leave /* maximum iterations */

end

NOP

Usage: NOP

The NOP or "no-operation" instruction does just that: nothing.

It is provided to control the binding of ELSE clauses in

compound IF statements.

For example:

if i - j then I* first (outer) IF 7

if j = k then a = 0 /* inner IF V

else nop /* binds to inner IF 7

else a = a + 1 /* binds to outer IF 7

NUMERIC

Usage: NUMERIC {DIGITS | FUZZ} expression

or: NUMERIC FORM {SCIENTIFIC | ENGINEERING}

This instruction sets options relating to the numeric precision

and format. The valid forms of the NUMERIC instruction are:

• NUMERIC DIGITS expression. Specifies the number of

digits of precision for arithmetic calculations. The

expression must evaluate to a positive whole number.

• NUMERIC FUZZ expression. Specifies the number of

digits to be ignored in numeric comparison operations.

This must be a positive whole number that is less than

the current DIGITS setting.

• NUMERIC FORM SCIENTIFIC. Specifies that numbers

that require exponential notation be expressed in

SCIENTIFIC notation. The exponent is adjusted so that

the mantissa (for non-zero numbers) is between 1 and 10.

This is the default format.

10-62 AREXX

• NUMERIC FORM ENGINEERING. Selects

ENGINEERING format for numbers that require

exponential notation. ENGINEERING format

normalizes a number so that its exponent is a multiple

of three and the mantissa (if not 0) is between 1 and

1000.

The numeric options are preserved when an internal function

is called.

For example:

numeric digits 12 /* precision */

numeric form scientific /* format 7

OPTIONS

Usage: OPTIONS /FAILAT expression]

or: OPTIONS /PROMPT expression!

or OPTIONS /RESULTS/

The OPTIONS instruction is used to set various internal

defaults. The FAILAT expression sets the limit at or above

which command return codes will be signalled as errors and it

must evaluate to an integer value. The PROMPT expression

provides a string to be used as the prompt with the PULL (or

PARSE PULL) instruction. The RESULTS keyword indicates

that the interpreter should request a result string when it

issues commands to an external host.

The internal options controlled by this instruction are

preserved across function calls, so an OPTIONS instruction

can be issued within an internal function without affecting the

caller's environment. If no keyword is specified with the

OPTIONS instruction, all controlled options revert to their

default settings.

AREXX 10-63

~
For example:

options failat 10

options prompt "Yes Boss?"

options results

NOTE: The OPTIONS instruction now accepts a NO

keyword to reset a selected option to its default value, making

it more convenient to reset the RESULTS attribute for a single

command without having to reset the FAILAT and PROMPT

options. OPTIONS also accepts a new keyword CACHE that

can be used to enable or disable an internal statement-caching

scheme. The cache is normally enabled.

OTHERWISE

Usage: OTHERWISE /;/ [conditional statement]

This instruction is valid only within the range of a SELECT

instruction and must follow all of the "WHEN ... THEN"

statements. If none of the preceding WHEN clauses have

succeede'd, the statement following the OTHERWISE

instruction is executed. An OTHERWISE is not mandatory

within a SELECT range. However, an error will result if the

OTHERWISE clause is omitted and none of the WHEN

instructions succeed.

For example:

select

when i = 1 then say 'one'

when i = 2 then say 'two'

otherwise say 'other'

—, end

10-64 AREXX

PARSE

Usage: PARSE /UPPER/ inputsource [template] ^template...]

The PARSE instruction provides a mechanism to extract one or

more substrings from a string and assign them to variables. The

input string can come from a variety of sources, including

argument strings, an expression or from the console. The

template provides both the variables to be given values and the

way to determine the value strings. The template may be

omitted if the instruction is intended only to create the input

string. The different options of the instruction are described

below.

Input Sources. The sources for the input strings are specified by

the keyword symbols listed below. When multiple templates

are supplied, each template receives a new input string,

although for some source options the new string will be

identical to the previous one. The input source string is copied

before being parsed, so the original strings are never altered

by the parsing process. For further information, turn to page

10-146.

• UPPER. This optional keyword may be used with any of

the input sources and specifies that the input string is to

be translated to uppercase before being parsed. It must be

the first token following PARSE.

• ARC This input option retrieves the argument strings

supplied when the program was invoked. Command

invocations normally have only a single argument

string, but functions may have up to 15 argument

strings.

• EXTERNAL. The input string is read from STDERR

stream, (see page 10-138) so as not to disturb any

PUSHed (see page 10-166) or QUEUEd (see page 10-167)

AREXX 10-65

~

~

data. If multiple templates are supplied, each template

will read a new string. This source option is the same as

PULL.

• NUMERIC. The current numeric options are placed in a

string in the order DIGITS, FUZZ and FORM, separated

by a single space.

• PULL. Reads a string from the input console. If multiple

templates are supplied, each template will read a new

string.

• SOURCE. The "source" string for the program is

retrieved. This string is formatted as "{COMMAND |

FUNCTION} {0 | 1} called resolved ext host." The first

token indicates whether the program was invoked as a

command or as a function. The second token is a

boolean flag indicating whether a result string was

requested by the caller. The called token is the name

used to invoke this program, while the resolved token is

the final resolved name of the program. The ext token

is the file extension to be used for searching (the default

is "REXX"). Finally, the host token is the initial host

address for commands.

• VALUE expression WITH. The input string is the result

of the supplied expression. The WITH keyword is

required to separate the expression from the template.

The expression result may be parsed repeatedly by using

multiple templates, but the expression is not

reevaluated.

• VAR variable. The value of the specified variable is used

as the input string. When multiple templates are

provided, each template uses the current value of the

variable. This value may change if the variable is

included as an assignment target in any of the templates.

10-66 AREXX

• VERSION. The current configuration of the AREXX

interpreter is supplied in the form "AREXX version cpu

mpu video freq." The version token is the release level of

the interpreter, formatted as 1.14. The cpu token

indicates the processor currently running the program,

and will be one of the values 68000, 68010 or 68020. The

mpu token will be either NONE or 68881 or 68882

depending on whether a math coprocessor is available on

the system. The video token will indicate either NTSC

or PAL and the freq token gives the clock (line)

frequency as either 60Hz or 50Hz.

Parsing by Template

Parsing is controlled by a template, which may consist of

symbols, strings, operators and parentheses. During the

parsing operation the input string is split into substrings that

are assigned to the variable symbols in the template. The

process continues until all of the variables in the template

have been assigned a value. If the input string is "used up", any

remaining variables are given null values.

Templates are described in depth in a later section, so only a

simplified description is presented here. The goal of the parsing

operation is to associate a current and next position with each

variable symbol in the template. The substring between these

positions is then assigned as the value to the variable. There

are three basic methods used to determine the value strings.

Parsing by Tokenization. When a variable in the template is

followed immediately by another variable, the value string is

determined by breaking the input string into words separated

by blanks. Each word is assigned to a variable in the template.

AREXX 10-67

n Values determined by tokenization will never have leading or

trailing blanks. Normally the last variable in the template

receives the untokenized remainder of the input string, since it

is not followed by a symbol. A placeholder symbol, a period (.),

forces the variable with the period to terminate at the first

space in the input stream. Placeholders behave like variables in

the template except that they are never actually assigned a

value.

For example:

r Numeric string is: "9 0 SCIENTIFIC11 V

parse numeric digits fuzz form .

say digits /* — 9 */

say fuzz /" — 0 */

say form /"-SCIENTIFIC *,

Parsing by Position. If the fields in the input string have known

positions, value strings can be specified by absolute or relative

positions. Relative positions are indicated by a number

preceded by a " + " or "- " operator. Each positional marker

updates the scan position in the string. The value assigned to a

variable is the string from the current position up to, but not

including, the next position in the string.

For example:

myvar = 1234567890

parse var myvar 1 a 3 b + 2 c 1 d

say a

say b

say c

say d

~

10-68 AREXX

This is the output:

12

34

567890

1234567890

NOTE: The PARSE SOURCE option now returns the full path

name of the AREXX program file. Formerly just a relative name

was given, which was not sufficient to locate the program's

source file.

PROCEDURE

Usage: PROCEDURE /EXPOSE variable [variable... j]

The PROCEDURE instruction is used within an internal

function to create a new symbol table. This protects the

symbols defined in the caller's environment from being altered

by the execution of the function. PROCEDURE is usually the

first statement within the function, although it is valid

anywhere within the function body. It is an error to execute

two PROCEDURE statements within the same function.

For example:

fact: procedure f* a recursive function */

arg i

ifi - 1

then return 1

else return i*fact(i-1)

AREXX 10-69

Exposing Variables. The EXPOSE subkeyword provides a

selective mechanism for accessing the caller's symbol table,

and for passing global variables to a function. The variables

following the EXPOSE keyword are taken to refer to symbols

in the caller's table. Any subsequent changes made to these

variables will be reflected in the caller's environment.

The variables in the EXPOSE list may include stems or

compound symbols, in which case the ordering of the variables

becomes significant. The EXPOSE list is processed from left to

right and compound symbols are expanded based on the values

in effect in the new generation. For example, suppose that the

value of the symbolJ in the previous generation is 123, and

that J is uninitialized in the new generation. Then

PROCEDURE EXPOSE J A.J will expose J and A.123, whereas

PROCEDURE EXPOSE A.J J will expose A.J and J. Exposing a

stem has the effect of exposing all possible compound symbols

derived from that stem. That is, PROCEDURE EXPOSE A.

exposes A.I, A.J, A.J.J, A.123, etc.

PULL

Usage: PULL [template] ^template... 7

This is a shorthand form of the PARSE UPPER PULL

instruction. It reads a string from the input console, translates

it to uppercase and parses it using the template. Multiple

strings can be read by supplying additional templates. The

instruction will read from the console even if no template is

given.

Templates are described briefly with the PARSE instruction.

For example:

pull first last. /* read names 7

10-70 AREXX

RETURN

Usage: RETURN [expression!

RETURN is used to leave a function and return control to the

point of the previous function invocation. The evaluated

expression is returned as the function result. If an expression is

not supplied, an error may result in the caller's environment.

Functions called from within an expression must return a

result string and will generate an error if no result is available.

Functions invoked by the CALL instruction need not return a

result.

A RETURN issued from the base environment of a program is

not an error and is equivalent to an EXIT instruction. Refer to

the EXIT instruction for a description of how result strings are

passed back to an external caller.

For example:

return 6*7 I* the answer */

SAY

Usage: SAY [expression]

The result of the evaluated expression is written to the output

console, with a "newline" character appended. If the

expression is omitted, a null string is sent to the console.

For example:

say 'The answer is ' value

SELECT

Usage: SELECT

This instruction begins a group of instructions containing one

or more WHEN clauses and possibly a single OTHERWISE

clause, each followed by a conditional statement.

AREXX 10-71

Only one of the conditional statements within the SELECT

group will be executed. Each WHEN statement is executed in

succession until one succeeds; if none succeeds, the

OTHERWISE statement is executed. The SELECT range must

be terminated by an eventual END statement.

For example:

select

when 1 = 1 then say 'one'

when i = 2 then say 'two'

otherwise say 'other'

end

SHELL

Usage: SHELL [symbol \ string \ [(value] [expression]]

The SHELL instruction is a synonym for the ADDRESS

instruction,

For example:

shell edit /* set host to 'EDIT' 7

SIGNAL

Usage: SIGNAL {ON | OFF} condition

or: SIGNAL [VALUE] expression

There are two forms of the SIGNAL instruction. The first form

illustrated controls the state of the internal interrupt flags.

Interrupts allow a program to detect and retain control when

certain errors occur. In this form SIGNAL must be followed by

one of the keywords ON or OFF and one of the condition

keywords listed below. The interrupt flag specified by the

condition symbol is then set to the indicated state. The valid

signal conditions are:

• BREAK_C A "control-C" break was detected.

• BREAK_D A "control-D" break was detected.

10-72 AREXX

• BREAK_E A "control-E" break was detected.

• BREAK_F A "control-F" break was detected.

• ERROR A host command returned a non-zero code.

• HALT An external HALT request was detected.

• IOERR An error was detected by the I/O system.

• NOVALUE An uninitialized variable was used.

• SYNTAX A syntax or execution error was detected.

The condition keywords are interpreted as labels to which

control will be transferred if the selected condition occurs. For

example, if the ERROR interrupt is enabled and a command

returns a non-zero code, the interpreter will transfer control to

the label ERROR:. The condition label must of course be

defined in the program; otherwise, an immediate SYNTAX

error results and the program exits.

In SIGNAL [value] expression, the tokens following SIGNAL

are evaluated as an expression. An immediate interrupt is

generated that transfers control to the label specified by the

expression result. The instruction thus acts as a "computed

goto".

Interrupts. Whenever an interrupt occurs, all currently active

control ranges (IF, DO, SELECT, INTERPRET, or interactive

TRACE) are dismantled before the transfer of control. Thus,

the transfer cannot be used to jump into the range of a DO-loop

or other control structure. Only the control structures in the

current environment are affected by a SIGNAL condition, so it

is safe to SIGNAL from within an internal function without

affecting the state of the caller's environment.

AREXX 10-73

Special Variables. The special variable SIGL is set to the

current line number whenever a transfer of control occurs. The

program can inspect SIGL to determine which line was being

executed before the transfer. If an ERROR or SYNTAX

condition causes an interrupt, the special variable RC is set to

the error code that triggered the interrupt. For the ERROR

condition, this code is usually an error severity level. Refer to

page 10-157 for further details on ERROR codes and severity.

The SYNTAX condition will always indicate an AREXX error

code.

For example:

signal on error f enable interrupt */

signal oft syntax I* disable SYNTAX "/

signal start /* goto START V

WHEN

Usage: WHEN expression /THEN [;] [conditional statement}]

The WHEN instruction is similar to the IF instruction, but is

valid only within a SELECT range. Each WHEN expression is

evaluated in turn and must result in a boolean value. If the

result is a 1, the conditional statement is executed and control

passes to the END statement that terminates the SELECT. As

in the case of the IF instruction, the THEN need not be part of

the same clause.

For example:

select;

when i<j then say less'

r-\ when i = j then say 'equal'

otherwise say 'greater'

end

10-74 AREXX

Commands

The REXX language is unusual in that an entire syntactic class

of program statements is reserved for commands, statements

that have meaning not within the language itself but rather to

an external program. When a command clause is found in a

program, it is evaluated as an expression and then sent through

the command interface to an explicit or implicit host

application, an external program that has announced its ability

to receive commands. The host application then processes the

command and returns a result code that indicates whether the

command was performed successfully. In this manner every

host program becomes fully programmable and even a limited

set of predefined operations can be customized by the end user.

This section discusses the AREXX command interface and

examines some of the ways in which commands can be used to

build programs for an external program. Such programs are

often called "macros" or "macro programs" because they

implement a complex ("macro") action from a series of simpler

"micro" commands.

Command Clauses

Syntactically, a command clause is just an expression that

can't be classified as another type of clause. The actual

structure of the command is dictated by the external host to

which it is intended, but in most cases will follow the model of

a name or letter followed by parameter data.

Command names can be given as either a symbol or a string.

However, it is generally safer to use a string for the name, since

it can't be assigned a value or be mistaken for an instruction

keyword.

AREXX 10-75

For example, the following might be commands for a text

editor:

JUMP current+ 10 /* advance to next 7

'insert' newstring /* place new string*/

'TOP' r back to the top "I

Since command clauses are expressions, they are fully

evaluated before being sent to the host. Any part of the final

command string can be computed within the program, so

virtually any sort of command structure can be created.

The interpretation of the received commands depends entirely

on the host application. In the simplest case the command

strings will correspond exactly to commands that could be

entered directly by a user. For instance, positional control

(up/down) commands for a text editor would probably have

identical interpretations. Other commands may be valid only

when issued from a macro program. A command to simulate a

menu operation would probably not be entered by the user.

The Host Address

The destination for a command is determined by the current

host address, which is the name of the public message port

managed by an external program. AREXX maintains two

implicit host addresses, a "current" and a "previous" value, as

part of the program's storage environment. These values can be

changed at any time using the ADDRESS instruction (or its

synonym, SHELL] and the current host address can be

inspected with the ADDRESS() Built-in function. The default

host address string is "REXX", but this can be overridden when

a program is invoked. In particular, most host applications will

supply the name of their public port when they invoke a macro

program, so that the macro can automatically issue commands

back to the host.

10-76 AREXX

One special host address is recognized. The string COMMAND

indicates that the command should be issued directly to the

underlying DOS. All other host addresses are assumed to refer

to a public message port. An attempt to send a command to a

nonexistent message port will generate the syntax error "Host

environment not found".

Single commands can be sent to a specific host without

disturbing the host address settings. This is done using the

ADDRESS instruction, as the following example illustrates:

ADDRESS MYEDIT 'jump top'

This example would send the command "jump top" to an

external host named "MYEDIT".

It is important to note that you cannot send commands to a

host application without knowing the name of its public

message port. Writing macro programs to communicate with

two or more hosts may require some clever programming to

determine whether both hosts are active and what their

respective addresses are.

/* ED-status.rexx. Prints status of Ed. Ed must be running before this

program is started. ED ports are named 'Ed', 'Ed 1', 'Ed_2', and so

on. 7

DEFAULTED = "Ed"

/* Procedure to follow if Ed isn't running, or if only a 2nd (or subsequent)

instance of Ed is running.

*/

do while - show ('p1, DEFAULTED) /* Look for Ed's port */

say "Cannot find port named" DEFAULT_ED

say "Available ports:"

say show('p') '0a'X

say "Enter different name for port, or QUIT to quit"

/' let user choose port if we can't find it */

DEFAULTED = readln(stdout)

AREXX 10-77

ifstrip(upper(DEFAULT_ED)) = 'QUIT1 then exit 10/* let user bail

out*/

end

say "Using Ed port" DEFAULT_ED I* Message if successful 7

/* Now that we've found the port, have AREXX address it. V

address value DEFAULTED

I* Set up some useful stem variables 7

STEM.0 = 15 I* number of ED AREXX variables

r left margin {SL)

r right margin (SR)

I* tap stop setting (ST)

I* max visible line on screen

/* width of scr in chars

/* physical X position on screen starting

from 1

r physical Y position on screen starting

from 1

r Window base (0 unless screen shifted

right)

STEM.9 = 'EXTEND' /* extended margin value (EX)

STEM.10 - 'FORCECASE' I* case sensitivity flag

STEM.1 - 'LEFT

STEM.2 = 'RIGHT'

STEM.3 = 'TABSTOP'

STEM.4 = 'LMAX'

STEM.5 = 'WIDTH'

STEM.6 = 'X'

STEM.7 = T

STEM.8 o 'BASE'

STEM.11 = 'LINE'

STEM.12 = 'FILENAME'

STEM.13 = 'CURRENT1

STEM.14 = 1ASTCMD'

STEM.15 = 'SEARCH'

'rv' '/STEM/1

/* current line number, first line is 1

/* file being edited

/* text of current line

/* last extended command

r last string searched for

t* ask ED to put values into stem variable

'STEM.'

*/

*/

V

V

V

V

7

V

7

7

7

7

7

7

7

7

*/

~

10-78 AREXX

I' Note that STEM.1 is LEFT, and STEM.LEFT now holds a value from Ed.

Here is a way to print out that information.

*/

doi = 1toSTEM.0

ED_VAR = STEM.i

say STEM.i " = " STEM.ED_VAR /* print out Ed variable and value */

end

The Command Interface

AREXX implements its command interface using the message-

passing facilities provided by the Amiga's operating system.

Each host application must provide a public message port, the

name of which is referred to as the host address. AREXX

programs issue commands by placing the command string in a

message packet and sending the packet to the host's message

port. The program suspends operation while the host processes

the commands and resumes when the message packet returns.

The entire process can be regarded as a dialogue between the

host application and a macro (the AREXX program); the host

initiates the dialogue by invoking the macro and the macro

program replies with one or more command strings. The

commands that can be sent are not limited to simple text

strings, but might be address pointers or even bit-mapped

images.

After it finishes processing a command, the host "replies" the

message packet with a return code that indicates the status of

the command. This return code is placed in the AREXX special

variable RC so that it can be examined by the program. A value

of zero is assumed to mean that no errors occurred, while

positive values usually indicate progressively more severe error

conditions. The return code allows the macro program to

AREXX 10-79

determine whether the command succeeded and to take action

if it failed, so it is important for each applications program to

document the meanings of the return codes for its commands.

Using Commands in Macro

Programs

AREXX can be used to write programs for any host application

that includes a suitable command interface. Some applications

programs are designed with an embedded macro language and

may include many predefined macro commands.

The starting point in designing a macro program is to examine

the commands that would be required to perform it manually.

The documentation for the host application program should

then describe the possible return codes for each command.

These codes can be used to determine whether the operation

performed by the command was successful. Check also for

"shortcut" commands that may be available only to macro

programs. Some applications programs may include very

powerful functions that were implemented specifically for use

in macro programs.

An example of an AREXX program called through the ED

editor:

/* transpose.ed: transpose character */

/* Given string '123', if cursor is on 3, this macro converts */

r string into '213'. V

HOST - address() I* find out which ED called us */

address value HOST /* . . . and talk to it */

'rv1 7CURR/' /* Have ED put info in stem CURR */

/* We'll need two pieces of

information: */

10-80 AREXX

currpos = CURR.X /* position of cursor on line */

currlin = CURR.CURRENT I* contents of current line 7

if (currpos >2) then /* Must work on current line */

currpos = currpos - 1

else do /* Report error and exit */

'sm /Cursor must be at position 2 or further to the right/'

exit 10

end

/* Need to reverse the CURRPOSth and CURRPOSth-1 characters and

replace the current line with the new one. V

drop CURR. /* stem variable CURR is no longer needed; save

some memory */

'd1 /* Tell ED to delete current line V

currlin = swapch (currpos, currlin)/* swap the two characters */

'I /'||currlin||7' /* insert modified line */

do i = 1 to currpos /* place cursor back where it

started */

"cr" /* ED's 'cursor right' command */

end

exit r All done*/

/' Function to swap two characters V

swapch: procedure

parse arg epos,din

chl = substr (din, epos, 1) /* get character */

din = delstr (din, epos, 1) f* delete it from string */

din = insert (chl,din,cpos-2,1) /* insert to create transposition */

return din /* return to modified string V

AREXX 10-81

Using AREXX with Command

Shells

Although AREXX was designed to work most effectively with

programs that support its specific command interface, it can be

used with any "command shell" program that uses standard

I/O mechanisms to obtain its input stream. There are several

ways to use AREXX to prepare a stream of commands for such

a program.

You could create an actual command file on the RAM disk and

then pass it directly to the Shell. For example, you could open

a new Shell to run a standard "execute" script using the

following short program:

/* Launch a new Shell */

address command

conwindow = "CON:0/0/640/100/NewOne/close"

/" create a command file on the fly */

call open out,"ram:temp",write

call writeln out/echo "this is a test'"

call close out

/* open the new Shell window */

'newshell' conwindow "ram:temp"

exit

Since no disk accesses are required, this method is fairly fast, if

not very elegant.

10-82 AREXX

Functions

Command Inhibition

Sometimes it is necessary to write and test macro programs

that issue potentially destructive commands. For instance, a

program to find and delete unneeded files would be difficult to

test safely, since it might accidentally delete the wrong files

and would require a continual source of new files for testing.

To simplify the development and testing of such programs,

AREXX provides a special tracing mode called command

inhibition that suppresses host commands. While in command

inhibition mode, command processing procedes normally

except that the command is not actually issued and the

variable RC is set to 0. This allows the program logic to be

verified before any commands are actually sent to the external

program.

See page 10-139 for information enabling the command

inhibition.

The basic concept of a function is a program or group of

statements that will be executed whenever the function name

appears in a certain context. Functions are an important

building block of most computer languages in that they allow

modular programming — the ability to build large programs

from a series of smaller, more easily developed modules. In

AREXX a function may be defined as part of (internal to) a

program, as part of a library or as a separate external program.

AREXX 10-83

The Library List

The resident process maintains a Library List of the function

libraries and function hosts currently available to AREXX

programs. This list is used to resolve all references to external

functions. Each entry has an associated search priority in the

range 100 (highest) to - 100 (lowest), with the higher-valued

entries being searched first until the requested function is

found. The list is searched by calling each entry, using the

appropriate protocol, until the return code indicates that the

function was found.

The two types of entities maintained by the list are quite

different in some respects, but the ultimate way in which a

function call is resolved is transparent to the calling program.

A function library is a collection of functions organized as an

Amiga shared library, while a function host is a separate task

that manages a message port. Function libraries are called as

part of the AREXX interpreter's task context, but calls to

function hosts are mediated by passing a message packet. The

AREXX resident process is itself a function host and is

installed in the Library List at a priority of -60.

The resident process provides addition and deletion operations

for maintaining the Library List. These operations are

performed by sending an appropriate message packet. The

Library List is always maintained in priority order. Within a

given priority level any new entries are added to the end of the

chain, so that entries added first will be searched first. The

priority levels are significant if any of the libraries have

duplicate function name definitions, since the function located

further down the search chain could never be called.

Function Libraries. Each function library entry in the Library

List contains a library name, a search priority, an entry point

offset and a version number. The library name must refer to a

standard Amiga shared library residing in the system LIBS:

10-84 AREXX

directory so that it can be loaded when needed. Function

libraries can be created and maintained by users or applications

developers.

The "query" function is the library entry point that is actually

called by the interpreter. It must be specified as an integer

offset (e.g. "-30"} from the library base. The return code from

the query call then indicates whether the desired function was

found. If it was, the function is called with the parameters

passed by the interpreter and the function result is returned to

the caller. Otherwise, the search continues with the next entry

in the list. In either case, even the library is closed to await the

next call.

NOTE; Not every Amiga shared library can be used as a

function library. Function libraries must have a special entry

point to perform the dynamic linking required to access the

functions from within AREXX. Each library should include

documentation providing its version number and the integer

offset to its "query" entry point.

Syntax and Search Order

Function calls in an expression are defined syntactically as a

symbol or string followed immediately by an open parenthesis.

The symbol or string (taken as a literal) specifies the function

name and the open parenthesis begin the argument list.

Between the opening and eventual closing parentheses are zero

or more argument expressions, separated by commas, that

supply the data being passed to the function.

For example:

CENTER ftitle\20)

ADDRESS()

'AllocMem'(256*4,1)

AREXX 10-85

are all valid function calls. Each argument expression is

evaluated in turn and the resulting strings are passed as the

argument list to the function. There is no limit to the number

of arguments that may be passed to an internal function, but

calls to Built-in or external functions are limited to a

maximum of 15 arguments. Note that each argument

expression, while often just a single literal value, can include

arithmetic or string operations or even other function calls.

Argument expressions are evaluated from left to right.

Functions can also be invoked using the CALL instruction.

The syntax of this form is slightly different and is described on

page 10-53. The CALL instruction can be used to invoke a

function that may not return a value.

Search Order

Function linkages in AREXX are established at the time of the

function call. A specific search order is followed until a

function matching the name symbol or string is found. If the

specified function cannot be located, an error is generated and

the expression evaluation is terminated. The full search order

is:

1. Internal Functions. The program source is examined for

a label that matches the function name. If a match is

found, a new storage environment is created and control

is transferred to the label.

2. Built-in Functions. The Built-in function library is

searched for the specified name. All of these functions

are defined by uppercase names and the library has been

specially organized to make the search as efficient as

possible.

10-86 AREXX

3. Function Libraries and Function Hosts. The available

function libraries and function hosts are maintained in

a prioritized list, which is searched starting at the

highest priority until the requested function is found or

the end of the list is reached. Each function library is

opened and called at a special entry point to determine

whether it contains a function matching the given

name. Function hosts are called using a message-

passing protocol similar to that used for commands and

may be used as gateways for remote procedure calls to

other machines in a network.

4. External AREXX Programs. The final search step is to

check for an external AREXX program file by sending an

invocation message to the AREXX resident process. The

search always begins in the current directory and

follows the same search path as the original AREXX

program invocation. The name matching process is not

case-sensitive.

Note that the function name-matching procedure may be case

sensitive for some of the search steps but not for others. The

matching procedure used in a function library or function host

is left to the discretion of the applications designer. Functions

defined with mixed-case names must be called using a string

token, since symbol names are always translated to uppercase.

The full search order is followed whenever the function name

is defined by a symbol token. However, the search for internal

functions is bypassed if the name is specified by a string token.

This allows internal functions to usurp the names of external

functions, as in the following example:

CENTER: /* internal "CENTER" '/

arg string,length /* get arguments V

length = min(length,60) /* compute length */

return TENTER'fstring, length)

AREXX 10-87

Here the Built-in function CENTER0 has been replaced by an

internal function after modifying the length argument.

Internal Functions. The interpreter creates a new storage

environment when an internal function is called, so that the

previous (caller's) environment is preserved. The new

environment inherits the values from its predecessor, but

subsequent changes to the environment variables do not affect

the previous environment. The specific values preserved are:

• The current and previous host addresses.

• The NUMERIC DIGITS, FUZZ and FORM settings.

• The trace option, inhibit flag and interactive flag.

• The state of the interrupt flags defined by the SIGNAL

instruction.

• The current prompt string as set by the OPTIONS

PROMPT instruction.

The new environment does not automatically get a new

symbol table, so initially all of the variables in the previous

environment are available to the called function. The

PROCEDURE instruction can be used to create a table and

thereby protect the caller's symbol values. PROCEDURE may

be used to allow the same variable name to be used in two

different areas with two different values.

Execution of the internal function proceeds until a RETURN

instruction is executed. At this point the new environment is

dismantled and control resumes at the point of the function

call. The expression supplied with the RETURN instruction is

evaluated and passed back to the caller as the function result.

Built-in Functions. AREXX provides a substantial library of

predefined functions as part of the language system. These

functions are always available and have been optimized to

10-88 AREXX

work with the internal data structures. In general the Built-in

functions execute much faster than an equivalent interpreted

function, so their usage is strongly recommended.

External Function Libraries. External function libraries provide

a mechanism with which users and applications developers

can extend the functionality of AREXX. A function library is a

collection of one or more functions together with a "query"

entry point that serves to match a name string with the

appropriate function. External function libraries are supported

as standard Amiga shared libraries and may be either memory

or disk-resident. Disk resident libraries are loaded and opened

as needed.

The AREXX resident process maintains a list, called the

Library List, of the currently available function libraries and

function hosts. Application programs can add or remove

function libraries as required. The Library List is maintained as

a priority-sorted queue and entries can be added at an

appropriate priority to control the function name resolution.

Libraries with higher priorities are searched first. Within a

given priority level, those libraries added first are searched

first.

During the search process the AREXX interpreter opens each

library and calls its "query" entry point. The query function

must then check to see whether the requested function name

is in the library. If not, it returns a "function not found" error

code and the search continues with the next library in the list.

Function libraries are always closed after being checked so that

the operating system can reclaim the memory space if

required. Once the requested function has been found, it is

called with the arguments passed by the interpreter and must

return an error code and a result string.

Function Hosts. The name associated with a function host is

the name of its public message port. Function calls are passed

to the host as a message packet; it is then up to the individual

AREXX 10-89

host to determine whether the specified function name is one

that it recognizes. The name resolution is completely internal

to the host, so function hosts provide a natural gateway

mechanism for implementing remote procedure calls to other

machines in a network.

The Clip List

The Clip List maintains a set of (name,value) pairs that may be

used for a variety of purposes. Each entry in the list consists of

a name and a value string and may be located by name. Since

the Clip List is publicly accessible, it may be used as a general

clipboard-like mechanism for intertask communication. In

general, the names used should be chosen to be unique to an

application to prevent unintended duplications with other

programs. Any number of entries may be posted to the list.

One potential application for the Clip List is as a mechanism

for loading predefined constants into an AREXX program. The

language definition does not include a facility comparable to

the "header file" preprocessor in the "C" language. However,

consider a string in the Clip List of the form:

pi = 3.14159; e = 2.718; sqrt2 = 1.414 ...

(i.e., a series of assignments separated by semicolons}. In use,

such a string could be retrieved by name using the built-in

function GETCLIP() and then INTERPRETed within the

program. The assignment statements within the string would

then create the required constant definitions. The following

program fragment illustrates the process:

/* assume a string called "numbers" is available •/

numbers = getc!ip('numbers') /* case-sensitive */

interpret numbers /* . . . assignments */

10-90 AREXX

More generally, the strings would not be restricted to contain

only assignment statements, but could include any valid

AREXX statements. The Clip List could thus provide a series

of programs for initializations or other processing tasks.

The resident process supports addition and deletion operations

for maintaining the Clip List. The names in the [name,value)

pairs are assumed to be in mixed case and are maintained to be

unique in the list. An attempt to add a string with an existing

name will simply update the value string. The name and value

strings are copied when an entry is posted to the list, so the

program that adds an entry is not required to maintain the

strings.

Entries posted to the Clip List remain available until explicitly

removed. The Clip List is automatically released when the

resident process exits.

The Built-in Function Library

Reference

Many of the Built-in functions have optional as well as

required arguments. The optional arguments are shown in

brackets and generally have a default value that is used if the

argument is omitted.

Maximum Arguments. While internal functions can be called

with a number of arguments, the Built-in functions (and

external functions as well) are limited to a maximum

of 15 arguments.

Pad and Optional Characters. For functions that accept a "pad"

character argument (characters inserted to fill or create spaces),

only the first character of the argument string is significant. If

AREXX 10-91

a null string is supplied, the default padding character (usually

a blank] will be used. Similarly, where an option keyword is

specified as an argument, only the first character is significant.

Option keywords may be given in uppercase or lowercase.

I/O Support Functions. AREXX provides functions for creating

and manipulating external DOS files. The functions available

at the present time are OPEN(), CLOSED, READCH(),

READLN{), WRITECHO, WRITELN(), EOF(), SEEK() and

EXISTS0. Files are referenced by a "logical name", a case-

sensitive name that is assigned to a file when it is first opened.

There is no theoretical limit to the number of files that may be

open simultaneously, although memory availability will

impose a practical limit. All open files are closed automatically

when the program exits.

Bit-Manipulation Functions. The functions BITCHG(),

BITCLR(), BITCOMPO, BITSET0 and BITTST0 are provided to

implement extended bit-testing on character strings. These

functions differ from similar string-manipulation functions in

that the elementary unit of comparison is the bit rather than

the byte. Bit numbers are defined such that bit 0 is the low-

order bit of the rightmost byte of the string.

Built-in Functions

ABBREVO

Usage: ABBREV [stringl,string2,[length])

Returns a boolean value that indicates whether string2 is an

abbreviation of stringl with length greater than or equal to the

specified length argument. The default length is 0, so the null

string is an acceptable abbreviation.

10-92 AREXX

For example:

say abbrevffuflname', 'ful') — 1

say abbrev('almost\'alm\4) -* 0

say abbrev('any',") -» 1

ABS()

Usage: kBS[number)

Returns the absolute value of the number argument which

must be numeric.

For example:

say abs(- 5.35) -5.35

sayabs(1@) ->10

ADDLIBO

Usage; ADDUR[name,priority,[offset,version])

Adds a function library or a function host to the Library List

maintained by the resident process. The name argument

specifies either the name of a function library or the public

message port associated with a function host. The name is

case-sensitive and any libraries thus declared should reside in

the system LIBS: directory. The priority argument specifies the

search priority and must be an integer between 100 and - 100,

inclusive. The offset and version arguments apply only to

libraries. The offset is the integer offset to the library's "query"

entry point and the version is an integer specifying the

minimum acceptable release level of the library.

The function returns a boolean result that indicates whether

the operation was successful. Note that if a library is specified,

it is not actually opened at this time. Similarly no check is

performed as to whether a specified function host port has been

opened y°t.

AREXX 10-93

For example:

say addlibf'rexxsupport.library",0,-30,0) -»1

calladdiib "EtherNet",-2Q /* a gateway 7

ADDRESSf)

Usage: ADDRESS()

Returns the current host address string. The host address is the

message port to which commands will be sent. The SHOW()

function can be used to check whether the required external

host is actually available. See also SHOW().

For example:

say addressQ - REXX

ARG()

Usage: ARG[[numberj,[^xists' | 'Omitted'/)

ARG() returns the number of arguments supplied to the current

environment. If the number parameter alone is supplied, the

corresponding argument string is returned. If a number and one

of the keywords Exists or Omitted is given, the boolean return

indicates the status of the corresponding argument. Note that

the existence or omission test does not indicate whether the

string has a null value, but only whether a string was supplied.

For example:

/* Assume arguments were: ('one',,10) 7

say arg() - 3

say arg(1) -one

sayarg(2,'O') -1

~

10-94 AREXX

B2C()

Usage: BlQstring)

Converts a string of binary digits (0,1) into the corresponding

(packed) character representation. The conversion is the same

as though the argument string had been specified as a literal

binary string (e.g. '1010'B). Blanks are permitted in the string,

but only at byte boundaries. This function is particularly

useful for creating strings that are to be used as bit masks. See

also X2C().

For example:

sayb2c('0011O011') -3

sayb2c('01100001') -*a

BITANDO

Usage: BlTAND(stringl,string2t[padl)

The argument strings are logically ANDed together, with the

length of the result being the longer of the two operand strings.

If a pad character is supplied, the shorter string is padded on the

right; otherwise, the operation terminates at the end of the

shorter string and the remainder of the longer string is

appended to the result.

For example:

bitand('0313x,TFF0x) -^ 0310x

BITCHGO

Usage: KYTCHG[string,bit)

Changes the state of the specified bit in the argument string.

Bit numbers are defined such that bit 0 is the low-order bit of

the rightmost byte of the string.

For example:

bitchg('0313"x,4) -'0303'x

AREXX 10-95

BITCLRO

Usage: BITCLR(string,bit)

Clears (sets to zero) the specified bit in the argument string. Bit

numbers are defined such that bit 0 is the low-order bit of the

rightmost byte of the string.

For example:

bitclr('0313'x,4) - '0303'x

BITCOMPO

Usage: BlTCOM?[stnnglrstring2jpadJ)

Compares the argument strings bit-by-bit, starting at bit

number 0. The returned value is the bit number of the first bit

in which the strings differ or - 1 if the strings are identical.

For example:

bitcomp(7F'x,'FF'x) -»7

/* seventh bit */

bitcomp('FF'x,'FF'x) -» -1

BITOR0

Usage: BlTOR[stringl,string2,[pad])

The argument strings are logically ORed together, with the

length of the result being the longer of the two operand strings.

If a pad character is supplied, the shorter string is padded on

the right; otherwise, the operation terminates at the end of the

shorter string and the remainder of the longer string is

appended to the result.

For example:

bitor('0313'x,'003F'x) -'033F'x

10-96 AREXX

BITSETO

Usage: BITSET(string,Wt)

Sets the specified bit in the argument string to I. Bit numbers

are defined such that bit 0 is the low-order bit of the rightmost

byte of the string.

For example:

bitset('0313'x,2) -*'0317'x

BITTSTO

Usage: BITTST(sfring,fcitJ

The boolean return indicates the state of the specified bit in

the argument string. Bit numbers are defined such that bit 0 is

the low-order bit of the rightmost byte of the string.

For example:

bittst('0313'x,4) -1

BITXOR0

Usage.B\TXOR[stringl,string2,[padJ)

The argument strings are logically exclusively-ORed together,

with the length of the result being the longer of the two

operand strings. If a pad character is supplied, the shorter

string is padded on the right; otherwise, the operation

terminates at the end of the shorter string and the remainder of

the longer string is appended to the result.

For example:

bitxorC'0313'x, '0C1 F'x) -'030C'x

AREXX 10-97

C2B()

Usage: C2B(srring)

Converts the character string into the equivalent string of

binary digits. See also C2X().

For example:

sayc2b('abc') -011000010110001001100011

C2D()

Usage: C2D[string,[n])

Converts the string argument from its character representation

to the corresponding decimal number, expressed as ASCII

digits (0-9). If 22 is supplied, the character string is considered to

be a number expressed in n bytes. The string is truncated or

padded with nulls on the left as required and the sign bit is

extended for the conversion.

For example:

say

say

say

C2X()

Usage:

c2df0020'x)

c2d(FFFF ffff

c2d('FF0100>;

C2X[string)

Converts the string

x)

(,2)

argument

-32

—• — 1

-256

from its character representation

to the corresponding hexadecimal number, expressed as the

ASCII characters 0-9 and A-F. See also C2B().

For example:

sayc2x('abc') -616263

10-98 AREXX

CENTERO or CENTREO

Usage: CKNTER[string,kngth,[padJ) or

CENTRE[string,Iength,[padj)

Centers the string argument in a string with the specified

length. If the length is longer than that of the string, pad

characters or blanks are added as necessary,

For example:

saycenterfabc ,6)

say center('abcl,61' + ')

saycenter('123456\3)

CLOSEO

Usage: CLOSE(/2/e)

Closes the file specified by

-'abc '

—■ ' + abc+ +'

- '2341

the given logical name. The

returned value is a boolean success flag and will be 1 unless the

specified file was not open.

For example:

say close('input') -»1

COMPRESSO

Usage: COMPRESS(srring,/iis(/)

If the list argument is omitted, the function removes leading,

trailing or embedded blank characters from the string

argument. If the optional list is supplied, it specifies the

characters to be removed from the string.

For example:

say compressf why not') -> whynot

saycompress('+ +12-34- + ','+ -') ^ 1234

AREXX 10-99

COMPARE0

Usage: COMPAKE[stringl,string2,[padJ)

Compares two strings and returns the index of the first

position in which they differ or 0 if the strings are identical.

The shorter string is padded as required using the supplied

character or blanks.

For example:

say compare('abcdeVabcce') -• 4

say compare{'abcde','abcde') -»0

say compare('abc+ +','abc+ -',' + ') — 5

COPIESO

Usage: COPIES(string,num6er)

Creates a new string by concatenating the specified number of

copies of the original. The number argument may be zero, in

which case the null string is returned.

For example:

say copies('abc',3) -» abcabcabc

D2C()

Usage: D2C{number)

Creates a string whose value is the binary (packed)

representation of the given decimal number.

For example:

d2c(65) -'41'xT the letter'A'7

10-100 AREXX

D2X0

Usage: D2X{number,[digits}]

Converts a decimal number to hexadecimal.

For example:

d2x(31) -1F

DATEO

Usage: DATmoption],[date],[format])

Returns the current date in the specified format. The default

('Normal') option returns the date in the form DD MMM

YYYY, as in 20 Apr 1988. The options recognized are:

Basedate — the number of days since January 1, 0001

Century — the number of days since January 1 of the

century

Days — the number of days since January 1 of the

current year

European — the date in the form DD/MM/YY

Internal — internal system days

Julian — the date in the form YYDDD

Month — the current month (in mixed case)

Normal — the date in the form DD MMM YYYY

Ordered — the date in the form YY/MM/DD

Sorted — the date in the form YYYYMMDD

USA — the date in the form MM/DD/YY

Weekday — the day of the week (in mixed case)

These options can be shortened to just the first character.

In addition to its primary option, the DATE() function also

accepts optional second and third arguments to supply the date

either in the form of internal system days or in the 'sorted'

form YYYYMMDD. The second argument is an integer

specifying either system days (the default) or a sorted date. The

AREXX 10-101

third argument specifies the form of the date and can be either

T or'S'. The current date in system days can be retrieved using

DATE('Internal').

For example:

say date() ^20 Apr 1988

say date('M') —* April

saydate(s) -19880420

saydateCs\date(T) + 21) -19880511

say date('w', 19890609,'S') - Friday

DATATYPEO

Usage: DATATYPE^ rring,[option])

If the option parameter is not specified, DATATYPE!)tests

whether the string parameter is a valid number and returns

either NUM or CHAR. If an option keyword is given, the

boolean return indicates whether the string satisfied the

requested test.

The following option keywords are recognized:

Keyword

Alphanumeric

Binary

Lowercase

Mixed

Numeric

Symbol

Upper

Whole

X

-DATATYPFO Options

Characters Accepted

Alphabetics (A-Z,a-z)

or Numeric (0-9)

Binary Digits String

Lowercase Alphabetics (a-z)

Mixed Upper/Lowercase

Valid Numbers

Valid REXX Symbols

Uppercase Alphabetics (A-Z)

Integer Numbers

Hex Digits String

10-102 AREXX

For example:

say datatype('123')

say datatype('1a f2','x') -» 1

say datatype('aBcdeVL') - 0

DELSTRO

Usage: DELSTR[string,n,{lengthJ)

Deletes the substring of the String argument beginning with

the nth character for the specified length in characters. The

default length is the remaining length of the string.

For example:

say delstr('123456',2,3) -156

DELWORDO

Usage: DELWORD[string,n,[Iength])

Deletes the substring of the string argument beginning with

the nth word for the specified length in words. The default

length is the remaining length of the string. The deleted string

includes any trailing blanks following the last word.

For example:

say delword('Tell me a story',2,2) — 'Tell story'

say delword('one two three',3) — 'one two '

DIG1TS0

Usage: DIGITS()

Returns the current numeric digits setting.

For example:

numeric digits 6

say digitsC) —6

AREXX 10-103

r> eofo

Usage: EO¥[file)

Checks the specified logical file name and returns the boolean

value 1 (True), if the cnd-of-file has been reached and 0 (False)

otherwise.

For example:

say eof(infile) -»1

ERRORTEXTO

Usage: ERRORTEXT(n)

Returns the error message associated with the specified

AREXX error code. The null string is returned if the number is

not a valid error code.

For example:

say errortext(41) -»Invalid expression

EXISTSO

Usage: EXISTS (/i/ename)

Tests whether an external file of the given filename exists. The

name string may include device and directory specifications.

For example:

say exists('sys:c/ed') -»1

_ EXPORTO

Usage: EX?OKT[address,[string],[length],[pad])

Copies data from the optional string into a previously-allocated

memory area, which must be specified as a 4-byte address. The

length parameter specifies the maximum number of characters

to be copied. The default is the length of the string. If the

10-104 AREXX

specified length is longer than the string, the remaining area is

filled with the pad character or nulls j'OO'x). The returned

value is the number of characters copied.

Use caution with this function! Any area of memory can be

overwritten, possibly causing a system crash. Task switching is

forbidden while the copy is being done, so system performance

may be degraded if long strings are copied. See also IMPORT()

and STORAGE().

For example:

count = export('0004 0000'x, The answer')

FORMO

Usage: FORM()

Returns the current numeric form setting.

For example:

numeric form SCIENTIFIC

sayform() -SCIENTIFIC

FINDO

Usage: FIND(string,phrase)

The FIND() function locates a phrase of words in a larger string

of words and returns the word number of the matched position.

For example:

say find('Now is the time1,'is the') -* 2

FREESPACEO

Usage: ?REE$?ACE[address,length)

Returns a block of memory of a given length to the

interpreter's internal pool. The address argument must be a 4

byte string obtained by a prior call to GETSPACEQ, the internal

AREXX 10-105

O allocator. It is not always necessary to release internally

allocated memory, since it will be released to the system when

the program terminates. However, if a very large block has

been allocated, returning it to the pool may avoid memory

space problems. The return value is a boolean success flag. See

also GETSPACEl).

For example:

say freespace('00042000%32) -1

NOTE: Calling FREESPACE() with no arguments will return

the amount of memory available in the interpreter's internal

pool.

FUZZO

Usage: FUZZ()

Returns the current numeric fuzz setting.

For example:

numeric fuzz 3

say fuzz() - 3

GETCLIPO

Usage; GETCU?[name)

Searches the Clip List for an entry matching the supplied name

parameter and returns the associated value string. The name

matching is case-sensitive and the null string is returned if the

name cannot be found. See also SETCLIP().

For example:

/* Assume 'numbers' contains 'PI = 3.14159' 7

say getclip('numbers') -* PI = 3.14159

10-106 AREXX

GETSPACEO

Usage: GETSPACE(iengtii)

Allocates a block of memory of the specified length from the

interpreter's internal pool. The returned value is the 4-byte

address of the allocated block, which is not cleared or

otherwise initialized. Internal memory is automatically

returned to the system when the AREXX program terminates,

so this function should not be used to allocate memory for

use by external programs. The Support Library includes the

function ALLOCMEMQ, which allocates memory from the

system free list. See also FREESPACE().

For example:

say c2x(getspace(32)) -> '0003BF40'x

HASHO

Usage: HASH(string)

Returns the hash attribute of a string as a decimal number and

updates the internal hash value of the string.

For example:

sayhash('V) ^49

IMPORTO

Usage: \M?OKT[address,[length])

Creates a string by copying data from the specified 4-byte

address. If the length parameter is not supplied, the copy

terminates when a null byte is found. See also EXPORT().

For example:

extval = import('0004 0000'x,8)

AREXX 10-107

INDEXO

Usage: lNDEX[string,pattern,[start])

Searches for the first occurrence of the pattern argument in the

string argument, beginning at the specified start position. The

default start position is 1. The returned value is the index of

the matched pattern or 0 if the pattern was not found.

For example:

sayindex("123456","23") -2

sayindex<"123456","77") -0

sayindex("123123","23",3) -5

INSERTO

Usage: lNSERT[new,old,[start],[Iength],[pad])

Inserts the new string into the old string after the specified

start position. The default starting position is 0. The new

string is truncated or padded to the specified length as required,

using the supplied pad character or blanks. If the start position

is beyond the end of the old string, the old string is padded on

the right.

For example:

say insertfab1,'12345') - ab12345

sayinsert('1237++\3,5,1-1) -* + +-123--

LASTPOSO

Usage: LATYO[pattern,string,[start])

Searches backwards for the first occurrence of the pattern

argument in the string argument, beginning at the specified

start position. The default starting position is the end of the

string. The returned value is the index of the matched pattern

or 0 if the pattern was not found.

10-108 AREXX

For example:

say lastpos('2','1234l) - 2

say lastpos('2\ '1234234') - 5

say lastpos{'2'.'123234't3) -2

say lastpos('2', '13579') -0

LEFTO

Usage: U,FT{string,length,(pad])

Returns the leftmost substring in the given string argument

with the specified length. If the substring is shorter than the

requested length, it is padded on the right with the supplied

pad character or blanks.

For example:

sayleft('123456\3) -123

say left('123456\8,' + ') - 123456+ +

LENGTHO

Usage: LENGTH(sfring)

Returns the length of the string.

For example:

say length('three') —5

LINESO

Usage: UNES{file}

Returns the number of lines queued or typed ahead at the

logical file, which must refer to an interactive stream. The line

count is obtained as the secondary result of a WaitForChar()

call.

For example:

push 'a line'

push 'another one'

say lines(stdin) -»2

AREXX 10-109

MAXO

Usage: M.XX{number,number[,number,... J]

Returns the maximum of the supplied arguments, all of which

must be numeric. At least two parameters must be supplied.

For example:

say max(2.1.3,-1) -3

MIN()

Usage: NllN[number,number,[,number,... J\

Returns the minimum of the supplied arguments, all of which

must be numeric. At least two parameters must be supplied.

For example:

say min(2.1,3,-1) -» -1

OPEN()

Usage: O?EN{file,filenaine,['Append' | 'Read' | 'Write'/)

Opens an external file for the specified operation. The file

argument defines the logical name by which the file will be

referenced. The filename is the external name of the file and

may include device and directory specifications. The function

returns a boolean value that indicates whether the operation

was successful. There is no limit to the number of files that can

be open simultaneously and all open files are closed

automatically when the program exits. See also CLOSE(),

READ(), and WRITE().

For example:

say open('MyCon','CON:160/50/320/100/MyCon/cds'} -> 1

say open('outfile7ram:temp\'W) -• 1

~

10-110 AREXX

OVERLAYO

Usage: OVERLAY[new,old,[start],[length],[padJ)

Overlays the new string onto the old string beginning at the

specified start position, which must be positive. The default

starting position is 1. The new string is truncated or padded to

the specified length as required, using the supplied pad

character or blanks. If the start position is beyond the end of

the old string, the old string is padded on the right.

For example:

say overlay(

say overlay(

'bb

'4',

Vabcd'

'123,5

I

.5,'-')

^bbcd

-»123-4—

POS()

Usage: VQ${pattern,string,[start])

Searches for the first occurrence of the pattern argument in the

string argument, beginning at the position specified by the

start argument. The default starting position is 1. The returned

value is the index of the matched string or 0 if the pattern

wasn't found.

For example

say posf

say pos('

say posf

23'

771

23*

,'123234')

,'123234')

,'123234\3)

-2

-0

-4

PRAGMAO

Usage: PRAGMA{option,/va/ue/)

This function allows a program to change various attributes

relating to the system environment within which the program

executes. The option argument is a keyword that specifies an

AREXX 10-111

environmental attribute. The currently implemented options

are listed below. The value argument supplies the new

attribute value to be installed. The value returned by the

function depends on the attribute selected. Some attributes

return the previous value installed, while others may simply

set a boolean success flag. The currently defined option

keywords are listed below.

• Directory. Specifies a new "current" directory. The

current directory is used as the "root" for filenames that

do not explicitly include a device specification. The

return is the old directory name. PRAGMA('D') is

equivalent to PRAGMA(T)'/'); it returns the pathname

of the current directory without changing the directory.

• Priority. Specifies a new task priority. The priority value

must be an integer in the range - 128 to 127, but the

practical range is much more limited. AREXX programs

should never be run at a priority higher than that of the

resident process, which currently runs at priority 4. The

returned value is the previous priority level.

• Id. Returns the task ID (the address of the task block) as

an 8-byte hex string. The task ID is a unique identifier of

the particular AREXX invocation and may be used to

create a unique name for it.

• Stack. An option issued with the PRAGMA function

that specifies a new stack value for your current AREXX

program. (Stack, also an AmigaDOS command, is

defined on page 8-122 in Chapter 8, "AmigaDOS

Reference.") Note that when a new Stack value is

declared (8092) the previous Stack value is returned

(4000).

PRAGMA('W',{'Null' | 'WorkBench'}) controls the task's

WindowPtr field. Setting it to 'Null' will suppress any

requestors that might otherwise be generated by a DOS call.

10-112 AREXX

PRAGMA('",[name]) defines the specified logical name as the

current ["*") console handler, thereby allowing the user to open

two streams on one window. If the name is omitted, the

console handler is set to that of the client's process.

Examples:

say pragma('D\'df0:c') -► Extras:

say pragma('D','df1:c') -»WorkBench:c

say pragma('priority',-5) -* 0

say pragma('ld') -^ 00221ABC

call pragma "\STDOUT

say pragma ('Stack1, 8092) -* 4000

RANDOM0

Usage: TLANDOHA[[min],[max],[seed])

Returns a pseudo-random integer in the interval specified by

the min and max arguments. The default minimum value is 0

and the default maximum value is 999. The interval max-min

must be less than or equal to 1000. If a greater range of random

integers is required, the values from the RANDU() function can

be suitably scaled and translated.

The seed argument can be supplied to initialize the internal

state of the random number generator. See also RANDU().

For example:

thisroll = random(1,6) /* might be 1 */

nextroll = random{1,6) I* snake eyes? "/

RANDUO

Usage: RANDV[[seedJ)

Returns a uniformly-distributed, pseudo-random number

between 0 and 1. The number of digits of precision in the result

is always equal to the current Numeric Digits setting. With the

choice of suitable scaling and translation values, RANDU() can

be used to generate pseudorandom numbers on an arbitrary

interval.

AREXX 10-113

The optional integer seed argument is used to initialize the

internal state of the random number generator. See also

RAND0M[).

For example:

firsttry = randu() I* 0.371902021? 7

numeric digits 3

tryagain = randu() I* 0.873? */

READCHO

Usage: READCH{file,length)

Reads the specified number of characters from the given logical

file into a string. The length of the returned string is the actual

number of characters read and may be less than the requested

length if, for example, the end-of-file was reached. See also

READLN0.

For example:

instring = readch('input',10)

READLNO

Usage: READLN(#e)

Reads characters from the given logical file into a string until a

"newline" character is found. The returned string does not

include the "newline". See also READCHl).

For example:

instring = readln('MyFile')

_ REMLIBO

Usage: REMUB[name)

Removes an entry with the given name from the Library List

maintained by the resident process. The boolean return is 1 if

the entry was found and successfully removed. Note that this

10-114 AREXX

function does not make a distinction between function

libraries and function hosts, but simply removes a named

entry. See also ADDLIB().

For example:

say remlibCMyLibrary.library") -> 1

REVERSEO

Usage: REVERSE(sfnng)

Reverses the sequence of characters in the string.

For example:

say reverse('?ton yhw') - why not?

RIGHTO

Usage: R\GHT{string,!ength,lpad])

Returns the rightmost substring in the given string argument

with the specified length. If the substring is shorter than the

requested length, it is padded on the left with the supplied pad

character or blanks.

For example:

sayright('123456\4)

say right('123456',8,' +')

SEEK()

Usage: SEEK(/i/e,o/jfset,/'Begin'

-3456

- ++123456

'Current' 'End'/)

Moves to a new position in the given logical file, specified as an

offset from an anchor position. The default anchor is Current.

The returned value is the new position relative to the start of

the file.

For example:

say seek('input'.10,'B') -»10

say seekCinput'.O.'E') - 356 /* file length "/

AREXX 10-115

SETCLIPO

Usage: $£TCLl?{name,[vaIuej)

Adds a name-value pair to the Clip List maintained by the

resident proecss. If an entry of the same name already exists, its

value is updated to the supplied value string. Entries may be

removed by specifying a null value. The function returns a

boolean value that indicates whether the operation was

successful.

For example:

say setclipfpath'.'dfflis') — 1

say setclip('path') — 1

SHOWO

Usage: SHO'W[option,[naineJ,[padJ)

Returns the names in the resource list specified by the option

argument, or tests to see whether an entry with the specified

name is available. The currently implemented options

keywords are Clip, Files, Libraries and Ports, which are

described below.

• Clip. Examines the names in the Clip List.

• Files. Examines the names of the currently open logical

file names.

• Libraries. Examines the names in the Library List, which

are cither function libraries or function hosts.

• Ports. Examines the names in the system Ports List.

If the name argument is omitted, the function returns a string

with the resource names separated by a blank space or the pad

character, if one was supplied. If the name argument is given,

the returned boolean value indicates whether the name was

found in the resource list. The name entries are case-sensitive.

10-116 AREXX

SIGNO

Usage: SlGN[number) w

Returns 1 if the number argument is positive or zero and -1 if

number is negative. The argument must be numeric.

For example:

say sign(12) -> 1

say sign(-33) - -1

SOURCELINEO

Usage: SOURCELINEp/ie])

Returns the text for the specified line of the currently

executing AREXX program. If the line argument is omitted, the

function returns the total number of lines in the file. This

function is often used to embed "help" information in a

program.

For example:

r A simple test program */

say sourceline() -* 3

say sourceline(1) -♦ /* A simple test program 7

SPACEO

Usage: S?ACK[string,n,[padJ)

Reformats the string argument so that there are n spaces (blank

characters) between each pair of words. If the pad character is

specified, it is used instead of blanks as the separator character.

Specifying n as 0 will remove all blanks from the string.

For example:

say space('Now is the time',3) -»'Now is the time'

say space('Now is the time',0) -»'Nowisthetime'

sayspace('1 23', 1," + ') -* '1+2 + 3'

AREXX 10-117

STORAGEO

Usage: STORAGE{[address], [string],[length],[pad])

Calling STORAGEQ with no arguments returns the available

system memory. If the address argument is given, it must be a

4-byte string and the function copies data from the (optional)

string to the indicated memory address. The length parameter

specifies the maximum number of bytes to be copied and

defaults to the length of the string. If the specified length is

longer than the string, the remaining area is filled with the pad

character or nulls ('00'x).

The returned value is the previous contents of the memory

area. This can be used in a subsequent call to restore the

original contents.

Use caution with this function. Any area of memory can be

overwritten, possibly causing a system crash. Task switching is

forbidden while the copy is being done; so system performance

may be degraded if long strings are copied. See also EXPORT().

For example:

say storage() -» 248400

oldval = storage('0004 0000'x,'The answer')

call storage '0004 0000%,32,' + '

STRIPO

Usage: STRW(string,[{'W | T | 'T%[pad])

If neither of the optional parameters is supplied, the function

removes both leading and trailing blanks from the string

argument. The second argument specifies whether Leading,

Trailing or Both (leading and trailing) characters are to be

removed. The optional pad (or unpad, perhaps) argument

selects the character to be removed.

10-118 AREXX

For example:

say stripC say what? ') -> 'say what?1

say stripC say what? \'1_') -* 'say what? '

say stripC ++123++ +7B7 + 1) — '123'

SUBSTRO

Usage.S\JB$m{string,start,[length],[padJ)

Returns the substring of the suing argument beginning at the

specified start position for the specified length. The starting

position must be positive and the default length is the

remaining length of the string. If the substring is shorter than

the requested length, it is padded on the right with the blanks

or the specified pad character.

For example:

say substr(l123456,4,2) -^45

.e,^') -*■ name= =

SUBWORDO

Usage: SUBWORDls tring,n,/iengt/i/)

Returns the substring of the string argument beginning with

the nth word for the specified length in words. The default

length is the remaining length of the string. The returned

string will never have leading or trailing blanks.

For example:

say subwordfNow is the time ',2,2) -* is the

SYMBOLO

Usage: SYMBOLlnaroe)

Tests whether the name argument is a valid AREXX symbol. If

the name is not a valid symbol, the function returns the string

BAD. Otherwise, the returned string is LIT if the symbol is

uninitialized and VAR if it has been assigned a value.

AREXX 10-119

~
For example:

say symbol('J')

say symbol('x')

saysymbol('+

VAR

LIT

BAD

TIMEO

Usage: TIME(option)

Returns the cunent system time or controls the internal

elapsed time counter. The valid option keywords are listed

below.

Option Keyword

Civil

Elapsed

Hours

Minutes

Normal

Reset

Seconds

= TTMF.() Options ==^^=

Description

Current time in 12 hour format

(a.m./p.m.) hours/minutes

Elapsed time in seconds

Current time in hours since

midnight

Current time in minutes since

midnight

Current time in 24 hour format

hours/minutes/seconds

Reset the elapsed time clock

Current time in seconds since

midnight

If no option is specified, the function returns the current

system time in the form HH:MM:SS.

10-120 AREXX

For example:

/* Suppose that the time is 1:02 AM .

say time('C')

say time('Hours')

say time('m')

say time('n')

say time('S')

call time 'R'

say time('E')

say time

-» 5:46 PM

-»1

-62

^ 17:46:54

^ 3720

/* reset timer

^ .020

-* 01:02:00

TRACEO

Usage: TRACEloption)

Sets the tracing mode to that specified by the option keyword,

which must be one of the valid alphabetic or prefix options.

The TRACE() function will alter the tracing mode even during

interactive tracing, when TRACE instructions in the source

program are ignored. The returned value is the mode in effect

before the function call. This allows the previous trace mode to

be restored later.

For example:

r Assume tracing mode is ?ALL '/

say trace('Results') —* ?A

TRANSLATE*)

Usage.TRA.NSLATE(string,[output],[input],[pad])

This function constructs a translation table and uses it to

replace selected characters in the argument string. If only the

string argument is given, it is translated to uppercase. If an

input table is supplied, it modifies the translation table so that

characters in the argument string that occur in the input table

are replaced with the corresponding character in the output

table. Characters beyond the end of the output table are

replaced with the specified pad character or a blank.

AREXX 10-121

Note that the result string is always of the same length as the

original string. The input and output tables may be of any

length.

For example:

saytranslate("abcde","123","cbade"," + ") -»321 + +

say translatef'low") -* LOW

saytranslate("0110it,"10","01") -»1001

TRIMO

Usage: TRIM(srring)

Removes trailing blanks from the string argument.

For example:

say iength(trim(' abc')) -»4

TRUNCO

Usage: TR\JNC[numberr\places])

Returns the integer part of the number argument followed by

the specified number of decimal places. The default number of

decimal places is 0 and the number is padded with zeroes as

necessary.

For example:

say trunc(123.456) -^ 123

say trunc(123.456,4) -* 123.4560

UPPERO

Usage: UPPER(srring)

Translates the string to uppercase, The action of this function

is equivalent to that of TRANSLATE(striflg), but it is sightly

faster for short strings.

For example:

say upperf'One Fine Day') -» ONE FINE DAY

10-122 AREXX

VALUEO

Usage: VALUE(/iame)

Returns the value of the symbol represented by the name

argument.

For example:

/* Assume that J has the value 12 7

say value('j') -h> 12

VERIFYO

Usage: VERm[string,list,riAatch'])

If the Match argument is omitted, the function returns the

index of the first character in the string argument which is not

contained in the list argument or 0 if all of the characters are in

the list. If the Match keyword is supplied, the function returns

the index of the first character which is in the list or 0 if none

of the characters are.

For example:

say verify('123456', '0123456789') -> 0

say verify{'123a56701234567891) -* 4

say verify('123a45','abcdefghij','m1) -»4

WORDO

Usage: WORD(srring,n)

Returns the nth word in the string argument or the null string

if there are fewer than n words.

For example:

say word('Now is the time ',2) -»is

AREXX 10-123

WORDINDEX0

Usage: WORDINDEX[string,n)

Returns the starting position of the nth word in the argument

string or 0 if there are fewer than n words.

For example:

say wordindexfNow is the time ',3) -* 8

WORDLENGTHO

Usage: WORDLENGTH(string,n}

Returns the length of the nth word in the string argument.

For example:

_ say wordlength('one two three',3)-> 5

WORDSO

Usage: WORDS(string)

Returns the number of words in the string argument.

For example:

say words("You don't say!") -* 3

WRITECHO

Usage: WRITECH^/t',string)

Writes the string argument to the given logical file. The

returned value is the actual number of characters written.

For example:

say writech("output*. Testing*) -* 7

10-124 AREXX

WRITELNO

Usage: WRITELN^ie,string)

Writes the string argument to the given logical file with a

"newline" appended. The returned value is the actual number

of characters written.

For example:

say writelnfoutput1,'Testing') -» 8

X2C()

Usage: X2C[string)

Converts a string of hex digits into the (packed) character

representation. Blank characters are permitted in the argument

string at byte boundaries.

For example:

say x2c('12ab') -> 'I2ab'x

say x2c('12 ab1) ^'12ab'x

sayx2c(61) -► a

X2D()

Usage: X2D[hex,digits)

Converts a hexadecimal number to decimal.

For example:

sayx2d('1f) -*31

XRANGEO

Usage: XRANGE{[start],[end])

Generates a string consisting of all characters numerically

between the specified start and end values. The default start

character is Wx, and the default end character is 'FF'x. Only

the first character of the start and end arguments is significant.

AREXX 10-125

For example:

sayxrange() -»'00010203 . . . FDFEFF'x

say xrange{'a','f) -♦ 'abcdef

say xrange(,'0A'x) -> '000102030405060708090A'x

Built-in Functions — Examples

The following example programs illustrate many of the Built-

in functions that manipulate character strings.

/* File name: changestrings.rexx 7

I* This AREXX program shows the effect of built-in functions

that change strings. The functions come in two groups, one that is

concerned with manipulating individual characters and one that is

more concerned with manipulating whole strings. V

teststringi = " every good boy does fine "
~

~

I* The first group is composed of the functions strip(), compress(),

space(), trim(), translated delstr(), delword(), insert(), overlay(),

and reverse(). */

r Strip() removes only leading and trailing characters. 7

/* Print the original string, for comparison. We put a period at

the end of the string, so you can see what happens

to the spaces at the end of the string. */

say " every good boy does fine "

/* The same string with its leading and trailing spaces stripped off V

say strip(" every good boy does fine ")"."

r A failed attempt to remove the leading and trailing "e" 's */

say strip(" every good boy does fine", ,"e")"."

/* The "e" 's were protected by the leading and trailing spaces.

Removing them exposes the "e'"s to the effects of strip() */

say strip("every good boy does fine", ,"e")"."

10-126 AREXX

r Remove "e" 's and spaces from the original string V

say strip(" every good boy does fine ",," e")"."

I* We switch to using the variable "teststringi", defined above.

Remove only the trailing spaces in the test string. */

say strip(teststringi, T)"."

/* Remove the trailing spaces and the "e" 7

say strip(teststringi,T," e")"."

/" Compress() removes characters anywhere in the string, */

/* This removes all blanks from the test string, "teststringi". 7

say compress(teststringi)

Call time('r')

saytime('Civil') /• Civilian time

HH:MM{AM I PM} 7

say time('h') /* hours since midnight */

say timefm1) /* minutes since midnight V

say time('s') /" minutes since midnight */

say time('e') /* elapsed time since reset 7

/" Function: TRACE Usage: TRACE([option]) 7

say trace()

say trace(trace()) f* leave it unchanged */

/* Function: TRANSLATE

Usage: TRANSLATE(string,[output],[input],[pad]) 7

say translate('aBCdef) I* translate to UPPERcase */

say translate('abcdef,'1234')

say translate('654321', 'abedef 7123456')

say translate('abcdef ,'123', 'abedef,' +')

i' Function: TRIM Usage: TRIM (string) 7

say trim(' abc')

/* Function: TRUNC Usage: TRUNC(number,[places]) 7

say trunc(123.456)

say'$'trunc(134566.123,2)

I* Function: UPPER Usage: UPPER(string)"/

say upper('aBCdef12')

AREXX 10-127

/* Function: VALUE Usage: VALUE(name) V

abc = 'my name'

say value('abc')

/* Function: VERIFY Usage: VERIFY(string,list,['M']) */

say verify('123a4570123456789")

say verify('abc3deV0124567897M')

r Function: WORD Usage: WORD(string.n) '/

say word('Now is the time',3)

I* Function: WOROINDEX Usage: WORDINDEX(string,n) */

say wordindex('Now is the time \3)

/* Function: WORDLENGTH Usage: WORDLENGTH(string,n) */

say wordlength('Now is the time ',4)

r Function: WORDS Usage: WORDS(string) "I

say wordsf'Now is the time")

/• Function: WRITECH Usage: WRITECH(logical.string) */

if open('tesf.'ram:testSS','W') then do

say writech('test','message') /* write the string */

call close 'test'

end

r Function: WRITELN Usage: WRITELNflogical,string) V

if open('test'.'ram:test$$','W') then do

say writeln('test','message')

/' write the string (w/newline) 7

call close 'test'

end

r Function: X2C Usage: X2C(hexstring) *i

say x2c('616263') /* convert to character (pack) */

/* Function: XRANGE Usage:

XRANGE([start],[endl) "I

say c2x(xrange('f0'x))

say xrange('a'('g')

exit

10-128 AREXX

Here is the output:

every good boy does fine .

every good boy does fine.

every good boy does fine .

very good boy does fin.

very good boy does fin.

every good boy does fine.

every good boy does fin.

everygoodboydoesfine

1:23PM

13

803

48199

0.80

N

N ^

ABCDEF

abcdef

fedcba

123 + + +

abc

123

$134566.12

ABCDEF12

my name

4

0

the

8

i
7

8

abc

F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF

abcdefg

AREXX 10-129

REXXSupport.Library Functions

i

The functions listed in this section are part of the

REXXSupport.library. They may only be used if this library has

been opened. Below is an example that shows you how to open

this library.

/* Add rexxsupport.library if it isn't already open. */

if -show ('!_', "rexxsupport.library") then do

/* If the library isn't open, try to open it. */

if addlib ('rexxsupport.library', 0, -30,0) then

say "Added rexxsupport.library."

else do

say "Rexxsupport.library not available, exiting . . ."

exit 10/' exit if addlib failed 7

end

ALLOCMEM0

Usage.ALLOCMKM(length,[attribute])

Allocates a block of memory of the specified length from the

system free-memory pool and returns its address as a 4-byte

string. The optional attribute parameter must be a standard

EXEC memory allocation flag, supplied as a 4-byte string. The

default attribute is for "PUBLIC" memory (not cleared}. See the

Rom Kernal Manuals for information on memory types and

attribute parameters.

This function should be used whenever memory is allocated

for use by external programs. It is the user's responsibility to

release the memory space when it is no longer needed.

See also FREEMEM().

For example:

say c2x(allocmem(1000)) -► 00050000

say c2x(allocmem (1000/00 01 00 01'X))

-* 00228400

r 1000 bytes of CLEAR Public memory V

10-130 AREXX

CLOSEPORTO

Usage: CLOSEPORTfnamej

Closes the message port specified by the name argument,

which must have been allocated by a call to OPENPORT()

within the current AREXX program. Any messages received

but not yet REPLYed are automatically returned with the

return code set to 10. See also OPENPORT().

For example:

call closeport myport

FREEMEMO

Usage: TREEMElA(address,length)

Releases a block of memory of the given length to the system

freelist. The address parameter is a four-byte string, typically

obtained by a prior call to ALLOCMEM(). FREEMEM0 cannot

be used to release memory allocated using GETSPACEQ, the

AREXX internal memory allocator. The returned value is a

boolean success flag. See also ALLOCMEMQ.

For example:

MemoryRequest - 1024

MyMem = AllocMem(MemoryRequest)

say c2x(MyMem)

say FreeMem(MyMem, MemoryRequest}

/' Or: say FreeMern('07C987B0'x, 1024) V

07C987B0

1

Before your program terminates, you MUST use a matching

FREEMEM() to release the exact amount of memory you

allocated with each ALLOCMEMj). Otherwise you may

crash the system or leave memory unavailable until you

reboot.

AREXX 10-131

~ GETARGO

Usage: GETARG(packet,[n])

Extracts a command, function name, or argument string from a

message packet. The packet argument must be a 4-byte address

obtained from a prior call to GETPKT(). The optional n

argument specifies the slot containing the string to be

extracted and must be less than or equal to the actual

argument count for the packet. Commands and function

names are always in slot 0; function packets may have

argument strings in slots 1-15.

For example:

command = getarg(packet)

— function = getarg(packet,0) /* name string */

arg1 = getarg(packet,1) /* 1st argument 7

GETPKTO

Usage: GKTVKT(name)

Checks the message port specified by the name argument to

see whether any messages are available. The named message

port must have been opened by a prior call to OPENPORT()

within the current AREXX program. The returned value is the

4-byte address of the first message packet or '0000 0000'x if no

packets were available.

The function returns immediately whether or not a packet is

enqueued at the message port. Programs should never be

designed to "busy-loop" on a message port. If there is no useful

work to btdone until the next message packet arrives, the

program should call WAITPKT() and allow other tasks to

proceed. See also WAITPKT().

For example:

packet = getpkt('MyPort')

10-132 AREXX

OPENPORTO

Usage: OPENPORTfnamej w

Creates a public message port with the given name. The

returned boolean value indicates whether the port was

successfully opened. An initialization failure will occur if

another port of the same name already exists or if a signal bit

couldn't be allocated.

The message port is allocated as a Port Resource node and is

linked into the program's global data structure. Ports are

automatically closed when the program exits and any pending

messages are returned to the sender. See also CLOSEPORTQ.

For example:

success = openportf'MyPort")

REPLYO w
Usage: REPLY(pac/tef,rcj

Returns a message packet to the sender, with the primary

result field set to the value given by the re argument. The

secondary result is cleared. The packet argument must be

supplied as a 4-byte address and the re argument must be a

whole number.

For example:

call reply packet,"!0 I* error return 7

SHOWDIRO
Usage: SHOWDTRfdirectory,['ALL' \ 'File' | 'Dir']r[padJ)

Returns the contents of the specified directory as a string of

names separated by blanks. The second parameter is an option

keyword that selects whether all entries, only files, or only

subdirectories, will be included.

For example:

say showdir('sys:rexxc', T,';')

^WaitForPort;TS;TE;TCO;RXSET;RXLIB;RXC;RX;HI

AREXX 10-133

SHOWLISTO

Usage:

SHOWLIST({'A

'V

^

~

'D' T U 'M' 'P' 'R' 'S'

'W),[name],lpadJ\

The first argument selects from the following list: Assigned

directories, Device drivers, Handlers, Interrupts, Libraries,

Memory list items, Ports, Resources, Semaphores, ready Tasks,

Volume names, and Waiting tasks. If only one argument is

supplied, Showlist returns a string separated by blanks. If a pad

character is supplied, names will be separated by the pad rather

than by blanks. If the name parameter is supplied, Showlist

returns a boolean value which indicates if the specified list

contains that name. Note that names are case-sensitive.

To provide an accurate snapshot of the current list, task

switching is forbidden when the list is scanned.

For example:

say showlist('P') -* REXX MyCon

say showlist('P',,';') -» REXX;MyCon

say showlist('P\'REXX') -> 1

STATEFO

Usage: STATEFf#ename)

Returns a string containing information about an external file.

The string is formatted as:

"{DIR | FILE} length blocks protection days minutes ticks comment."

The length token gives the file length in bytes, and the block

token specifies the file length in blocks.

For example:

say statef{"libs:rexxsupport. library")

I* might give "File 2524 5 —-RW-D 4866 817 2088 V -

say datefn1, 4866) •-» 29 Apr 1991

10-134 AREXX

WAITPKTO

Usage:

Waits for a message to be received at the specified (named) port,

which must have been opened by a call to OPENPORT() within

the current AREXX program. The returned boolean value

indicates whether a message packet is available at the port.

Normally the returned value will be 1 (True), since the

function waits until an event occurs at the message port.

The packet must then be removed by a call to GETPKT() and

should be returned eventually using the REPLY() function. Any

message packets received but not returned when an AREXX

program exits are automatically REPLYed with the return code

set to 10.

For example:

call waitpkt 'MyPort' /* wait awhile V

Tracing and Interrupts

As an added feature, AREXX provides tracing and source-level

debugging facilities that are not usually found in a high-level

language. Tracing refers to the ability to display selected

statements in a program as the program executes. When

a clause is traced, its line number, source text and related

information are displayed on the console. The tracing action

of the interpreter is determined by a trace option that selects

which source clauses will be traced and two modifier flags that

control command inhibition and interactive tracing.

AREXX 10-135

~
The internal interrupt system enables an AREXX program to

detect certain synchronous or asynchronous events and to take

special actions when they occur. Events such as a syntax error

or an external halt request that would normally cause the

program to exit can instead be trapped so that corrective

actions can be taken.

Tracing Options

Trace options are sometimes called alphabetic options, since

the keywords that select an option can be shortened to one

letter for convenience. The alphabetic options are:

^^ • ALL. All clauses are traced.

• BACKGROUND. No tracing is performed and the

program cannot be forced into interactive tracing.

• COMMANDS. All command clauses are traced before

being sent to the external host. Non-zero return codes

are displayed on the console.

• ERRORS. Commands that generate a non-zero return

code arc traced after the clause is executed.

• INTERMEDIATES. All clauses are traced and

intermediate results are displayed during expression

evaluation. These include the values retrieved for

variables, expanded compound names and the results of

function calls.

• LABELS. All label clauses are traced as they are

executed. A label will be displayed each time a transfer

of control takes place.

10-136 AREXX

• NORMAL. Command clauses with return codes that

exceed the current error failure level are traced after

execution and an error message is displayed. This is the

default trace option.

• OFF.

• RESULTS. All clauses are traced before execution and

the final result of each expression is displayed. Values

assigned to variables by ARG, PARSE or PULL

instructions are also displayed.

• SCAN. This is a special option that traces all clauses and

checks for errors, but suppresses the actual execution of

the statements. It is helpful as a preliminary screening

step for a newly-created program.

The tracing mode can be set using either the TRACE

instruction or the TRACE() Built-in function. The RESULTS

trace option is recommended for general-purpose testing.

Tracing can be selectively disabled from within a program so

that previously tested parts of a program can be skipped.

Display Formatting

Each trace line displayed on the console is indented to show

the effective control (nesting) level at that clause and is

identified by a special three-character code, as shown in the

table below. The source for each clause is preceded by its line

number in the program. Expression results or intermediates are

enclosed in double quotes so that leading and trailing blanks

will be apparent.

AREXX 10-137

~

~

Tracing Prefix Codes

Code Displayed Values

+ + + Command or syntax error

>C> Expanded compound name

>F> Result of a function call

>L> Label clause

>O> Result of a dyadic operation

>P> Result of a prefix operation

>U> Uninitialized variable

>V> Value of a variable

>>> Expression or template result

>.> "Placeholder" token value

The Global Tracing Console

The tracing output from an AREXX program usually goes to

the standard output stream STDOUT and is therefore

interleaved with the normal output of the program. Since this

may be confusing at times, a global trace console can be opened

to display only tracing output using the tco command utility.

AREXX programs will automatically divert their tracing

output to the new window, which is opened as a standard

AmigaDOS console. The user can move it and resize it as

required.

The tracing console also serves as the input stream for

programs during interactive tracing. When a program pauses

for tracing input, the input line must be entered at the trace

console. Any number of programs may use the tracing console

simultaneously, although it is recommended that only one

program at a time be traced.

10-138 AREXX

The tracing console can be closed using the tec command. The

closing is delayed until all read requests to the console have

been satisfied. Only when all of the active programs indicate

that they are no longer using the console will it actually be

closed.

Tracing Output

The tracing output from a program is always directed to one of

two logical streams. The interpreter first checks for a stream

named STDERR and directs the output there if the stream

exists. Otherwise the trace output goes to the standard output

stream STDOUT and will be interleaved with the normal

console output of the program. The STDERR and STDOUT

streams can be opened and closed under program control, so

the programmer has complete control over the destination of

tracing output.

In some cases a program may not have a predefined output

stream. For example, a program invoked from a host

application that did not provide input and output streams

would not have an output console. To provide a tracing facility

for such programs, the resident process can open a special

global tracing console for use by any active program. When

this console opens, the interpreter automatically opens a

stream named STDERR for each AREXX program in which

STDERR is not currently defined and the program then diverts

its tracing output to the new stream.

The global console can be opened and closed using the

command utilities tco and tec, respectively. The console may

not close immediately upon request, however. The resident

process waits until all active programs have diverted their

tracing streams back to the default state before actually closing

the console.

AREXX 10-139

The trace stream (STDERR or STDOUT) is also used for trace

input, so a program in interactive tracing mode will wait for

user input from this console. The global tracing console is

always shared among all currently active programs. Since it

may be confusing to have several programs simultaneously

writing to the same console, it is recommended that only one

program at a time be traced using the global console.

Command Inhibition

~

AREXX provides a tracing mode called command inhibition

that suppresses host commands. In this mode command

clauses are evaluated in the normal manner, but the command

is not actually sent to the external host, and the return code is

set to zero. This provides a way to test programs that issue

potentially destructive commands, such as erasing files or

formatting disks. Command inhibition does not apply to

command clauses that are entered interactively. These

commands are always performed, but the value of the special

variable RC is left unchanged.

Command inhibition may be used in conjunction with any

trace option. It is controlled by the "!" character, which may

appear by itself or may precede any of the alphabetic options in

a TRACE instruction. Each occurrence of the "!" character

"toggles" the inhibition mode currently in effect. Command

inhibition is cleared when tracing is set to OFF.

10-140 AREXX

Interactive Tracing

Interactive tracing is a debugging facility that allows the user

to enter source statements while a program is executing. These

statements may be used to examine or modify variable values,

issue commands or otherwise interact with the program. Any

valid language statements can be entered interactively, with

the same rules and restrictions that apply to the INTERPRET

instruction. In particular, compound statements such as DO

and SELECT must be complete within the entered line.

Interactive tracing can be used with any of the trace options.

While in interactive tracing mode, the interpreter pauses after

each traced clause and prompts for input with the code

" + + + ". At each pause, three types of user responses are

possible:

• If a null line is entered, the program continues to the

next pause point.

• If a " = " character is entered, the preceding clause is

executed again.

• Any other input is treated as a debugging statement and

is scanned and executed.

The pause points during interactive tracing are determined by

the tracing option currently in effect, as the interpreter pauses

only after a traced clause. However, certain instructions

cannot be safely (or sensibly) re-executed, so the interpreter

will not pause after executing one of these. The "no-pause"

instructions are CALL, DO, ELSE, IF, THEN and OTHERWISE.

The interpreter will also not pause after any clause that

generated an execution error.

AREXX 10-141

~

~

Interactive tracing mode is controlled by the "?" character,

either by itself or in combination with an alphabetic trace

option. Any number of"?" characters may precede an option

and each occurrence toggles the mode currently in effect. For

example, if the current trace options was NORMAL, then

"TRACE ?R" would set the option to RESULTS and select

interactive tracing mode. A subsequent "TRACE ?" would turn

off interactive tracing.

Error Processing

The AREXX interpreter provides special error processing while

it executes debugging statements. Errors that occur during

interactive debugging are reported, but do not cause the

program to terminate. This special processing applies only to

the statements that were entered interactively. Errors

occurring in the program source statements are treated in the

usual way whether or not the interpreter is in interactive

tracing mode.

In addition to the special error processing, the interpreter also

disables the internal interrupt flags during interactive

debugging. This is necessary to prevent an accidental transfer

of control due to an error or uninitialized variable. However, if

a "SIGNAL label" instruction is entered, the transfer will take

place and any remaining interactive input will be abandoned.

The SIGNAL instruction can still be used to alter the interrupt

flags and the new settings will take effect when the interpreter

returns to normal processing.

10-142 AREXX

Failure Level for Commands

Each AREXX task initializes its command failure level to the

client's failure level (usually 10) and this level controls

reporting of command errors. This will help suppress printing

of nuisance command errors. The failure level can be changed

using OPTIONS FAILATas before. Command errors (RC > 0)

and failures (RC > = failat) can be separately trapped using

SIGNAL ON ERROR and SIGNAL ON FAILURE.

The External Tracing Flag

The AREXX resident process maintains an external tracing

flag that can be used to force programs into interactive tracing

mode. The tracing flag can be set using the ts command utility.

When the flag is set, any program not already in interactive

tracing mode will enter it immediately. The internal trace

option is set to RESULTS unless it is currently set to

INTERMEDIATES or SCAN, in which case it remains

unchanged. Programs invoked while the external tracing flag is

set will begin executing in interactive tracing mode.

The external tracing flag provides a way to regain control over

programs that are caught in loops or are otherwise

unresponsive. Once a program enters interactive tracing mode,

the user can step through the program statements and diagnose

the problem. There is one caveat, though; external tracing is a

global flag, so all currently-active programs are affected by it.

The tracing flag remains set until it is cleared using the "te"

command utility. Each program maintains an internal copy of

the last state of the tracing flag and sets its tracing option to

OFF when it observes that the tracing flag has been cleared.

Programs in BACKGROUND tracing mode do not respond to

the external tracing flag.

AREXX 10-143

^ Interrupts

AREXX maintains an internal interrupt system that can be

used to detect and trap certain error conditions. When an

interrupt is enabled and its corresponding condition arises, a

transfer of control to the label specific to that interrupt occurs.

This allows a program to retain control in circumstances that

might otherwise cause the program to terminate. The interrupt

conditions can be caused by either synchronous events like a

syntax error or asynchronous events like a "control-C" break

request. Note that these internal interrupts are completely

separate from the hardware interrupt system managed by the

EXEC operating system.

The interrupts supported by AREXX are described below. The

name assigned to each is actually the label to which control

will be transferred. Thus, a SYNTAX interrupt will transfer

control to the label "SYNTAX:". Interrupts can be enabled or

disabled using the SIGNAL instruction. For example, the

instruction "SIGNAL ON SYNTAX" would enable the

SYNTAX interrupt.

• BREAK_C. This interrupt will trap (detect and treat as

a signal, and not as normal output) a control-C break

request generated by DOS. If the interrupt is not

enabled, the program terminates immediately with the

error message "Execution halted" and returns with the

error code set to 2.

• BREAK_D. The interrupt will trap a control-D break

request issued by DOS. The break request is ignored if

the interrupt is not enabled.

• BREAK_E. The interrupt will trap a control-E

break request issued by DOS. The break request is

ignored if the interrupt is not enabled.

10-144 AREXX

• BREAK_F. The interrupt will trap a control-F break

request issued by DOS. The break request is ignored if

the interrupt is not enabled.

• ERROR. This interrupt is generated by any host

command that returns a non-zero code.

• HALT. An external halt request will be trapped if this

interrupt is enabled. Otherwise, the program terminates

immediately with the error message "Execution halted"

and returns with the error code set to 2.

• IOERR. Errors detected by the I/O system will be

trapped if this interrupt is enabled.

• NOVALUE. An interrupt will occur if an uninitialized

variable is used while this condition is enabled. The

usage could be within an expression, in the UPPER

instruction, or with the VALUE() built-in function.

• SYNTAX. A syntax or execution error will generate this

interrupt. Not all such errors can be trapped, however. In

particular, certain errors occur before a program is

actually executing and those detected by the AREXX

external interface, cannot be trapped by the SYNTAX

interrupt.

When an interrupt forces a transfer of control, all of the

currently active control ranges are dismantled and the

interrupt that caused the transfer is disabled. This last action is

necessary to prevent a possible recursive interrupt loop. Only

the control structures in the current environment are affected,

so an interrupt generated within a function will not affect the

caller's environment.

AREXX 10-145

Special Variables. Two special variables are affected when an

interrupt occurs. The variable SIGL is always set to the current

line number before the transfer of control takes place, so that

the program can determine which source line was being

executed. When an ERROR or SYNTAX interrupt occurs, the

variable RC is set to the error code that caused the condition.

For ERROR interrupts, this value will be a command return

code and can usually be interpreted as an error severity level.

The value for SYNTAX interrupts is always an AREXX error

code.

Interrupts are useful primarily to allow a program to take

special error-recovery actions. Such actions might involve

informing external programs that an error occurred or simply

to report further diagnostics to help in isolating the problem. In

the following example, the program issues a "message"

command to an external host called "MyEdit" whenever a

syntax error is detected:

/* A macro program for 'MyEdit' */

signal on syntax /* enable interrupt 7

. (normal processing)

exit

syntax: /* syntax error detected */

address 'MyEdit'

'message' 'error' re errortextfrc)

exit 10

~

10-146 AREXX

Parsing and Templates

Parsing is an operation that extracts substrings from a string

and assigns them to variables. It corresponds roughly to the

notion of a "formatted read" used in other languages, but has

been generalized in several ways. Parsing is performed using

the PARSE instruction or its variants ARG and PULL. The

input for the operation is called the parse string and can come

from several sources.

Parsing is controlled by a template, a group of tokens that

specifies both the variables to be given values and the way to

determine the value strings. Templates were described briefly

with the PARSE instruction. A more formal description of their

structure and operation is described below.

String-manipulation functions like SUBSTR() and INDEX()

could also be used for parsing, but it is more efficient to use the

instruction statements. This is especially true if many fields

are to be extracted from a string.

Template Structure

The tokens that are valid in a template are symbols, string,

operators, parentheses and commas. Any blanks that may be

present as separators are removed before the template is

processed. The tokens in a template ultimately serve to specify

one of the two basic template objects:

• Markers determine a scan position within the parse

string.

• Targets are symbols to be assigned a value.

AREXX 10-147

With these objects in mind, the parsing process can be

described as one of associating with each target a starting and

ending position in the parse string. The substring between

these positions then becomes the value for the target.

Markers. There arc three types of marker objects:

• Absolute markers specify an actual index position in the

parse string.

• Relative markers specify a positive or negative offset

from the current position.

• Pattern markers specify a position implicitly, by

matching the pattern against the parse string beginning

at the current scan position.

Targets. Targets are usually specified by variable symbols. The

placeholder is a special type of target and is denoted by a period

(.) symbol. A placeholder behaves like a normal target except

that a value is not actually assigned to it.

Targets, like markers, can affect the scan position if value

strings are being extracted by tokenization. Parsing by

tokenization extracts words (tokens) from the parse string and

is used whenever a target is followed immediately by another

target. During tokenization the current scan position is

advanced past any blanks to the start of the next word. The

ending index is the position just past the end of the word, so

that the value string has neither leading nor trailing blanks.

-^

10-148 AREXX

Template Objects

Each template object is specified by one or more tokens, which

have the following interpretations.

Symbols. A symbol token may specify either a target or a

marker object. If it follows an operator token (+, - or =) it

represent a marker and the symbol value is used as an absolute

or relative position. Symbols enclosed in parentheses specify

pattern markers and the symbol value is used as the pattern

string.

If neither of the preceding cases applies and the symbol is

a variable, then it specifies a target. Fixed symbols always

specify absolute markers and must be whole numbers, except

for the period (.) symbol, which defines a placeholder target.

Strings. A string token always represents a pattern marker.

Parentheses. A symbol enclosed in parentheses is a pattern

marker and the value of the symbol is used as the pattern

string. While the symbol may be either fixed or variable, it will

usually be a variable, since a fixed pattern could be given more

simply as a string.

Operators. The three operators | + , - and =) are valid within

a template and must be followed by a fixed or variable symbol.

The value of the symbol is used as a marker and must therefore

represent a whole number. The " +" and " -" operators signify

a relative marker, whose value is negated by the "-" operator.

The " =" operator indicates an absolute marker and is optional

if the marker is defined by a fixed symbol.

Commas. The comma (,) marks the end of a template and is

used as a separator when multiple templates are provided with

an instruction. The interpreter obtains a new parse string

before processing each succeeding template. For some source

AREXX 10-149

~

n

options, the new string will be identical to the previous one.

The ARG; EXTERNAL and PULL options will generally supply

a different string, as will the VAR option if the variable has

been modified.

The Scanning Process

Scan positions are expressed as an index in the parse string and

can range from 1 (the start of the string) to the length of the

string plus 1 (the end). An attempt to set the scan position

before the start or after the end of the string instead sets it to

the beginning or end, respectively.

The substring specified by two scan indices includes the

characters from the starting position up to, but not including,

the ending position. For example, the indices 1 and 10 specify

characters 1-9 in the parse string. One additional rule is applied

if the second scan index is less than or equal to the first; the

remainder of the parse string is used as the substring. This

means that a template specification like:

parse arg 1 all 1 first second

will assign the entire parse string to the variable ALL. Of

course, if the current scan index is already at the end of the

parse string, then the remainder is just the null string.

When a pattern marker is matched against the parse string, the

marker position is the index of the first character of the

matched pattern or the end of the string if no match was found.

The pattern is removed from the string whenever a match is

found. This is the only operation that modifies the parse string

during the parsing process.

10-150 AREXX

Templates are scanned from left to right with the initial scan

index set to 1, the start of the parse string. The scan position is

updated each time a marker object is encountered, according to

the type and value of the marker. Whenever a target object is

found, the value to be assigned is determined by examining the

next template object. If the next object is another target, the

value string is determined by tokenizing the parse string.

Otherwise, the current scan position is used as the start of the

value string and the position specified by the following marker

is used as the end point.

The scan continues until all of the objects in the template have

been used. Note that every target will be assigned a value.

Once the parse string has been exhausted, the null string is

assigned to any remaining targets.

Templates in Action

The following section provides some examples of parsing with

templates.

Parsing by Tokenization

Computer programs frequently require splitting a string into

its component words or tokens. This is easily accomplished

with a template consisting entirely of variables (targets).

/* Assume "hammer 1 each S600.00" was entered */

pull item qty units cost .

In this example the input line from the PULL instruction is

split into words and assigned to the variables in the template.

The variable item receives the value "hammer", qty is set to

"1", units is set to "each" and cost gets the value "S600.00".

The final placeholder (.) is given a null value, since there are

only four words in the input. However, it forces the preceding

AREXX 10-151

variable cost to be given a tokenized value. If the placeholder

were omitted, the remainder of the parse string would be

assigned to cost, which would then have a leading blank.

In the next example, the first word of a string is removed and

the remainder is placed back in the string. The process

continues until no more words are extracted.

answer - "Only Amiga makes it possible."

do forever

parse var answer first answer

r place 1st word into 'first' and the rest into "answer*. */

if first = - " then leave

/" stop if there are no more words */

say answer

^^ end

Here is the output:

Amiga makes it possible,

makes it possible,

it possible,

possible.

Note the space at the beginning of each line.

Pattern Parsing

The next example uses pattern markers to extract the desired

fields. The "pattern" in this case is very simple — iust a single

character — but in general can be an arbitrary string of any

length. This form of parsing is useful whenever delimiter

characters are present in the parse string.

/* Assume an argument string "'12,35.5,1" */

arg hours',' rate ',' withhold

10-152 AREXX

Keep in mind that the pattern is actually removed from the

parse string when a match is found. If the parse string is

scanned again from the beginning, the length and structure of

the string may be different than at the start of the parsing

process. However, the original source of the string is never

modified.

Positional Markers

Parsing with positional markers is used whenever the files of

interest are known to be in certain positions in a string. In the

next example, the records being processed contain a variable

length field. The starting position and length of the field are

given in the first part of the record and a variable positional

marker is used to extract the desired field.

/" records look like: */

/•start: 1-5 7

/* length: 6-10 V

/* name: (5 (start,length)

parse value record with 1 start + 5 length + 5 = start name + length

The " = start" sequence in the above example is an absolute

marker whose value is the position placed in the variable start

earlier in the scan. The " +length" sequence supplies the

effective length of the field.

AREXX 10-153

Multiple Templates

It is sometimes useful to specify more than one template with

an instruction, which can be done by separating the templates

with a comma. In this next example, the ARG instruction (or

PARSE UPPER ARG) is used to access the argument strings

provided when the program was called. Each template accesses

the succeeding argument string.

/* Assume arguments are ('one two',12,sort) '/

arg first second,amount,action,option

The first template consists of the variables first and second,

which are set to the values "one" and "two", respectively. In

the next two templates amount gets the value "12" and action

is set to "SORT". The last template consists of the variable

"option", which is set to the null string, since only tree

arguments were available.

When multiple templates are used with the EXTERNAL or

PULL source options, each additional template requests an

additional line of input from the user.

In the next example two lines of input are read:

/* read last, first, and middle names and ssn */

pull last V first middle,ssn

The first input line is expected to have three words, the first of

which is followed by a comma, which are assigned to the

variables last, first and middle. The entire second input line is

assigned to the variable ssn.

Multiple templates can be useful even with a source option

that returns the identical parse string. If the first template

included pattern markers that altered the parse string, the

subsequent templates could still access the original string.

Note that subsequent parse strings obtained from the VALUE

source do not cause the expression to be reevaluated, but only

retrieve the prior result.

10-154 AREXX

Additional Notes

• The AREXX interface command parser has been

generalized to recognize double-delimiter sequences

within a (quoted) string file. The quoting convention

that allows you to enter a REXX program as a string is

very convenient for short programs, but it was easy to

run out of quoting levels in longer programs. Note that

single and double-quotes within a REXX program are

exactly equivalent, but that the external environment

may make a distinction. For example, AmigaDOS uses

only the double-quote as its quoting character, so string

files entered from a CLI must begin with a double-quote,

at least if you wish to include any semicolons. For

example:

rx "say 'lt"s possible, indeed; you ain"t seen nothin" yet!''

-* It's possible, indeed; you ain't seen nothin' yet!

rx"say' " "Hello! '

-* "Hello!"

ARBXX 10-155

REXXC Directory

AREXX is supplied with a number of command utilities,

located in the REXXC Directory, that provide various control

functions. These are executable modules that can be run from

the Shell and normally reside in the system rexxc directory for

convenience. These programs are relevant only when the

AREXX resident process is active.

HI

Usage: HI

Sets the global halt flag, which causes all active AREXX

programs to receive an external halt request. Each program will

exit immediately unless its HALT interrupt has been enabled.

The halt flag does not remain set, but is cleared automatically

after all current programs have received the request.

RX

Usage: RX name [arguments]

This command launches an AREXX program. If the specified

name includes an explicit path, only that directory is searched

for the program; otherwise, the current directory and REXX:

are checked for a program with the given name. The optional

argument string is passed to the program.

RXSET

Usage: RXSET [name [[=] value]}

Adds a (name,value) pair to the Clip List. Name strings are

assumed to be in mixed case. If a pair with the same name

already exists, its value is replaced with the current string. If

a name without a value string is given, the entry is removed

from the Clip List. If RXSET is invoked without arguments, it

will list all (name, value) pairs in the Clip List.

10-156 AREXX

RXC

Usage: RXC

Closes the resident process. The "REXX" public port is

withdrawn immediately and the resident process exits as soon

as the last AREXX program finishes. No new programs can be

launched after a "close" request.

TCC

Usage: TCC

Closes the global tracing console as soon as all active programs

are no longer using it. All read requests queued to the console

must be satisfied before it can be closed.

TCO

Usage: TCO

Opens the global tracing console. The tracing output from all

active programs is diverted automatically to the new console.

The console window can be moved and resized by the user and

can be closed with the "TCC" command.

TE

Usage: TE

Clears the global tracing flag, which forces the tracing mode to

OFF for all active AREXX programs.

TS

Usage; TS

Starts interactive tracing by setting the external trace flag,

which forces all active AREXX programs into interactive

tracing mode. Programs will start producing trace output and

will pause after the next statement. This command is useful

AREXX 10-157

for regaining control over programs caught in infinite loops or

otherwise misbehaving. The trace flag remains set until

cleared by the TE command, so subsequent program

invocations will begin executing in interactive tracing mode.

WaitForPort

Usage: WaitForPort [name of port]

WaitForPort is a command utility that specifies a port and then

waits 10 seconds for the port to appear. A return code of 0

indicates that the port was found. A return code of 5 indicates

that the application is not currently running or that the port

itself does not exist. Note that port names are case sensitive.

For example:

WaitForPort ED_1

WaitForPort MyPort

Error Messages

When the AREXX interpreter detects an error in a program, it

returns an error code to indicate the nature of the problem.

Errors are normally handled by displaying the error code, the

source line number where the error occurred and a brief

message explaining the error condition. Unless the SYNTAX

interrupt has been previously enabled (using the SIGNAL

instruction), the program then terminates and control returns

to the caller. Most syntax and execution errors can be trapped

by the SYNTAX interrupt, allowing the user to retain control

and perform whatever special error processing is required.

Certain errors are generated outside of the context of an

10-158 AREXX

AREXX program and therefore cannot be trapped by this

mechanism. Refer to Tracing and Interrupts for further

information on error trapping and processing.

Associated with each error code is a severity level that is

reported to the calling program as the primary result code. The

error code itself is returned as the secondary result. The

subsequent propagation or reporting of these codes is of course

dependent on the external (calling) program.

The following pages list all of the currently-defined error codes,

along with the associated severity level and message string.

The standards are:

5 - least serious

10 - moderately serious

20 - most serious

Error: 1 Severity: 5 Message: Program not found

The named program could not be found or was not an AREXX

program. AREXX programs are expected to start with a "/"

sequence. This error is detected by the external interface and

cannot be trapped by the SYNTAX interrupt.

Error: 2 Severity: 10 Message: Execution halted

A control-C break or an external halt request was received and

the program terminated. This error will be trapped if the HALT

interrupt has been enabled.

Error: 3 Severity: 20 Message: Insufficient memory

The interpreter was unable to allocate enough memory for an

operation. Since memory space is required for all parsing and

execution operations, this error cannot usually be trapped by

the SYNTAX interrupt.

AREXX 10-159

Error: 4 Severity: 10 Message: Invalid character

A non-ASCII character was found in the program. Control

codes and other non-ASCII characters may be used in a

program by defining them as hex or binary strings. This is a

scan-phase error and cannot be trapped by the SYNTAX

interrupt.

Error: 5 Severity: 10 Message: Unmatched quote

A closing single or double quote was missing. Check that each

string is properly delimited. This is a scan-phase error and

cannot be trapped by the SYNTAX interrupt.

Error: 6 Severity: 10 Message: Unterminated comment

The closing "*/" for a comment field was not found.

Remember that comments may be nested, so each "/*" must

be matched by a "*/". This is a scan-phase error and cannot be

trapped by the SYNTAX interrupt.

Error: 7 Severity: 10 Message: Clause too long

A clause was too long for the internal buffer. The source line in

question should be broken into smaller parts. This is a scan-

phase error and cannot be trapped by the SYNTAX interrupt.

Error: 8 Severity: 10 Message: Invalid token

An unrecognized lexical token was found or a clause could not

be properly classified. This is a scan-phase error and cannot be

trapped by the SYNTAX interrupt.

Error: 9 Severity: 10 Message: Symbol or string too long

An attempt was made to create a string longer than the

maximum allowed by the interpreter.

Error: 10 Severity: 10 Message: Invalid message packet

An invalid action code was found in a message packet sent to

the AREXX resident process. The packet was returned without

being processed. This error is detected by the external interface

and cannot be trapped by the SYNTAX interrupt.

10-160 AREXX

Error: 11 Severity: 10 Message: Command string error

A command string could not be processed. This error is

detected by the external interface and cannot be trapped by the

SYNTAX interrupt.

Error 12: Seventy: 10 Message: Error return from function

An external function returned a non-zero error code. Check

that the correct parameters were supplied to the function.

Error 13: Severity: 10 Message: Host environment not found

The message port corresponding to a host address string could

not be found. Check that the required external host is active.

Error 14: Severity: 10 Message: Requested library not found

An attempt was made to open a function library included in

the Library List, but the library could not be opened. Check

that the correct name and version of the library were specified

when the library was added to the resource list.

Error 15: Severity: 10 Message: Function not found

A function was called that could not be found in any of the

currently accessible libraries and could not be located as an

external program. Check that the appropriate function libraries

have been added to the Libraries List.

Error: 16 Severity: 10 Message: Function did not return value

A function was called which failed to return a result string, but

did not otherwise report an error. Check that the function was

programmed correctly or invoke it using the CALL instruction.

Error 17: Severity: 10 Message: Wrong number of arguments

A call was made to a function which expected more (or fewer]

arguments. This error will be generated if a built-in or external

function is called with more arguments than can be

accommodated in the message packet used for external

communications.

AREXX 10-161

~
Error 18: Severity: 10 Message: Invalid argument to function

An inappropriate argument was supplied to a function or a

required argument was missing. Check the parameter

requirements specified for the function.

Error 19: Severity: 10 Message: Invalid PROCEDURE

A PROCEDURE instruction was issued in an invalid context.

Either no internal functions were active or a PROCEDURE had

already been issued in the current storage environment.

Error 20: Severity: 10 Message: Unexpected THEN or WHEN

A WHEN or THEN instruction was executed outside of a valid

context. The WHEN instruction is valid only within a SELECT

range and THEN must be the next instruction following an IF

or WHEN

Error 21: Severity: 10 Message: Unexpected ELSE or

OTHERWISE

An ELSE or OTHERWISE was found outside of a valid context.

The OTHERWISE instruction is valid only within a SELECT

range. ELSE is valid only following the THEN branch of an IF

range.

Error 22: Severity: 10 Message: Unexpected BREAK, LEAVE or

ITERATE

The BREAK instruction is valid only within a DO range or

inside an INTERPRETcd string. The LEAVE and ITERATE

instructions are valid only within an iterative DO range.

Error 23: Severity: 10 Message: Invalid statement in SELECT

An invalid statement was encountered within a SELECT

range. Only WHEN, THEN and OTHERWISE statements are

valid within a SELECT range, except for the conditional

statements following THEN or OTHERWISE clauses.

Error 24: Seventy: 10 Message: Missing or multiple THEN

An expected THEN clause was not found or another THEN

was found after one had already been executed.

10-162 AREXX

Error 25: Severity: 10 Message: Missing OTHERWISE

None of the WHEN clauses in a SELECT succeeded, but no

OTHERWISE clause was supplied.

Error 26: Severity: 10 Message: Missing or unexpected END

The program source ended before an END was found for a DO

or SELECT instruction or an END was encountered outside a

DO or SELECT range.

Error: 27 Severity: 10 Message: Symbol mismatch

The symbol specified on an END, ITERATE or LEAVE

instruction did not match the index variable for the associated

DO range. Check that the active loops have been nested

properly.

Error: 28 Severity: 10 Message: Invalid DO syntax

An invalid DO instruction was executed. An initializer

expression must be given if a TO or BY expression is specified

and a FOR expression must yield a non-negative integer result.

Error: 29 Severity: 10 Message: Incomplete IF or SELECT

An IF or SELECT range ended before all of the required

statements were found. Check whether the conditional

statement following a THEN, ELSE or OTHERWISE clause

was omitted.

Error: 30 Severity: 10 Message: Label not found

A label specified by a SIGNAL instruction or implicitly

referenced by a enabled interrupt could not be found in the

program source. Labels defined dynamically by an

INTERPRET instruction or by interactive input are not

included in the search.

Error: 31 Severity: 10 Message: Symbol expected

A non-symbol token was found where only a symbol token is

valid. The DROP, END, LEAVE, ITERATE and UPPER

instructions may only be followed by a symbol token and will

generate this error if anything else is supplied. This message

will also be issued if a required symbol is missing.

AREXX 10-163

Error: 32 Severity: 10 Message: Symbol or string expected

An invalid token was found in a context where only a symbol

or string is valid.

Error: 33 Severity: 10 Message: Invalid keyword

A symbol token in an instruction clause was identified as a

keyword, but was invalid in the specific context.

Error: 34 Severity: 10 Message: Required keyword missing

An instruction clause required a specific keyword token to be

present, but it was not supplied. For example, this message will

be issued if a SIGNAL ON instruction is not followed by one of

the interrupt keywords (e.g. SYNTAX).

Error: 35 Severity: 10 Message: Extraneous characters

A seemingly valid statement was executed, but extra

characters were found at the end of the clause.

Error: 36 Severity: 10 Message: Keyword conflict

Two mutually exclusive keywords were included in an

instruction clause or a keyword was included twice in the

same instruction.

Error: 37 Severity: 10 Message: Invalid template

The template provided with an ARG, PARSE or PULL

instruction was not properly constructed.

Error: 38 Severity: 10 Message: Invalid TRACE request

The alphabetic keyword supplied with a TRACE instruction or

as the argument to the TRACE0 built-in function was not

valid.

Error: 39 Severity: 10 Message: Uninitialized variable

An attempt was made to use an uninitialized variable while

the NOVALUE interrupt was enabled.

Error: 40 Severity: 10 Message: Invalid variable name

An attempt was made to assign a value to a fixed symbol.

10-164 AREXX

Error: 41 Seventy: 10 Message: Invalid expression

An error was detected during the evaluation of an expression.

Check that each operator has the correct number of operands

and that no extraneous tokens appear in the expression. This

error will be detected only in expressions that arc actually

evaluated. No checking is performed on expressions in clauses

that are being skipped.

Error: 42 Severity: 10 Message: Unbalanced parentheses

An expression was found with an unequal number of opening

and closing parentheses.

Error: 43 Severity: 10 Message: Nesting limit exceeded

The number of subexpressions in an expression was greater

than the maximum allowed. The expression should be

simplified by breaking it into two or more intermediate

expressions.

Error: 44 Severity: 10 Message: Invalid expression result

The result of an expression was not valid within its context.

For example, this message will be issued if an increment or

limit expression in a DO instruction yields a non-numeric

result.

Error: 45 Severity: 10 Message: Expression required

An expression was omitted in a context where one is required.

For example, the SIGNAL instruction, if not followed by the

keywords ON or OFF, must be followed by an expression.

Error: 46 Severity: 10 Message: Boolean value not 0 or 1

An expression result was expected to yield a boolean result, but

evaluated to something other than 0 or 1.

Error: 47 Seventy: 10 Message: Arithmetic conversion error

A non-numeric operand was used in an operation requiring

numeric operands. This message will also be generated by an

invalid hex or binary string.

AREXX 10-165

Error: 48 Severity: 10 Message: Invalid operand

An operand was not valid for the intended operation. This

message will be generated if an attempt is made to divide by 0

or if a fractional exponent is used in an exponentiation

operation.

Limits

Language definitions seldom include predefined limits to the

program structures that can be created. Only a few such

restrictions were imposed in implementing AREXX and most

of the internal structures are limited only by the total amount

of memory available. The current implementation limits are

listed below.

• Length of Strings. Strings, symbol names and value strings

are limited to a maximum length of 65,535 bytes.

• Arguments to Functions. Built-in and external functions

are limited to a maximum of 15 arguments. There is no

limit to the number of arguments that may be passed to an

internal function.

• Subexpression Nesting. The maximum nesting level for

subexpressions is 32.

Compatibility

AREXX departs in a few ways from the REXX language

definition. The differences can be classified as omissions or

extensions and are described below.

Omissions. A language standard omitted from this

implementation is the arbitrary-precision arithmetic facility.

Arithmetic operations are performed using IEEE double-

precision and limited to about 14 digits of precision.

10-166 AREXX

NOTE: The following instructions PUSH and QUEUE are

included with the System 2.0 software, but are not fully

supported. Future software versions will provide full support.

PUSH

Usage: PUSH [expression!

The PUSH instruction is used to prepare a stream of data to be

read by a command shell or other program. It appends a

"newline" to the result of the expression and then stacks or

"pushes" it into the STDIN stream. Stacked lines are placed in

the stream in "last-in, first-out" order and are then available to

be read just as though they had been entered interactively.

For example, after issuing the instructions:

push line 1

push line 2

push line 3

the stream would be read in the order "line 3," "line 2," and

"line 1".

There are several restrictions governing the use of the PUSH

instruction and its alter ego QUEUE. These instructions use a

special I/O mechanism to accomplish their task and as a result,

can be used only with an interactive (stream-model) I/O device

like a console or pipe. The stream must be managed with a

DOS handler that supports the special ACTION_STACK (for

PUSH] or ACTION_QUEUE (for QUEUE) command.

PUSH allows the STDIN stream to be used as a private

scratchpad to prepare data for subsequent processing. For

example, several files could be concatenated with delimiters

between them by simply reading the input files, PUSHing the

line into the stream and inserting a delimiter where required.

AREXX 10-167

— QUEUE

Usage: QUEUE [expression!

The QUEUE instruction is used to prepare a stream of data to

be read by a command shell or other program. It is very similar

to the preceding PUSH instruction and differs only in that the

data lines are placed in the STDIN stream in "first-in, first-out"

order. In this case, the instructions:

queue tine 1

queue line 2

queue line 3

would be read in the order "line 1", "line 2", and "line 3". The

QUEUEd lines always precede all interactively-entered lines

and always follow any PUSHed (stacked) lines.

The same restrictions noted with the use of the PUSH

instruction apply to the QUEUEd instruction. The queuing

mechanism uses the ACTION_QUEUE command, so the DOS

handler associated with the STDIN stream must support this

command.

In most cases the choice of whether to use PUSH or QUEUE

is just a matter of convenience or personal preference. Each

provides a "scratch pad" facility similar to that provided by an

I/O pipe, but useful within one program or task rather than just

for interprocess communications.

For example:

r Queue commands for compile and link V

queue "cc main"

queue "blink c.o + main.o library amiga.lib to myprog"

10-168 AREXX

Extensions. The following extensions to the AREXX language

standard have been included in this implementation:

• BREAK Instruction. A new instruction called BREAK has

been implemented. It is used to exit from the scope of any

DO or INTERPRET instruction.

• ECHO Instruction. The ECHO instruction has been

included as a synonym for SAY.

• SHELL Instruction. The SHELL instruction has been

included as a synonym for ADDRESS.

• SIGNAL Options. Several additional SIGNAL keywords

have been implemented. BREAK_C, BREAK_D,

BREAK_E and BREAK_F will detect and trap the control-

C through Control-F signals passed by AmigaDOS. The

IOERR keyword traps errors detected by the I/O system.

• Stem Symbols. A stem symbol is valid anywhere that a

simple symbol could be employed.

• Template Processing. Templates have been generalized in

several ways. Variable symbols may be used as positional

tokens if preceded by an operator; the " = " operator is used

to denote an absolute position. Multiple templates can be

used with all source forms of the PARSE instruction.

~
Appendix A

Troubleshooting

If you encounter a problem while using the system software, check the following table.

-

Symptom

Display is flickering;

screen is not positioned

properly.

A requester asks you to

insert a particular

volume into any drive.

Cause

The wrong display mode

is selected.

The system cannot find

the program it is looking

for. The program may

have been moved to a

different drawer (if you

have a hard disk) or the

floppy disk containing

the program may have

been renamed.

Remedy

Open the ScreenMode

editor in the Prefs

drawer and reselect

the appropriate

display mode. (See

page 3-37). If the

screen display is so

bad that you cannot

understand it all, you

may have to reboot

with a different

Workbench disk.

Check the name of the

floppy disk or

drawer containing the

program. If the name

is different than what

the program is looking

for, you may need to

add an ASSIGN

statement to your

User-startup file (see

page 6-8).

Symptom

A requester states that

there is not enough

memory to load a

program.

A requester states that

your disk cannot be

validated or that it has

a read/write error.

You cannot move the

pointer, and keyboard

input has no effect.

The screen goes blank,

then a flashing red box

appears stating an error,

such as Not Enough

Memory.

A flashing green box

appears stating

Recoverable Alert.

Cause

You have too many

programs running and

there is not enough

RAM left to start

another program.

Your disk may have

become corrupt.

Your program has

crashed.

A program performed an

illegal action which was

serious enough to cause

a system failure.

A program performed an

illegal action which

caused an error from

which the system can

recover.

Remedy

Close any

unnecessary windows.

Use DISKDOCTOR,

or another disk repair

utility, to try to

retrieve your files.

Reboot.

Press the left mou

button, and the

computer will reboot.

Press the left mouse

button.

Appendix B. Printers

This appendix covers the printer drivers that are included in

the Devs/Printers drawer of the Extras2.0 disk as well as the

printer escape sequences used by the Amiga.

If you have a hard disk system, the printer drivers will be in the

Devs/Printers drawer of your System2.0 partition.

Printer Drivers

A printer driver acts as a translator. The Amiga has one

way of encoding information, but different printers require

information in different formats. The printer driver takes the

information from the Amiga and translates it into the proper

format for the particular printer.

The printer drivers listed in this section are:

CalComp.ColorMaster Imagewriterll

CalComp_ColorMaster2 NEC_Pinwriter

CBMJvIPS 1000 Okidata_293I

Diablo_630 OkidataJ>2

EpsonQ OkimateJ,0

EpsonX Seiko_5300

EpsonXOld Seiko_5300a

Howtek.Pixelmaster Tektronix_4693D

HP_Desket Tektronix_4696

HP-LaserJet ToshibaJ>351C

HP.PaintJet Toshiba_P351SX

^^ HP.ThinkJet Xerox_4020

The specifications frequently refer to the gadgets in the Printer

and PrinterGfx editors. Different gadget settings can have

specific effects on your printout. For instance, you'll notice

that many of the drivers support several densities. Density

refers to the number of dots per inch used to make the printout.

The higher the number of dots, the smaller the dots will be and

B-2 Printers

the clearer the picture. However, the higher the density, the

longer it takes to print. In the case of multiple densities, you

must decide whether you prefer faster printing or a higher

quality print. You can select the appropriate density with the

Density gadget of the PrinterGfx editor.

Densities are shown in the format xdpi x ydpi, such as

203 x 200 dpi. This means that the printer prints 203 dots per

horizontal inch, and 200 dots per vertical inch. In the case

of multiple densities, a table with columns for XDPI, YDPI and

XYDPI shows the dpi produced by each density. XYDPI is the

number of dots per square inch; it is the result of multiplying

the number of horizontal dots by the number of vertical dots.

There are also diagrams of the appropriate DIP switch or

jumper settings for many of the printers. In the DIP switch

diagrams, the correct position of the switch is indicated by the

black box. For instance, in the diagram below, switches 1, 2, 3,

4, and 5 are off, and switches 6, 7, and 8 are on.

ON

OFF ■n..1"

CalCompXolorMaster

This driver can also be used with the ColorView-5912 printer.

• Thermal transfer black-and-white/color printer; prints

text and graphics.

• One density is supported: 203 x 200 dpi. Selecting a

density higher than 1 has no effect,

• This driver can be used with both the ColorMaster and

ColorView-5912 printers. For the ColorMaster, set the

Paper Size gadget to Narrow Tractor. For the ColorView-

5912, set the Paper Size gadget to Wide Tractor.

• There are no DIP switches.

Printers B-3

CalComp_ColorMaster2

• This driver is essentially the same as the

CalComp.ColorMaster driver. However, it is

approximately 2 times faster during color dumps

although it requires a large amount of memory. For

instance, a full 8x10 inch (1600 x 2000 dot) color dump

requires approximately 1.2MB of memory. Typically,

full-size color dumps are 1600 x 1149 dots and require

approximately 700K.

Memory requirements for the ColorView-5912 can be as

high as 2.5MB for a full 10 x 16 inch (2048 x 3200 dot)

color dump. Typically, full-size color dumps are 2048 x

2155 dots and require 1.6MB.

Memory requirements for black-and-white or grey scale

printing are approximately one-third of what is needed

for a comparable color dump.

CBM.MPS1000

This driver can also be used with IBM5152 compatible

printers. If you own a CBM MPS 1250, use the EpsonX printer

driver.

'

~

Dot matrix black-and-white printer; prints text and

graphics.

Multiple

Density

1

2

3

4

5

6

densities

XDPI

120

120

240

120

240

240

are supported:

YDPI

72

144

72

216

144

216

XYDPI

8640

17280

17280

25920

34560

51840

Comments

Performs two passes

Performs three

passes

Performs two passes

Performs three

passes

B-4 Printers

• A density of 6 is the highest supported. Setting the

Density gadget to 7 has the same result as setting it to 6.

• Switch settings:

CBM MPS1000

ON

OFF "MM...

Canon BJ-130 with Control Capsule 48/XL — IBM

Proprinter® Compatible

OFF

ON BBHBBBBBBH Z* iHBHBBBBBHB
10

SW1

Diablo_630

• Daisy-wheel printer; prints text only.

• Switch settings:

SW2

ON

OFF
ON

OFF

1 8

SW1

1 8

SW2

Printers B-5

Density

1

2

3

A

XDPI

90

120

180

360

YDP

180

180

180

180

EpsonQ

This driver can be used with all the Epson® Q series

compatible printers (LQ1500, LQ2500, etc.).

• 24-pin, dot-matrix black-and-white/color printer; prints

text and graphics.

• Multiple densities arc supported:

XYDPI

16200

21600

32400

64800

• A density of 4 is the highest supported. Setting the

Density gadget to 5, 6, or 7 has the same result as setting

it to 4. When a density of 4 is selected, the printer cannot

print two consecutive dots in a row. It is recommended

that you only use this density for black-and-white

printing.

• If the Paper Size gadget is set to Wide Tractor, the

maximum print width for wide carriage printers is

13.6 inches.

• If the Paper Type gadget is set to Single, only 16 of the

24 pins are used. This option is useful for printers that

have a weak power supply and cannot drive all 24 pins

continuously. If you notice during a single pass of the

print head that the top two-thirds of the graphics are

darker than the bottom one-third, you should probably

set the Paper Type to Single.

^v • If the Paper Type gadget is set to Fanfold, all 24 pins are

used.

B-6 Printers

EpxonX

This driver can be used with the CBM MPS 1250 printer and all

8/9-pin Epson X series compatible printers (EX, FX, JX, LX,

MX, RX, etc.).

If you are using an Epson X compatible printer and you notice

that this driver does not work properly in graphics mode, try

the EpsonXOld printer driver.

• Dot matrix, black-and-white and color printer; prints

text and graphics.

• Multiple densities are supported:

Density

1

2

3

4

5

6

XDPI

120

120

240

120

240

240

YDPI

72

144

72

216

144

216

XYDPI

8640

17280

17280

25920

34560

51840

Comments

Performs two passes

Performs three

passes

Performs two passes

Performs three

passes

A density of 6 is the highest supported. Setting the

Density gadget to 7 has the same result as setting it to 6.

When printing 240 xdpi (a density of 3, 5, or 6), the

printer cannot print two consecutive dots in a row. It is

recommended that you only use this density for black-

and-white printing.

If you're printing 72 ydpi (a density of 1 or 3), and you

notice tiny, white horizontal stripes in your printout, try

setting the Paper Type gadget to Single. In this mode, the

line feed will be the number of vertical dots printed less

one-third of a dot.

Printers B-7

^
If the Paper Size gadget is set to Wide Tractor, the

maximum print width for wide carriage printers is

13.6 inches.

Switch settings:

Commodore MPS 1250 Printer

ON

OFF V.....

Serial/Parallel

Interface Pack

Epson EX-1000 Printer

~
ON

OFF IBBBBBHHfl
1 8

SW 1

Epxon FX-80 Printer

ON

OFF '.■.....
1 8

Printer Internal Switch

ON

OFF BBBBBBBB
1 8

SW2

ON

OFF HflBB
1 4

SWl

ON

OFF EHBiyiBB
1 8

SW2

B-8 Printers

EpsonXOId

This driver is for older 8/9-pin Epson X compatible printers as

well as the Star Micronics Gemini 10-X printer. If you are using

an EpsonX compatible printer and you notice that the EpxonX

driver does not work properly in graphics mode, try this driver.

• Dot matrix, black-and-white printer; prints text and

graphics.

• Multiple densities are supported:

Density XDPI YDPI XYDPI Comments

1 60 72 4320

120

120

240

120

240

72

72

72

72

72

8640

8640

17280

8640

17280

Double speed

Use with Star

printers

Use with Star

printers

Setting the Density gadget to 7 has the same result as

setting it to 4.

When printing 240 xdpi (a density of 4 or 6), the

printer cannot print two consecutive dots in a row. It is

recommended that you only use this density for black-

and-white printing.

If the Paper Size gadget is set to Wide Tractor, the

maximum print width for wide carriage printers is

13.6 inches.

Switch settings:

Star Micronics Gemini 10-X

ON

OFF H5BEHHBH
ON

OFF BBBB
1 8

SW 1 (Internal)

1 4

SW 2 (External)

Printers B-9

^ Howtek_Pixel master

Plastic, ink-jet, black-and-white/color printer; prints

text and graphics.

Multiple densities are supported:

Density XDPI YDPI

1 80 80

2 120 120

3 160 160

4 240 240

XYDPI

6400

14400

25600

57600

• A density of 4 is the highest density supported. Setting

the Density gadget to 5, 6, or 7 has the same result as

setting it to 4.

• The maximum print area is 8.0 x 10.0 inches.

^-^ • There are no DIP switches.

HP_Desk)et

• Ink-jet, black-and-white printer; prints text and

graphics.

• Multiple densities are supported:

Density XDPI YDPI XYDPI

1 75 75 5625

2 100 100 10000

3 150 150 22500

4 300 300 90000

• A density of 4 is the highest density supported. Setting

the Density gadget to 5, 6, or 7 has the same result as

setting it to 4.

B-10 Printers

• The maximum print area is 8.0 x 10.0 inches.

• Switch settings:

ON

OFF ™ iflflflflflflflfl
1

SW1

HP_Laser)et

This driver can be used

compatible printers.

» l

SW2

with LaserJet Plus" and LaserJet II

• Laser engine, black-and-white printer; prints text and

graphics.

• Multiple

Density

1

2

3

4

densities are supported:

XDPI

75

100

150

300

YDPI XYDPI

75 5625

100 10000

150 22500

300 90000

• A density of 4 is the highest density supported. Setting

the Density gadget to 5, 6, or 7 has the same result as

setting it to 4.

• The maximum print area is 8.0 x 10.0 inches.

• There are no DIP switches.

Printers B-ll

~
HP.PaintJet

• Ink-jet, black-and-white/color printer; prints text and

graphics.

• One density is supported: 180 x 180 dpi. Selecting a

density higher than 1 has no effect.

• Switch settings:

ON

OFF

HP_Think)et

• Ink-jet, black-and-white/color printer; prints text and

graphics.

• Two densities are supported:

Density XDPI YDPI XYDPI

1 96 96 9216

2 192 96 18432

• A density of 2 is the highest density supported. Setting

the Density gadget to 3, 4, 5, 6, or 7 has the same result

as setting it to 2.

• Switch settings:

ON

OFF

B-12 Printers

Imagewriterll

This driver can be used with Imagewriter TU printers.

• Dot matrix, black-and-white/color printer; prints

and graphics.

• Multiple densities are supported:

Density XDPI

1 80

2 120

3 144

4 160

5 120

6 144

7 160

• Switch settings:

Imagewriter

YDPI

72

72

72

72

144

144

144

XYDPI

5760

8640

10368

11520

17280

20736

23040

Comments

Performs two

Performs two

Performs two

text

passes

passes

passes

ON

OFF BHHHHBHH
1 8

SW 1

ON

OFF i..1
1 4

SW2

Imagewriterll

ON

OFF IBHifliBH
1 8

SW1

ON

OFF

1 6

SW2

Printers B-13

~

~

NECPinwriter

This driver can be used with all NEC® 24-wire Pinwriter®

compatible printers (P5, P6, P7, P9, P2200, etc.).

• Dot matrix, black-and-white/color printer; prints text

and graphics.

• Multiple densities are supported:

Density XDPI YDPI XYDPI Comments

16200

21600

32400

43200 Performs two passes

64800 Performs two passes

64800

129600 Performs two passes

If the Paper Size gadget is set to Wide Tractor, the

maximum print width for wide carriage printers is

13.6 inches.

Switch settings:

NEC Pinwriter P9XL

!

2

3

4

5

6

7

90

120

180

120

180

360

360

180

180

180

360

360

180

360

ON

OFF ...MM.
ON

OFF MM1...

SW1 SW2

ON

OFF ■ MM.'.

SW3

B-14 Printers

Okidata-2931

This driver can be used with the Okidata" 292 or 293 printers

with the IBM interface module.

• Dot matrix, black-and-white printer; prints text and

graphics.

• Multiple densities are supported:

Density

1

2

3

4

XDPI

120

240

120

240

YDPI

144

144

288

288

XYDPI

17280

34560

34560

69120

Comments

Performs two passes

Performs two passes

A density of 4 is the highest density supported. Setting

the Density gadget to 5, 6, or 7 has the same result as

setting it to 4.

If the Paper Type gadget is set to Single and you're

printing 144 ydpi [a density of 1 or 2), line feeds are equal

to the number of vertical dots printed less one-half of a

dot. You may want to use this setting if you notice tiny

white, horizontal stripes on your printout.

If the Paper Size gadget is set to Wide Tractor, the

maximum print width for wide carriage printers is

13.6 inches.

Jumper settings:

ML-292/293 Personality Module

SP1 SP4

Printers B-15

^ Okidata_92

• Dot matrix, black-and-white printer; prints text and

graphics.

• One density is supported: 72 x 72 dpi. Selecting a density

setting higher than 1 has no effect.

• Line feeds are always 7/72 of an inch.

Okimate_20

• Thermal transfer, black-and-white/color printer; prints

text and graphics.

• One density is supported: 120 x 144 dpi. Selecting a

density setting higher than 1 has no effect.

• Line feeds are equal to an even number of dots printed.

For instance, if three dots were printed, four dots will be

advanced.

• Switch settings:

Parallel Plug'n Print Kit

ON

OFF MM1.

NOTE: Switch 5 on some models controls the white

space between the lines of a graphic dump.

B-16 Printers

Serial Plug'n Print Kit

ON

OFF ■■;..■
ON

OFF

SW 1 SW2

NOTE: The SW1 settings specify a baud rate of 9600,

XON/XOFF handshaking, 8 bits, and no parity. On some

models, switch 5 of SW2 controls the white space

between the lines of a graphic dump.

Seiko_5300

Thermal transfer, black-and-white/color printer; prints

graphics only.

Three densities are supported:

Density XDPI YDPI XYDPI

23104

41209

57600

152

203

240

152

203

240

Comments

CH-5301 printer

CH-5302 printer

CH-5303 printer

A density of 3 is the highest density supported. Setting

the Density gadget to 4, 5, 6, or 7 has the same result as

setting it to 3.

There are no DIP switches.

Printers B-17

-^ Seiko,5300a

• This driver is essentially the same as the Seiko_5300

driver. However, it is approximately 2 times faster

during color dumps although it requires a large amount

of memory. For instance, a full 8 x 10 inch (1927 x 2173

dot) color dump requires approximately 1.5MB of

memory. Typically, full-size color dumps are 1927 x 1248

dots and require approximately 875K.

Memory requirements for black-and-white or grey scale

printing are approximately one-third of what is needed

for a comparable color dump.

• There are no DIP switches.

Tektronix_4693D

• Thermal transfer, black-and-white/color printer; prints

graphics only.

• One density is supported: 300 x 300 dpi. Selecting a

density higher than 1 has no effect.

• Due to the way the printer images a picture, only the

Aspect (Horizontal or Vertical) and Shade (Black-and-

White, Color, or Grey Scale) settings of the PrinterGfx

editor are recognized. As a result, only full-size pictures

can be printed.

• For normal prints, use the printer's keymap to set the

parameters specified below:

of Window Window Parameter

3c Printer Color Adjustment Do Not Adjust

3d Video Color Correction Do Not Adjust

5 Background Color Prints Colors as

Exchange Received

B-18 Printers

Textronix_4696

• Ink-jet, black-and-white printer; prints text and

graphics.

• Three densities are supported:

Density XDPI YDPI XYDPI

1 121 120 14520

242 120 29040

242 120 29040

Comments

Outputs all colors in

one pass

Black-and-white;

performs a double

pass on black

Color; performs a

double pass on all

colors

The densities 1 through 3 correspond to the printer's

graphics printing modes 1 through 3, respectively.

Selecting a density of 2 or 3 doesn't give you true 242 dpi

resolution, since the printer only supports 121 dpi.

Instead, it tells the printer to go into its double-pass

mode. In this mode, it outputs a line of dots at 121 dpi,

then it outputs the line again — shifted to the right by

1/242 of an inch. This produces more vibrant colors and

give the illusion of a higher resolution. One drawback to

this method is that large areas of solid colors, especially

red, green and blue, tend to oversaturate the paper with

ink.

If the Paper Size gadget is set to Wide Tractor, the

maximum print width for wide carriage printers is

9.0 inches.

Switch settings:

OFF ON

Printers B-19

~

~

Toshiba_P351C

This driver can be used with all 24-pin Toshiba P351C

compatible printers.

• Dot-matrix, black-and-white/color printer; prints text

and graphics.

• Two densities are supported:

Density XDPI YDPI XYDPI

1 180 180 32400

2 360 180 64800

• A density of 2 is the highest density supported. Setting

the Density gadget to 3, 4, 5, 6, or 7 has the same result

as setting it to 2.

• If the Paper Size gadget is set to Wide Tractor, the

maximum print width for wide carriage printers is

13.5 inches.

• Switch settings:

ON

OFF

ON

OFF

BBBBBBBB
8 1

PI

BBBBBBBB

ON

OFF

ON

OFF

BBBBBBBB
8 1

P2

BBBBBBBB
8 1

P3

8 1

P4

B-20 Printers

Toshiba_P351SX

This driver can be used with all Toshiba P351SX compatible

printers |321SL; 321SLC, 341SL).

• Dot matrix, black-and-white/color printer,- prints text

and graphics.

• Multiple densities are supported:

Density XDPI YDPI XYDPI Comments

1 180 180 32400

2 360 180 64800

3 180 360 64800 Performs two passes

4 360 360 129600 Performs two passes

• A density of 4 is the highest density supported. Setting

the Density gadget to 5, 6, or 7 has the same result as

setting it to 4.

• If the Paper Size gadget is set to Wide Tractor, the

maximum print width for wide-carriage printers is

13.5 inches.

• Jumper settings:

If using the serial interface, set the jumpers in the

following positions:

16

Printers B-21

~
Xerox_4020

~

Ink-jet, black-and-white/color printer; prints text and

graphics.

Two densities are supported:

Density XDPI YPDI XYDPI

1 121 120 14520

2 242 120 29040

Selecting a density of 2 does not give you true 242 dpi

resolution. Instead, the printer outputs a line of dots at

121 dpi, then moves the paper up 1/240 of an inch and

outputs the line again — shifted to the right by 1/240 of

an inch. This produces more vibrant colors and gives the

illusion of more resolution. One drawback to this

method is that large areas of solid colors, especially red,

green and blue, tend to oversaturate the paper with ink.

Line feeds are always equal to 4 dots.

If the Paper Size gadget is set to Wide Tractor, the

maximum print width for wide roll paper is 9.0 inches.

Switch settings:

OFF ON OFF ON

1

2

3

4

■3

mm-

LEFT

1

2

3
4

5

6

7

■3
1 M-

■HI-

mm-

■__!•

■LJ-

mm-

RIGHT

B-22 Printers

Printer Escape Sequences

When typing an es

cape sequence from

the keyboard, you

press Esc. In BASIC,

CHR$(27) is used. In

C, octal 033 can be

used.

The Amiga print device (PRT:) accepts standard escape

sequences that allow you to implement special printer

features. For instance, you can use escape sequences to set

margins, turn on styles (like boldface or italics), and specify

spacing. (If the feature is not supported by your printer or

printer driver, the escape sequence will be ignored.)

Escape sequences are typically used when you are printing to

the printer device directly from the Shell or when you are

inserting print commands into a program you are writing.

These escape sequences are not necessary if you are using a

word processor or desktop publishing programs, as you can

specify the printing options through the program.

A typical escape sequence (to turn on boldfacing) is shown

below:

Escpm

This means that you must press the following keys in

sequence: Esc, (, 1, m. Escape sequences are case-sensitive.

For instance, to enter the following escape sequence:

ESC{4W

you must press: Esc, [, 4, Shift, W.

If a number needs to be inserted into the escape sequence it is

indicated by <n>. The n represents the number of your choice.

Do not type the brackets; they simply indicate that a

substitution must be made. For instance, the escape sequence

to set the left and right margins is:

Esc[<n>;<n>s

Printers B-23

nlf you wanted to specify a left margin of 5 and a right margin of

75, you would type:

Esc[5;75s

To send an escape sequence to the printer from the Shell:

1. Redirect the keyboard input to the printer by typing:

1>COPY*toPRT:

2. Wait until any disk access stops, then type an escape

sequence, such as:

Esc[2"z

This sequence turns on the printer's NLQ [near letter

quality) mode. You must press: Esc, [, 2, ", z.

To terminate the keyboard input, press Ctrl-\.

You can also create printer command files consisting of several

escape sequences by redirecting the keyboard input to a file.

For instance:

1. Redirect the keyboard input to a file:

1> COPY* TO RAM:EscapeFile

2. Type the escape sequences, such as:

~

Esc[2"z

Esc[2w

Esc[1m

Ctrl-u

(turns near letter quality on]

(turns elite type on)

(turns boldface on)

(terminates input]

3. To send these escape sequences to the printer, type:

1> COPY RAM:EscapeFile TO PRT:

B-24 Printers

p

Feature

Reset printer

Initialize printer

Line feed

Return line feed

Reverse line feed

Normal character set

Italics on

Italics off

Underline on

Underline off

Boldface on

Boldface off

Set foreground color

Set background color

Normal pitch

Elite pitch on

Elite pitch off

Condensed fine pitch on

Condensed off

Enlarged pitch on

Enlarged pitch off

Shadow print on

Shadow print off

Doublestrike on

Doublestrike off

Near Letter Quality on

Near Letter Quality off

Superscript on

Superscript off

Subscript on

Escape

Sequence

Escc

Esc#l

EscD

EscE

EscM

Esc[0m

Esc[3m

Esc|23m

Esc|4m

Esc[24m

Escjlm

Esc|22m

Escj30m to

Esc[39m

Esc(40m to

Esc[49m

Esc[0w

Esc(2w

Esc[lw

Esc[4w

Esc3w

Esc6w

Esc[5w

Esc[6"z

Esc[5"z

Esc[4"z

Esc(3"z

Esc[2"z

Esc[l"z

Esc[2v

Esc[lv

Esc[4v

Name

aRIS

aRIN

aIND

aNEL

aRI

aSGRO

aSGR3

aSGR23

aSGR4

aSGR24

aSGRl

aSGR22

aSFC

aSBC

aSHORPO

aSHORP

aSHORPl

aSHORP4

aSHORP3

aSHORP6

aSHORP5

aDEN6

aDEN5

aDEN4

aDEN3

aDEN2

aDENl

aSUS2

aSUSl

aSUS4

Printers B-25

Feature

Subscript off

Normalize the line

Partial line up

Partial line down

US character set

French character set

German character set

UK character set

Danish I character set

Swedish character set

Italian character set

Spanish character set

Japanese character set

Norwegian character set

Danish II character set

Proportional spacing on

Proportional spacing off

Proportional spacing clear

Set proportional offset

Auto left justify

Auto right justify

Auto full justify

Auto justify off

Letter space (justify)

Word fill (auto center)

1/8" line spacing (8 lpi)

1/6" line spacing (6 lpi)

Set form length to <n>

Perf skip <n> (n >0l

Perf skip off

Left margin set

Right margin set

Spnnpnrp1"-.J _ U II111LI J

Escape

Sequence

Esc|3v

Esc(0v

Escl

EscK

Esc(B

Esc(R

Esc(K

Esc(A

Esc(E

Esc(H

Esc(Y

Esc(Z

Esc(J

Esc(6

Esc(C

Esc[2p

Escjlp

Esc[0p

Esc[<n> E

Esc[5 F

Esc(7 F

Esc[6 F

Esc|0 F

Esc[3 F

Esc[lF

Esc[0z

Esc[lz

Esc[<n>t

Esc[<n>q

Esc[0q

Esc#9

Esc#0

Name

aSUS3

aSUSO

aPLU

aPLD

aFNTO

aFNTl

aFNT2

aFNT3

aFNT4

aFNT5

aFNT6

aFNT7

aFNT8

aFNT9

aFNTIO

aPROP2

aPROPl

aPROPO

aTSS

aJFY5

a[FY7

aJFY6

aJFYO

aJFY3

aJFYl

aVERPO

aVERPl

aSLPP

aPERF

aPERFO

aLMS

aRMS

B-26 Printers

Escape Sequences

Escape

Feature

Top margin set

Bottom margin set

Top and bottom margins

Left and right margins

Clear margins

Set horizontal tab

Set vertical tabs

Clear horizontal tab

Clear all horizontal tabs

Clear vertical tab

Clear all vertical tabs

Clear all horizontal and

vertical tabs

Set default tabs

Extended commands

Sequence

Esc#8

Esc#2

Esc(<n>;<n>r

Esc[<n>;<n>s

Esc#3

EscH

EscJ

Esc[0g

Esc(3g

Escjlg
Esc[4g

Esc#4

Esc#5

Esc[<n>"<x>

Name

aTMS

aBMS

aSTBM

aSLRM

aCAM

aHTS

aVTS

aTBCO

aTBC3

aTBCl

aTBC4

aTBCALL

aTBSALL

aESTEND

An extended command allows you to specify a printer specific

command. This is a command that is recognized by your

printer, not by the Amiga, such as a command to use a

particular font. In this case, <n> represents the number

of bytes in the command, and <x> represents the actual

command. For instance, if your printer recognizes Esc-k-1

as the command to use a sans serif font, you would type:

Esc[3"Escki

If you are entering extended commands within a program you

are writing, make sure that the program can only be used with

one specific printer. If you enter extended commands for an

Epson printer, then someone tries to use the program with an

HP LaserJet, the command may not work.

Appendix C

BackingUp Your Hard Disk with BRU

BRU is a backup and restore utility included on the Extras disk.

There is no icon for BRU; it is accessed only through the Shell.

BRU allows you to back up (archive) your hard disk by copying

information stored on the hard disk to floppy disks or magnetic

tape (if you have a magnetic tape drive). If backed-up files are

ever lost because of hardware or software failures or human

errors, you can easily restore recent versions of your programs

and files to your system.

^-^ BRU offers the Shell user many advanced options not

accessible from the HDBackup program described in Chapter 6

of this manual.

This appendix tells you how to customize BRU's defaults

through Brutab, a data file that provides BRU with information

about the archive devices; provides a basic tutorial to walk you

through BRU's most common command lines,- gives individual

explanations of all BRU commands,- and explains BRU's error

messages.

NOTE: BRU was designed for use on both Amiga and UNIX

operating systems. Because of this, the format of BRU

command lines differs from the standard AmigaDOS format.

Also, some commands may be specific to UNIX operations and

can be used with archives imported to AmigaDOS from UNIX.

These commands are listed separately in the "BRU with

UNIX" section beginning on page C-36.

C-2 BRU

Brutab

Before you begin to use BRU, you should understand its default

structure. Brutab is the ASCII file that provides BRU with basic

information such as the device you are archiving to (a floppy

drive, for example). Brutab also includes the size character

istics of each device and error recovery values that your own

system uses.

Brutab is located in the S: directory and looks something like

this:

dfO:

size = 880K seek = 512 bufsize = 22K noreopen qfwrite \

prerr = 5 pwerr = 5 zrerr = 5 zwerr = 5 frerr=5 fwerr = 5 wperr = 30 \

rawfioppy device = trackdisk.device unit = 0

d(1:

size = 880K seek = 512 bufsize = 22K noreopen qfwrite \

prerr = 5 pwerr = 5 zrerr = 5 zwerr = 5 frerr = 5 fwerr = 5 wperr = 30

rawfioppy device = trackdtsk.device unit = 1

df2:

size = 880K seek = 512 bufsize = 22K noreopen qfwrite \

prerr = 5 pwerr = 5 zrerr = 5 zwerr = 5 frerr = 5 fwerr = 5 wperr ■= 30

rawfioppy device = trackdisk.device unit ■ 2

df3:

size = 880K seek = 512 bufsize = 22K noreopen qfwrite \

prerr - 5 pwerr ■ 5 zrerr = 5 zwerr = 5 frerr = 5 fwerr = 5 wperr = 30

rawfioppy device = trackdisk.device unit = 3

tape:

size = 0 seek = 0 bufsize = 20QK noreopen rewind \

prerr = 5 pwerr = 5 zrerr = 5 zwerr = 5 frerr = 5fwerr=5 wperr = 30 \

advance tape rawtape format device = scsi.device unit = 3

nlape:

size - 0 seek = 0 bufsize = 200K noreopen norewind \

prerr = 5 pwerr = 5 zrerr = 5 zwerr = 5 frerr ■ 5 fwerr = 5 wperr = 30 \

advance tape rawtape format device = scsi.device unit = 3

size = 0 seek = O \

prerr = 0 pwerr = 0 zrerr = 0 zwerr = 8 frerr = 0 fwerr = 0 wperr = 0

BRU C-3

The Components of the Brutab File

Normally the values in Brutab will not need to be changed,

however you may choose to customize Brutab to suit your

individual needs. You will need to use a text editor to make

changes to the file. Only experienced users should attempt to

customize Brutab.

Entries in Brutab consist of multiple fields separated by white

space (spaces or tabs). A \ (backslash) character at the end of a

line indicates a continuation of the entry to the next line. Each

entry consists of a device name, followed by one or more

capabilities fields (explained below). All tabs and blanks

between fields are ignored.

Brutab lists the possible devices to which you could archive.

The first four entries [dfO: through df3:) are floppy disk drives;

the fifth (tape:) is magnetic tape; and the sixth (ntape:) is non-

rewinding magnetic tape. The last entry signifies the end of the

Brutab file.

BRU uses the first device entry in Brutab as its default

setting—it will then archive to that device. If the default

setting is correct (in the case of the example Brutab on page

C-2, if you are planning to archive to floppy disks in drive DFO:)

you may never need to change your Brutab file.

If you will not be archiving with disks in drive DFO:, you will

need to move the correct listing first, or specify a drive other

than the default by using the -f <path> option described later

in this appendix.

After the device name field, each subsequent field defines

either a numeric or a boolean (on/off; true/false) characteristic

of the device, in this form:

capability = value (such as "size = 640K") or

boolean flag (such as "tape")

~

C-4 BRU

There must be no white space between the capability name

and the value.

Numeric values may be given in absolute form or appended

with a scale factor of:

borB Blocks (512 bytes]

korK Kilobytes (1024 bytes)

m or M Megabytes (1024* 1024 bytes)

The following is a list of the Brutab fields:

Size Media size of the archive device in bytes,

if known. Zero if unknown or variable

sized media (such as a tape drive which

can take various sized tapes). If a size is

given, you must not attempt to use a

media with a real capacity less than this

size.

seek Minimum seek resolution. All seeks

performed on the device will be an

integral multiple of this value, Zero if no

seeks allowed.

bufsize Default I/O buffer size for this device. If

omitted, the default is 22K.

The following values represent error numbers, variables

used by BRU to store error results. For more information,

see page 8-131.

prerr Value left in Result2 for partial reads.

A partial read is one that successfully

reads more than zero bytes but less than

the requested number of bytes.

pwerr Value left in Result2 for partial writes.

A partial write is one that successfully

writes more than zero bytes but less

than the requested number of bytes.

BRU C-5

zrerr Value left in Result2 for zero length

reads. A zero length read is one that

reads zero bytes.

zwerr Value left in Result2 for zero length

writes. A zero length write is one that

writes zero bytes.

frerr Value left in Result2 after an attempt to

read from unformatted media.

wperr Value left in Result2 after an attempt to

write to a write protected media.

The boolean fields are:

reopen If specified, BRU will close and reopen

archive upon media switch. In some

instances, if the archive is not closed and

reopened, the system will refuse to

access certain devices after the media

has been removed.

noreopen If specified, BRU will not close and

reopen archive upon media switch. It

will leave the archive device open across

media switches.

tape Indicates that the archive device is a

tape drive. This includes 9-track tapes

and streaming tape drives.

rawtape Indicates that the archive device is a

"raw" tape drive and that buffering is not

to be used when sending data to and

from the device.

C-6 BRU

norewind If specified, the device will not

automatically rewind back to the start of

the media (applies to most tape drives)

upon closing. The size parameter should

be set as zero to use this feature.

advance If specified, BRU reads and writes

advance media even when errors occur,

True for many tape drives.

qfwrite If specified, BRU will request

confirmation to proceed for the first

write to the first medium in this device.

This flag should be used to protect

against accidentally overwriting a disk

that may have been left in a floppy drive,

for example.

eject If specified, BRU will eject media after

use (if the device supports auto-

ejection).

format If specified, BRU will automatically

format media if the first write to the

media fails and BRU knows how to

format media for this type of device.

Setting Environment Variables

for BRU

Instead of customizing Brutab each time you archive in

a different manner, you may wish to have many different

versions of Brutab. Normally, BRU looks in the S: directory

to find Brutab, but you can override this by setting your

environment variable Brutab to indicate the specific version of

Brutab that you wish to use. To do this, you will need to use

the SETENV command.

BRU C-7

~
In this example, Brutab.2 is your second Brutab file also located

in the S directory. To instruct BRU to use this version, type:

SETENV BRUTAB = sys:s'brutab.2

To instruct BRU to revert to your original Brutab file, type:

UNSETENV BRUTAB

For more information on the SETENV command,

see page 8-114.

~

BRU Command Lines

This section explains the format of BRU commands.

Before you can use BRU through the Shell, you must set at

least a 25000 byte stack. If you are opening a Shell without

this stack size, you must type:

1> STACK 25000

You must do this every time you open a Shell to use BRU.

Next, a command line beginning with the word BRU is

entered, followed by one character arguments preceded by a

hyphen, such as -c, -v, and -f. These arguments tell BRU

which functions you would like it to perform. (Complete

descriptions of these arguments are found in the "BRU

Argument Reference Section" beginning on page C-19.)

C-8 BRU

A BRU command line looks like this:

BRU <modes> [control options] [selection options] [files]

where:

BRU

<modes>

[control

options]

[selection

options]

The command that precedes any BRU

arguments you enter; it invokes the

BRU program.

Arguments that tell BRU to perform

its basic functions. The modes are

BRU's fundamental actions, such as

creating an archive, estimating the

size of an archive, and extracting files.

In any BRU command, you must

specify at least one mode. You may

choose a number of modes and list

them all together.

Optional arguments that tell BRU how

something is done. If no control

options are specified in the command

line, BRU uses the system defaults,

such as those set in Brutab. Control

options include selecting a new

device on which to archive, changing

the size of the archive, and so on. You

may choose a number of control

options and list them all together.

Optional arguments that tell BRU

which files to select. An example of a

selection option is telling BRU to save

only files which have been created or

changed after a particular date. You

may choose a number of selection

options and list them all together.

BRU C-9

^
[files]

~

The optional file list that comes after

all of the modes and options that you

have already specified. The file list

tells BRU exactly which partitions,

directories and/or files you want to

either save or restore to your

computer. More than one file may be

listed, with a space to separate each

one. If no files are specified, BRU

archives from the current directory.

BRU scans its command line and

interprets any entries following

modes, control options, and selection

options as file names.

BRU is case sensitive—you must properly use upper and

lowercase in arguments and file names.

Beginning users may feel comfortable archiving and restoring

with BRU modes. It is recommended that only advanced users

attempt incorporating control and selection options in BRU

commands.

Interrupting BRU While it is

Operating

If you need to stop BRU in mid-operation, press Ctrl-C.

—

C-10 BRU

Using BRU—A Tutorial

This section will walk you through commonly used BRU

command lines. There are many more arguments to choose

from than demonstrated here. All of the BRU arguments are

listed and explained in the following section, the "BRU

Argument Reference Section," beginning on page C-19.

Estimating the Size and Creating a

Backup of the Current Directory

Normally, the first step in creating an archive will be deciding

what files and directories you wish to back up. Next, you will

want to estimate the size of the archive so you can have the

proper number of disks on hand before you begin.

NOTE: Disks do not have to be formatted before using them

with BRU.

The mode for estimating the size of an archive is -e.

Unless partitions, directories and/or files are specified in the

file list on the command line, BRU performs all actions on the

current directory. In this first example, you will estimate the

size of an archive of the current directory [normally SYS:).

1, Open a Shell and type:

1 > STACK 25000

1 > BRU -e

BRU will respond with an estimate similar to this:

bm:5volume(s),396fjles, 1808 archive blocks, 3616 Kbytes

BRU has told you the total size of the archive, and that you will

need 5 volumes (disks) to hold this archive.

BRU Oil

rOnce you know how big your archive will be, you may be ready

to create it. The argument for creating an archive is -c. The

following command instructs BRU to create an archive of the

current directory:

1. Type:

1>BRU-c

(Note that since again no partitions, directories or files were

listed at the end of the command line, BRU will perform all

actions on the current directory.)

BRU will respond with something like this:

bru: warning - all data currently on "dfO:" will be destroyed

bru: c = > continue q = > quit r = > reload s = > shell [default: r] >>

At this point, BRU waits for confirmation to proceed. You

,—, could type:

c To proceed with the archive.

q To quit, and return to the Shell prompt.

r To pause to reload a disk.

To open a new Shell if you need to get additional

information.

2. If you wish to perform an archive of this type, press C

and Return. (To quit, press Q and Return, and you will

be returned to the Shell prompt.)

If you press C to continue, BRU will prompt you to insert

volume one and enter the device to which you will archive. (If

you press return, BRU will use the specified default.)

NOTE: Before archiving, you should always label your disks

^, with three important pieces of information:

• The volume number of the disk.

• The partition you have backed up,

• The date.

C-12 BRU

3. Label the first disk, insert it and press Return.

BRU will continue to prompt you to reload volumes until the

archive is complete. You will then be returned to the Shell

prompt.

Backing up Your Entire Hard Disk

You may wish to back up your whole hard disk, rather than just

the current directory. To do this, you will need to list the

names of all of your hard drive's partitions to the file list at the

end of the command line (with a space to separate each one).

For example, let's say you have a hard disk with two partitions:

System: and Work:. You want to create an archive which spans

your whole hard disk. You may first want to see how many

disks this will require. To do this:

1. At the Shell prompt, type:

1>8RU-e System: Work:

BRU will respond with a size estimate of both partitions. Next,

you will create the archive:

2, Type:

1 > BRU -c System: Work:

BRU will warn you that it will erase all information on your

default archive device (normally DFO:) and will prompt you to

load disks as in the previous example. Remember to label your

disks appropriately, and follow the prompts until your archive

is complete.

BRU C-13

Backing up Only a Few Files

or Directories

With BRU, you don't always have to back up entire partitions.

Let's say you've been working on a database every day for two

months and don't want to risk losing it. Even though you back

up your entire hard disk once a week, you want to back up this

database separately every day. All you need to do is add that

filename to the end of the BRU command line, and BRU will

perform all actions on that file alone.

For example, let's say the database is called ClientBase, and it

is located in the Work: partition. To create an archive of it, you

would type:

1> BRU -c Work:ClientBase

Or you could CD to the Work: partition and type:

1> BRU-c ClientBase

In another example, let's say you have a directory in Work:

called Clients which, among other things, contains a profile for

each of your many clients. Each of those filenames ends in

.prof (such as Smith.prof, Adams.prof, and so on). You've just

hired a new associate and want an easy way to pass your client

profiles to her. You could use a wildcard backup to back up only

those files that end with the pattern .prof.

BRU uses the * character as a wildcard. To backup only those

files that end in .prof you would type:

1> BRU-cWork:Clients/\prof

C-14 BRU

Combining Modes

As mentioned in the "BRU Command Lines" section, BRU

modes can be strung together on one command line. This

means in one step you can instruct BRU to perform a series

of actions.

In this example you will combine three arguments. The -i

mode instructs BRU to inspect an archive for accuracy after it

has been completed. Since -e, -c, and -i are all modes, you can

string them together. In the following step, one command line

you will tell BRU to estimate the size of an archive, create the

archive, and then inspect the archive:

l>BRU-eci

NOTE: Modes do not have to be entered in any particular

order; BRU executes them in order of priority. The order in

which BRU executes modes is:

■ecilxdgh

For example, Estimate will be done before Create, even if the

mode is specified as -ce.

Adding Control and Selection

Options

For more control over archiving, control and selection options

can be added to the BRU command line. These arguments may

also be strung together, with a single space to separate modes,

control options and selection options. (For a refresher on the

format of BRU command lines, see the "BRU Command Lines"

on page C-7.) This section will provide a few commonly used

examples of control and selection options.

BRU C-15

~

~

By adding the -v control option to any BRU command, BRU

will become verbose (talkative) and display each action it takes

as it occurs.

The following step illustrates combining the -e mode with the

-v control option, estimating the size of the Work: partition:

1. Type:

1 > BRU-e-v Work:

BRU will scroll through each file of the selected directory as it

tallies up a final estimate. A section of this estimate may look

like this:

e 4k of 6k [1] Work:HandShake.info

e

e

e

e

e

B

2k of

4k of

4k of

4k of

2k of

6k of

8k 11]

12k [1]

16k [1]

20k [1]

22k [1]

28k [11

WorkiTrashcan

Work:Trashcan.info

Work:Disk.info

Work:, info

Work:ClientBase

Work:ClientBase/Williams.proi

bru: 1 voiume(s), 7 files, 270 archive blocks, 540 Kbytes

From left to right, the line lists the mode being used (e in

this case), the size of the file, the total size of the archive (up to

that point), the volume number in the archive, and the name of

the file. BRU displays the total size of the archive at the end.

You may add the -v control option to any BRU mode.

Another commonly used control option labels your archive

with any name you'd like (up to 63 characters). The argument

for this control option is -L <str>, where <str> is the text

string to label your archive. This is useful if you create a

separate archive for each partition on your hard drive, for

example. That way, the name of the archive will be contained

on the archive disk.

C-16 BRU

The following BRU command line creates an archive of the

Work: partition, labels it WorkArchive and shows you each

step you are taking along the way (combining two control

option arguments— -v and -L <Str>):

BRU -c -vL WorkArchive Work:

The label WorkArchive is now present on the archive header on

the disks. The -g mode allows you to see the archive header.

To sec the archive header:

1. Load the first volume of the archive.

2. Type:

1>BRU-g

BRU will respond with the archive header, which will look

something like this:

1>BRU-g

label:

created:

device:

user:

group:

system:

bru:

release:

variant:

bufsize:

msize:

WorkArchive

MonSep24 12:04:191990

dfO:

root

root

unknown unknown AmigaDos vm unknown

"Amiga Release 1.1"

11.21

1

22528

901120

As mentioned earlier, selection options tell BRU which files to

select from the current directory or from a specified directory.

The argument -n <date> is the most commonly used selection

option. It tells BRU to only archive files that were modified or

created after the date and time you provide in the argument.

Let's say you archive your Work: directory every Friday at 5:00,

and last Friday's date was September 28, 1990. The following

example BRU command line will combine BRU modes,

control options and selection options. You could tell BRU to

BRU C-17

n estimate the size of the Work: partition (-e), create an archive

(-C), label it WorkArchive (-L <str>], and only archive files

that changed on Work: since last Friday (-n <date>) by typing:

BRU -ec -L WorkArchive -n 9-28-90,17:00:00 Work:

NOTE: There are four formats you can use to specify the date

with the -n <date> argument. For more information, see its

detailed explanation on page C-34.

Restoring Files to Your Hard Disk

When you need to restore files to your hard disk, you must first

decide where you want them. Where the files are placed in your

s-^. system is determined by the way you created your archive—

specifically, whether you stated a relative path or an absolute

path in the file list.

A relative path does not include the name of the partition. //

you created an archive of the current directory, the archive

was created with the relative path. When you restore files

created this way, you must change to the directory where you

want those files to go before restoring them.

An absolute path is the full path of a file or directory, and

includes the partition name. If you specified an absolute path

when you created an archive (such as adding Work: to the end

of the BRU command line), all filenames on the archive are

prefaced with Work: and will always be restored to that path.

For example, assume you are creating an archive of all files in

the directory DHO:dcvs/kcymaps. You want to be able to put

the files into a different directory when you restore. When you

create that archive, you would first CD to the DHO: directory,

and place devs/keymaps/* in the BRU command line's file

list. This makes devs/keymaps/* the relative path (with *

C-18 BRU

representing all files within that directory). Before you restore

them, you would have to CD to the directory where you want

the files.

Now let's say you are archiving the same directory, but you

always want files to be restored to their original locations in

DHO:, regardless of what directory you are in when you restore.

In this case, you can create the archive from any directory, but

must specify the absolute pathname in the file list (which is

DHO:devs/keymaps/*). In this case, when you restore, those

files will always be restored to drive DHO:.

The advantage of specifying a relative path is that a BRU disk

can be used to restore to a different directory than it was

created from or to a completely different system. It is the most

versatile method because files can be restored anywhere on any

system. If you want files restored to their original locations,

you simply change to that directory.

NOTE: When you restore files, if the specified file in the

archive is found to be older (an earlier date) than the current

file on disk, BRU will not restore it to your hard disk. This

default behavior avoids accidentally overwriting new files with

old files from an archive. The behavior can be overridden with

the -u option described in the BRU Argument Reference

section.

Before restoring files, you may want to check the table of

contents of an archive to see what it contains (also to see if the

files were archived with a relative or absolute pathname). The

mode that tells BRU to list a table of contents is -t. To do this:

1. Load the first volume of the archive.

2. Open a Shell and type:

1> STACK 25000

1>BRU-t

BRU C-19

BRU will list the table of contents of that disk (or tape). BRU

will then prompt you to reload if you have a multi-volume

archive.

Sometimes you will need to restore the entire archive to your

hard disk. For instance, you may have lost everything in a

partition by formatting it accidentally. To restore the entire

archive:

1. Change to the partition and/or directory where you

want the files.

2. Type:

1>BRU-x

Often, however, you will have to restore only one or two files

from the archive. To do this include the appropriate files in the

file list at the end of the BRU command line. You may list as

many files as you wish, but you must put in a space between

each one, such as:

1> BRU -x clients/smith.prof supplies/office supplies/retail

~

C-20 BRU

BRU Argument Reference Section

This section provides individual explanations of all BRU

commands.

Modes

Creating an Archive -c

Regardless of all the options you have available with BRU, a

command line as simple as this can be used to save everything

BRU can find in the current directory and within all

subdirectories:

BRU -c ^—'

If you wish to create an archive of a different directory, either

first change to that directory with the CD command or specify

that directory in the file list at the end of the BRU command

line.

Differences in size -d

With the -d mode, BRU detects and reports differences between

archived files and the files of the same name on your current

system. This is useful to verify an archive immediately after it

has been created. After an archive has been created, you can

use the -d mode to monitor which files have changed since

your last archive.

You should have the first volume (floppy disk or tape) in a drive

before you enter this option. When BRU is finished reading the

archive, it will print the list of files that differ between the

archive and your present directory, along with a slight

explanation of how the files are different. If no files are printed,

there arc no differences.

BRU C-21

~
You can use this option at the creation of the archive, such as:

BRU -cd [options] [files]

and BRU will check through the archive after it is created. Or

you can use it alone at a later date, such as:

BRU-d

to check which archived files might have changed since this

archive was created.

The -d mode can be used in one of four forms (-d, -dd, -ddd

or -dddd). The more -d's that are specified, the more detailed

the error message output. With a single -d specified, BRU

includes messages such as:

bru: "PRINT": no file: No such file or directory

bru: "PRINT'pscript.ps": no file. No such file or directory

bru: "PRIN17{sys|.prt": no file: No such file or directory

Estimating the Size -e

Normally the first argument used, the -e mode tells BRU to

make a quick scan across the files you have specified to archive

(the current directory if there are no files listed at the end of the

command line). Based on the type and size of the archive media

specified in Brutab (floppy disks, for example), BRU will tell

you the size of the archive and how many disks (or tapes) will

be needed to create this archive.

To estimate the size of an archive in the current directory, type:

BRU-e

BRU will respond with an estimate similar to this:

bru: 5 volume(s), 396 files, 1808 archive blocks, 3616 Kbytes

In this case, you must have five disks to perform your archive.

C-22 BRU

NOTE: The estimate mode cannot be used if file compression

is also selected. BRU would actually have to compress each file

just to find out how much space it would take up in the

archive. If you must have an estimate on an archive that uses

file compression, you can create an archive and redirect it to

the NIL: device by using:

BRU-cv-Z-(NIL: [files]

This command will write a compressed archive to the NIL:

device and the verbosity output would tell you how many

volumes would be needed to actually save the archive.

Information on file compression (-Z), verbosity (-v) and the

-f <path> option is provided later in this appendix.

Give Information on Archive Header -g

The -g mode does not perform any archive actions. BRU simply

lists archive header information on the current archive. To see

the archive header, have the first volume of the archive loaded

and type:

BRU-g

BRU will provide the archive header, such as:

label:

created:

device:

user:

group:

system:

bru:

release:

variant:

bufsize:

msize:

MyArchive

Mon Jan 12 11:22:41 1987

dfO:

root

root

unknown unknown AmigaDos vm T unknown

"Amiga Release 1.1"

11.20

1

22528

901120

BRU C-23

Print the BRU Help Screen -h

Typing the argument:

BRU-h

will display a quick reference page describing the various BRU

command line options.

Inspecting an Archive -i

Using the -i mode tells BRU to read the entire archive to make

sure it is intact. You may want to include this mode when you

create your archive to make sure that it can be read back later.

A defect in your archive could result in data loss when you

attempt to restore files from your archive.

To use this option, you may include -i in the command line

when you create an archive, such as:

BRU -ci [options] [files]

Note that you can tell BRU to inspect an archive at any time,

not only immmediately after creating it. You should load the

first volume of your archive before you specify the -i command,

as follows:

BRU-i

BRU will provide you with a list of any files which contain

errors and short explanation of which errors have occurred.

C-24 BRU

Listing the Table of Contents -t

The -t mode gives a listing of the table of contents of an <<s—'*
archive. This option interacts with the -v control option

(described later in this appendix) by providing you with more

detailed information if -v or -vv are specified with the

-t mode, such as:

BRU-t-V

or

BRU -t -vv

For example, when running the -t mode without any -v option,

the table of contents is simply the list of archived files:

1> BRU -t

PRINT/pscript.ps

PRINT/{sys|.prt

PRINT/Print

PRINT/Print.info

PRINT/Readme. Print

PRINT/Readme.Print.info

PRINT/PrintDef

Adding a single -v option produces a more specific table of

contents (note the file name on the right):

1> BRU -t-v

-rwxrwxrwx 1 root root 6915 Jan 11 1987 PRINT/pscript.ps

-rwxrwxrwx 1 root root 1598 Jan 11 1987 PRINT/{sys}.prt

-rwxrwxrwx 1 root root 37144 Jan 11 1987 PRINT/Print

-rwxrwxrwx 1 root root 478 Jan 11 1987 PRINT/Print.info

The -vv option, when used with -t, provides information about

hard or symbolic links, as well as file sizes. [Note: The Amiga

does not currently support hard or symbolic links. This

pertains to archives imported from UNIX operating systems.)

You can add up to four -v options, producing an even more

detailed output.

The first volume of your archive should be loaded before

specifying these commands.

BRU C-25

Extraction -x

Extraction is the process of restoring files from an archive to

your system. A command as simple as this restores an entire

archive to your system:

1> BRU -x

Where the files get placed in your system is determined by the

method you used to create your archive. If you created an

archive of the current directory or if you specified a relative

path on the command line, before you restore files you must

change to the directory where you want those files to go. If you

specify an absolute path when you create an archive, files are

always restored to that path. For more information and

examples see "Restoring Files to Your Hard Disk" on

page C-17.

You may also choose to restore specific files from an archive.

There are several ways you may choose to specify which files

should be extracted. Among them are:

• using a wildcard file name expansion

• specifying a file date

• using flags to specify how to extract files

These commands are selection options, explained later in this

appendix. In extraction, they are used in the same way they are

used when creating an archive.

~

C-26 BRU

Control Options

Amiga Specific Flags -A <flags>

This control option tells BRU how to handle pre-set archive

bits as well as other Amiga-specific options. Current flags are:

c Clear file archive bit after processing.

f During filter mode reroute interactions to message

port.

i Ignore file archive bit for selecting files,

r Reject files that have archived bit set.

s Set file archive bit after processing.

Set Archive Buffer Size -b <n>

To speed up the process of archiving, this option allows you to

set the archive buffer size to <n> bytes. The minimum is the

size of an archive block (2048 bytes) and the maximum is

determined by available memory and I/O device limitations. If

the byte size is not an even multiple of 2048 bytes, it will be

rounded up. Normally this option is only required with the -c

mode since BRU writes this information in the archive header

block. If specified, this byte size overrides any existing default

built in or read from the archive header.

Telling BRU to Run Without

User Intervention -B

Using the -B option forces BRU to run "in the background,"

expecting no user interaction. Perhaps before going home for

the night, you will insert a backup disk (or tape) in one or more

drives to do a nightly backup. Normally, if there is a user

BRU C-27

present, certain errors might be recoverable (such as an

unexpected disk full condition where BRU could have asked

you to insert another disk). The -B option says there is no one

here to ask for help, so BRU should terminate with an

appropriate error code instead of asking for, then waiting for,

user intervention.

If you or someone else is available during a backup, you may

decide not to use this option to guarantee that the backup

actually takes place.

Use Path as the Archive File -f <path>

The -f option is used to tell BRU to use multiple files or paths

(which could be devices, for example] to store the archives.

^^ This feature is known as device cycling. If multiple -f options

are given, each device is added to a list to cycle through each

time a volume change is required. When the end of the list is

reached, BRU automatically cycles back to the first device and

waits for confirmation to continue the cycle again. Any input

other than a carriage return will cause BRU to use the newly

entered path and to abort the cycling for the remainder of the

current run.

For example, if you want BRU to switch from drive DFO: to

drive DF1: when creating an archive, the command reads as

follows:

BRU-c-fdfO:-fdfi: [options] [files]

BRU will alternate between both floppy drives to back up the

archive file, starting with DFO:.

C-28 BRU

Fast Mode -F

In fast mode, check sum computations and comparisons are

disabled. This mode is useful when the output of one backup

is piped to the input of another backup, or when the data

integrity of the archive transmission medium is essentially

perfect. Archives recorded with fast mode enabled must also

be read with fast mode. Be aware that some of the automatic

features of BRU, such as automatic byte swapping, are not

functional in fast mode.

Interaction Option -I <option>

Using the interaction option allows you to run BRU from

programs that automatically run tasks at specified times and

frequencies. If no interaction with the user is required, the

effect is no different than running BRU as a background task.

However, when interaction is necessary there are two options:

to either terminate the program or to wait for a response to a

prompt. The -B option provides for simple termination while

the -I option provides for communication with a user.

BRU recognizes the following parameters for the -I option:

I,pathname write verbosity info to pathname

q,pipe (or file) write interaction queries to a named

pipe or file

rfpipe (or file) read interaction queries from named

pipe or file

You can use the device cycling feature {-f <path>) to specify

that more than one archive device contains disks that are ready

for an unattended backup. For example, you may load a set of

disks into several drives, and schedule AREXX to begin a daily

backup at midnight. BRU will do as much work as it can

without interaction, and then wait for you to provide any

additional information in the morning.

BRU C-29

Labeling an Archive -L <str>

You can label your archive by using the -L control option. This

information appears in the archive header which can be viewed

by using BRU's -g mode.

The following command line causes the label Test Backup to be

attached to the archive:

BRU -C -L "Test Backup' [options] [files]

Note that the label is enclosed in a pair of double quotes. You

must use a quote around labels contain a space in the name.

This ensures that the label will be seen as a combination of

two or more words. If you don't use the quotes, BRU would see

the word Test as the label and treat the word Backup as a

filename.

Labels can be a maximum of 63 characters.

Use nbits for Compression -N <nbits>

This is a file compression option used in conjunction with the

-Z command (discussed later in this appendix). N is the

number of bits used for compression. The default is 12 bits,

which is also the minimum allowable. The maximum

allowable value is 16 bits. Archives created with more than

12 bits of compression may be unreadable on smaller systems

due to memory or processor work length constraints.

Amiga users with only 512K of memory should not set

compression over 12 bits.

Pass Over Archive Files by Reading ■P

Normally BRU will use random access capabilities if available.

The -p option forces BRU to pass over files in an archive by

reading rather than seeking.

C-30 BRU

Pathname Handling and Expansion -P <flags>

The -P option with a flag provides special options for pathname

handling and expansions. Flags are:

e Turn off expansion of directories

E Turn on expansion of directories

f Turn off filter mode (build internal file tree]

F Turn on filter mode (do not build internal tree)

p Turn off auto archiving of parent directory nodes

IJ Turn on auto archiving of parent directory nodes

Exclude Remotely Mounted Files -R

If your computer is connected to a network (such as Ethernet)

with mounted file systems from remote computers, your

archive could end up being very large. You may only want to

back up the system on a single machine and not reach out

across the network to other machines. The -R option tells BRU

to exclude remote files from the archive.

If the system does not support remote filesystems, this option

is ignored.

Specify Size of Archive Media -s <n>

Although BRU reads the size of the archive media from Brutab,

this can be overridden with the -s <n> option, where <n> is

the new media size specified in bytes. For example, you may be

archiving to tape and have a few different sizes of tapes you use

for backups. Each time you run BRU you can specify which

kind of tape you'll be using. When the -s option is specified, it

overrides any other default value, even one that is read from

the tape header during a read or scan of the archive.

BRU C-31

Turn on Sparse File Options -S <n>

This command enables BRU to deal more intelligently with

sparse files (files with many null bytes). When used in

conjunction with the -c mode, this turns on automatic file

compression for files that are larger than the specified size

<n>. When extracting those files, the -S option should again

be specified with the same <n>. When used in conjunction

with the -x mode, seeks will be used to create blocks of null

bytes in the output file, rather than actually writing null bytes.

Setting the Verbosity Level -v

BRU normally tries to do its work silently, simply returning

control to you once it has completed its task. Instead of

guessing that all is going well, you may wish to see progress

messages as BRU performs its tasks. If you are a new user of

BRU, you may be interested in seeing the results of the

commands that you have provided to BRU.

The -v option sets the verbosity (or "talkative") level. There are

actually four levels of verbosity available for selection: -v, -vv,

-vvv, and -vvvv. The more v's specified in the option, the

more talkative BRU gets.

As an example of verbosity output, consider this example

where the command BRU -e -v was entered:

1> BRU-e-v

e

e

e

e

e

e

4k of

4k of

2k of

4k of

2k of

110k of

6k [1]

10k [1]

12k [1]

16k [1]

18k [1]

128k [1]

kick

wbscreen.info

Expansion

Expansion/.info

(bin

Ibin'BRU

C-32 BRU

The first field of the output contains the mode character, as

a reminder of what mode is currently running (the -e or

Estimate mode in this case). The next field gives the amount of

space in kilobytes that this particular file uses in the archive.

The next field ("of xxxk") gives a running total of the amount of

data in the archive, including the current file. NOTE: there is

an invisible header block of 2K, which is why the first value is

6K (2K header plus the 4K header block for the file Kick). The

number inside the pair of square brackets is the current volume

number. Finally, the name of the current file is listed.

Asking BRU to Wait for Confirmation -w

When the -w option is specified, for each file, BRU prints the

file name, shows the action that it is about to take, and asks for

confirmation that this action is OK to perform.

If you have a very long list of files, this option can take a long

time. Therefore BRU provides a special response that tells

BRU to continue without your prompts. This response is the

g character. For example (responses are in bold):

i>BRU-e-w

kick: please confirm [y/n g] y

2k of 4k [1] kick

wbscreen.info: please confirm [y/n/g] y

2k of 6k [1] wbscreen.info

Expansion: please confirm [y/n/g] y

72k of 78k [1] Expansion

Expansion.info: please confirm [y'n'g] g

68k of 146k [1] Expansionjnfo

BRU C-33

Use LZW File Compression -Z

If you specify the -Z option, BRU will use LZW file

compression to make the final size of the archive smaller.

Using this compression technique can result in space savings

of 0% to over 90% depending on the kinds of files being stored.

Typically, most files will compress about 30 to 50 percent,

however sparse files containing lots of redundant data or zeros,

such as large database files, may compress as much as 90% or

more.

The default is to use 12-bit compression, but up to 16-bit

compression can be used by specifying the -N <nbits> option,

where n is the desired number of bits (12 to 16).

If you want to know how much each file is compressed, specify

the -v option in conjunction with -Z and BRU will tell you

what percentage of compression each file received. If you are

simply cataloging an archive using the -t option, and the files

are compressed, specifying the -Z will report the compressed

size of each archived file, rather than the original size of the

file.

File Selection Options

Selecting Files by Date -n <date>

The -n option tells BRU that it should save or restore only files

that are newer than some specific date (the -n stands for "newer

than"). This option is useful when you are trying to set up a

schedule for daily, weekly, or monthly backups.

C-34 BRU

For example, you might want to do a daily backup, and

therefore specify the newer-than date as yesterday's date, at

some specific time. Then only files that have been modified

since that specific time yesterday will be copied into the

archive. If you are frequently adding files or changing files, it is

probably a very good idea to do daily backups of a filcsystem. In

addition to the daily backup, a weekly backup may be in order.

On a selected day of the week, you can tell BRU to save only

files that have been modified since the last weekly backup that

you ran. Once a month you could do a full backup of all files

and save these archives.

The frequency with which you should do backups, and the

length of time for which you should preserve them, depends on

how far back you might need to go to retrieve versions of files.

When using the -n <date> option, you may choose one of

three possible formats:

-nDD-MMM-YY[.HH:MM:SS]

As indicated by the square brackets, the time specification is

optional, and if present is separated from the day specification

by a comma. If no time is specified, an hour of 00:00:00 is

taken as the default.

DD Is the day of the month. A leading zero (e.g. 03)

to fill in the two digit field is necessary.

MMM Is the name of the month, abbreviated to its

first three characters.

YY Is the last two digits of the current year.

HH Specifies the hour.

MM Specifies the minute.

SS Specifics the seconds.

BRU C-35

^^^ -n MM/DD/YY[,HH:MM:SS)

An alternate, equally acceptable format. In this case, the

month is specified numerically.

-n MMDDHHMM[YY]

Another alternate, equally acceptable format. Again, all

components are specified numerically.

Unconditional File Type Extraction -u <flags>

Normally in extraction, BRU will not overwrite an existing file

with an older archive file of the same name. When used while

restoring files, specifying the -u option causes files of the type

specified by <flags> to be unconditionally selected regardless

of modification times. Files which are not superseded will give

warnings if the verbosity level is set at -vv or higher.

Characters for flags are:

a Use any file, same as giving all other args

d Use directories

f Use regular files (same as "r")

r Use regular files (same as "f")

C-36 BRU

BRU with UNIX

The commands in this section are specifically for use with

archives imported from UNIX systems.

Control Options

Control String ■# <str>

This option uses string <str> as a control string for the built in

debugging system. This option provides information about the

internal workings of BRU. It is only active in specially

compiled debugging version.

Do Not Reset Access Time -a

BRU normally changes the access times of a file while it reads

it. The -a option instructs BRU not to reset these access times.

Resetting these times prevents defeat of the mechanism used

to track down and remove "dead" files that haven't been

accessed recently.

Change the Owner of Extracted File -C

This option tells BRU to change the owner (chown) and group

of each extracted file to the owner uid and group gid of the

current user. Normally BRU will restore the owner and group

to those recorded in the archive. Use the -t -v option to sec the

owner and group of files stored in the archive.

BRU C-37

~

^ Double Buffer -D

The -D option causes BRU to use double buffering to the

archive device. Depending upon hardware constraints, double

buffering may dramatically increase the archive I/O rate, but

may adversely affect error recovery.

Interaction Option -I <option>

Using the interaction option allows you to run BRU from cron

(cron runs programs at specified times and frequencies). If no

interaction with the user is required, running from cron is no

different than running directly from a terminal. However,

when interaction is necessary there are two options: either

terminate or find some way to communicate with the operator

(or another program masquerading as the operator). The -B

option provides for simple termination while the -I option

provides for communication with an operator. BRU recognizes

the following parameters for the -I option:

l,pathname write verbosity info to pathname

q.fifo write interaction queries to fifo

r,fifo read interaction queries from fifo

You can use the device cycling feature (-f <path>) to specify

that more than one archive device contains disks that are ready

for a nightly backup. For example, you may load a set of disks

into several drives and schedule cron to begin a daily backup at

midnight. BRU will do as much work as it can without

interaction, and then wait for you to provide any additional

information in the morning.

Ignore Unresolved Links -I

Normally, BRU reports problems with unresolved links (both

regular and symbolic links). The -1 option suppresses all such

complaints.

C-38 BRU

Limit Directory Expansions to

Same Mounted Filesystem -m

This option instructs BRU not to cross mounted file system

boundaries during expansion of explicitly named directories.

This option applies only to directories named in files. It limits

selection of directory descendants to those located on the same

filesystem as the explicitly named directory. This option

currently applies only to the -c and -e modes.

Select Files Owned by User -o <user>

Sometimes you may want BRU to make your archive to

include files owned by an individual user. This option lets you

tell BRU for which user the archive is being created. BRU

accepts three different forms of user identifications (<user>):

• an ASCII string that identifies the user name for which

the archive is created. It must correspond to a user name

in a password file. An example is:

BRU -c -o fred

• a pathname. By specifying a pathname to a file, BRU will

assume that the owner of that file is the person for

whom the archive is being created. An example is:

BRU -c -o work:fred [files]

• a decimal value.

BRU C-39

— Selection Options

Unconditional File Type Extraction -u <flags>

Normally in extraction, BRU will not overwrite an existing file

with an older archive file of the same name. When used while

restoring files, specifying the -u option causes files of the type

specified by the flags to be unconditionally selected regardless

of modification times. Files which are not superseded will give

warnings if the verbosity level is set at -vv or higher.

Characters for flags are:

b use block special files

C use character special files

I use symbolic links

p use fifos (named pipes)

BRU Error Messages

With a properly configured Brutab file, BRU can recover from

most common errors. In addition to those customized error

indications in Brutab (where you tell BRU how your particular

system indicates certain errors), BRU can generate many more

error types. This section provides details on what those errors

mean, what BRU was doing when the error happened, and

possibly what you can do to correct the error.

Some errors cause BRU to stop, while other errors are

recoverable. In general, BRU will avoid giving up and exiting

in circumstances where it makes sense to attempt to continue.

A warning usually results in an informational message.

C-40 BRU

For example, if you attempt to use a write protected disk

during creation of an archive, BRU will warn you and allow

you to reload volume one before continuing. When a volume is

inserted out of order on multi-volume archive reads, BRU

requests replacement of the out of sequence volume with the

correct volume.

Error and warning messages in this section are given in

alphabetical order. They are subdivided into three classes:

• Messages that start with a filename

• Messages that start with "warning —"

• Other messages

Conventions used for Error Messages

In the following descriptions, the notations filename, process, or

string, indicate that BRU has printed a file name, process name,

or appropriate string at that place in the error message.

When you see the notation 000, BRU has printed a numeric

value in its place.

Messages Starting with Filename

filename: can't access for read

The specified file could not be accessed for read. This is usually

because the read protection bit is not set.

filename: can't access for write

The specified file could not be accessed for write. This is

usually because the write protection bit is not set.

filename: can't exec . . .

BRU could not exec the given file, for the reason that is given

as part of the error message. Generally, this error occurs

because the specified file does not exist, or is not executable by

the user running BRU.

BRU C-41

filename: can't link to filename

BRU had an error attempting to make a hard link between two

files.

filename: can't open

BRU could not open the named file. The reason is given as part

of the error message, and is usually because the read protection

bit is not set.

filename: can't open archive

BRU cannot open the archive file. The reason is given as part of

the error message.

filename: can't overwrite

The specified file could not be overwritten during extraction,

and is usually because the write protection bit is not set.

filename: can't stat

The stat call or examine system call failed. Generally this

indicates a permissions problem,

filename: could not make fifo

BRU was asked to create a fifo on a system that does not

support fifos, and it could not even make a regular file of the

same name.

filename: could not make symbolic link

BRU was unable to create a symbolic link.

filename: error making directory

BRU could not make a directory for some reason.

filename: error making node

BRU got an error while attempting to create a special file

system node, such as a fifo, block special file, or character

special file.

filename: error reading symbolic link

BRU could not read a symbolic link for some reason.

C-42 BRU

filename: line 000, obsolete brutab format

BRU detected an obsolete Brutab format while reading the

Brutab file.

filename: media ejection failed

On systems that support ejection of archive media under

software control, BRU may be configured to eject each media

when it is finished with it. This error message indicates that

BRU encountered some sort of error while attempting to eject

the media.

filename: no file

The named file does not exist or part of the pathname is not

searchable, and is usually because the read protection bit is not

set.

filename: not deleted

BRU got some sort of error while attempting to delete a file,

filename: read error

BRU got a read error while reading a file from disk. This error

should generally not occur. If it does, it usually indicates a

hardware problem.

filename: symbolic links not supported

While reading during the differences mode (-d), BRU

encountered a symbolic link on a system that does not support

symbolic links,

filename: write error

BRU got an error while writing a file to disk. This error

generally indicates a hardware problem or a full disk,

filename: warning — 000 additional link(s) added while archiving

While BRU was archiving a file, there were additional links

made to it. These additional links may or may not have been

archived.

BRU C-43

filename: warning — 000 block checksum errors

While reading an archive, BRU detected the specified number

of checksum errors in the specified file. This generally

indicates a hardware problem.

filename: warning — 000 unresolved link(s)

While archiving a set of files, BRU detected that not all links to

the specified file were found and archived. In other words,

there is still another pathname that points to the same file,

that does not appear in the archive.

filename: warning — block sequence error

BRU detected an inconsistency in the ordering of blocks

returned by the archive device on a read. For example, BRU

asked for blocks U, 12, 13, 14, 15 and got blocks 11, 12, 14, 15,

16. This sort of error generally indicates a hardware problem,

usually on tape drives.

filename: warning — close error on archive

BRU got some sort of error while attempting to close the

archive file.

filename: warning — compressed version was larger, stored uncompressed

When file compression is utilized with the -Z control option,

BRU will check to ensure that the compressed version of the

file uses fewer archive blocks than the uncompressed version.

If the compressed version does not result in any savings in

archive space, the uncompressed version will be archived

instead. If the verbosity level is 4 or greater, BRU will give

warnings for those files for which compression was not

effective in saving archive space.

filename: warning — compression tailed, stored uncompressed

While attempting to compress a file for storage, BRU got some

sort of error (such as overflowing the filesystem temporary

space for example). BRU could not generate the compressed

version of the file and therefore stored it uncompressed.

C-44 BRU

filename: warning — decompression failed, not extracted

While attempting to extract a file that was stored in

compressed format, BRU encountered some sort of error that it

could not recover from, In this case, the file is not extracted

and this warning message is issued.

filename: warning — error setting mode

BRU got an error while attempting to set the mode of a file,

filename: warning — error setting times

BRU got an error while attempting to set the date or time of

a file.

filename: warning — file close error

BRU got an error while closing the named file,

filename: warning — file grew while archiving

The specified file grew in length while BRU was in the process

of reading it. If BRU was creating an archive at the time, the

archived file is truncated to the size it was originally, when

BRU started archiving it. This is the same size that is recorded

in the file header block. This sort of warning is commonly seen

for log or audit files, to which information is appended

periodically. It can generally be avoided by only backing up the

system in single user mode, but this is seldom worth the

downtime.

filename: warning — file was truncated

The specified file was truncated while BRU was in the process

of reading it. If BRU was creating an archive at the time, the

archived file is padded with sufficient null characters to bring

it back to the size it was originally, when BRU started

archiving it. This is the same size that is recorded in the file

header block.

BRU C-45

~

~

filename: warning — lost linkage

BRU could not preserve the linkage of two files. This message

is generally seen when BRU runs out of memory while

attempting to allocate memory internally to maintain the

linkage information. In this case, the file will be archived as

two separate, distinct files in the archive. Only the linkage

information will be lost,

filename: warning — not found or not selected

The user specified a file on the command line that was not

found, either on disk or in the archive,

filename: warning — not superseded

During extraction, the specified file in the archive was found to

be older (an earlier date) than the current file on disk, so the

extraction was not performed. This behavior is the default to

avoid accidentally overwriting new files with old files from an

archive. The behavior can be overridden with the -u option.

Also, this message will only be seen if the verbosity level is 2

or greater, because it is common to use BRU to overlay an

existing file tree, only replacing or restoring files that are

missing or out of date. In this case, one does not generally wish

to be deluged with warning messages about the files that were

not extracted.

filename: warning — unrecoverable archive write error, some data lost

While creating an archive, BRU got an unrecoverable write

error, and all or part of the I/O buffer was lost. This message

indicates which file or files in the archive were affected by the

data loss, one message per file.

C-46 BRU

Messages Starting with warning

These messages all start with the string "warning — ".

warning — all data currently on filename will be destroyed

When the Brutab entry for a device includes the qfwrite

boolean value, this message will be issued on the first write to

the first volume placed in that device, and BRU will wait for

confirmation to continue. In devices which might share both

mounted and unmounted media, this prevents inadvertently

overwriting media that may have been left in the device by

mistake.

warning — archive read error at block 000

BRU got an unrecoverable error while attempting to read an

archive. Whatever data was available at that location in the

archive is not recoverable.

warning — archive write error at block 000

BRU got an unrecoverable error while attempting to write an

archive. Whatever data was to be written at that location in the

archive has been discarded. Proper corrective action depends

upon the situation and the specific file within which the error

occurred.

If this error occurs on the first block of an archive, the archive

may be write protected, in which case the wperr parameter is

probably set wrong in the Brutab file, or BRU would have

issued a different warning message. Another possibility is that

the I/O buffer size is too large for the given device. Experiment

with a smaller I/O buffer size (see the -b <size> option) and set

the maxbufsize parameter in the Brutab file as appropriate.

warning — assuming end of volume 000 (unknown size)

While reading or writing a volume of unknown size, BRU has

encountered an unrecoverable read or write error before

reaching the end of the archive. It may have actually reached

the end of the volume, or it may have simply reached a bad

BRU C-47

spot on the media, which it cannot skip. Since it does not

know the size, it has no way of knowing the difference, hence

the warning message. If no other warnings or errors occur, this

warning is benign.

warning — attempt to change buffer size from 000 to 000 ignored (incompatible brutab

entries)

While reading or writing an archive using multiple devices and

not using the -b option, BRU detected inconsistent default

buffer sizes between the devices, usually as a result of reading a

bufsize parameter from the Brutab entry. The buffer size is not

allowed to change between volumes of an archive. To avoid

this warning message use the -b option to force a specific buffer

size for all volumes.

warning — buffer size (000) exceeds system imposed limit (000} with double buffering

warning — buffer size automatically adjusted lo 000

While attempting to set up double buffering, BRU was asked to

use an I/O buffer size that resulted in the double buffering

buffers exceeding the system imposed shared memory limits.

The I/O buffer size was automatically adjusted downwards to

the maximum size that the system could support,

warning — estimate mode ignores compression

This warning message results when both the -e and -2 options

are given simultaneously. Because of the large overhead in

compressing files, and because there is no way to determine

the compression ratio without actually doing the compression,

BRU cannot estimate how much archive space is required for

an archive when compression is enabled. Therefore, the -e

option ignores possible savings due to compression.

warning — extracted fifo filename as a regular file

BRU was asked to extract a fifo on a system that does not

support fifo's, so it extracted the file as a regular file.

C-48 BRU

warning — tile synchronization error; attempting recovery . . .

BRU was expecting to find a file header block while reading an

archive, but instead found another type of block. This warning

is normal if you start reading an archive at a volume other than

the first volume, or skip a volume in the middle of reading an

archive. BRU will scan each successive archive block looking

for a file header block, and normal processing will resume from

the first file header block found.

warning — found volume 000 expecting 000

When extracting files from sequential volumes, you have

inserted a volume out of sequence. Remove the volume and

replace it with the correct one.

warning — label string too big

A user specified label, as given with the -L option, exceeds the

limit imposed by the BRU archive format. This limit is

currently 63 characters.

warning — link oi filename to filename f lename does noi exist

BRU was asked to create a hard link to a file that does not exist.

warning — link of filename to filename, lilename is a directory, no link made

BRU was asked to create a symbolic link to an existing file that

is a directory, on a system that docs not support symbolic

links. Since hard links to directories are not allowed by BRU,

this warning is issued and no link is made,

warning — may have to use -F option to read archive

BRU spends considerable time computing checksums for each

block of data that it writes to the archive. Some users disable

the checksum feature with the -F option when creating

archives, although this is not recommended. The -F option

must also be given when reading such an archive, and BRU will

issue this warning when it detects archive input that appears

not to have any checksums.

BRU C-49

~

"

warning — media appears to be unformatted

When BRU gets an error on the first read or write to a particular

volume and the error conditions match the values set in the

Brutab entry for unformatted media in this device, BRU will

issue this warning message before asking for a formatted

media. This message may also appear when there is, for

example, no disk present in the disk drive. Note that if the

format boolean value is set for the device, this warning will be

suppressed and BRU will attempt to format the media.

warning — media appears to be unformatted or write protected

This is a general error that might appear on the first attempt to

read or write an archive volume which is unformatted, or on an

attempt to write to an archive volume that is write protected.

warning — media appears to be write protected

When BRU gets an error on the first write to a particular

volume and the error conditions match the values set in the

Brutab entry for write protected media in this device, BRU will

issue this warning message before asking for another media,

warning — missing archive header block; starting at volume 000

BRU could not find the archive header block for some reason.

This warning is normal when starting to read an archive at

some volume other than the first volume.

warning — premature end of volume 000

BRU hit an end of file before the size of the archive volume you

specified was reached.

warning — using internal default device table

BRU could not find the Brutab file generally located in S:,

or could not find a Brutab file specified by the BRUTAB

environment variable. In this case, it will then use the internal

Brutab, which may not be correct for the current system.

*

C-50 BRU

warning — volume not part of archive created datestring

The volume that you have given to BRU, although the correct

volume number, has a different creation time than that of the

archive being extracted at the present time. The actual creation

date and time are reported with this warning message.

Other Messages

bad number of bits (000) for compression (max 000)

While reading a file from an archive, BRU found a file that was

compressed with more bits than it was capable of dealing with.

This error should never occur unless the archive has been

corrupted or unless an attempt has been made to read an

archive that was written on another machine with other than

the default number of bits (12-bits). The default is for BRU to

use 12-bit compression.

can't allocate 000 archive buffer

BRU could not allocate an I/O buffer of the requested size. The

maximum size is generally hardware and operating system

specific, and may also depend upon what other programs are

running on the system. For corrective action, attempt to reduce

the amount of real memory in use, or rerun with a smaller

buffer size,

can't allocate 000 more bytes

BRU has run out of memory for some reason. This generally

occurs when memory is very limited on the system due to

hardware or cpu constraints.

compression initialization failed, -Z suppressed

BRU was unable to acquire sufficient memory to perform the

requested file compression. Try reducing the number of bits of

compression, using the -N <nbits> option.

BRU C-51

~

~

~

date conversion error: string

BRU could not convert the specified string into a date. This

generally occurs due to a mistyped date string or not following

the allowed syntax rules for date strings,

don't understand -I option string

The given string was not recognized as a valid argument for the

interaction option -I.

double butter child died, status 000

The child process used for double buffering died unexpectedly

with the given status,

double buffer child error 000

The child process used for double buffering got some sort of

fatal error that it was able to recognize as unrecoverable,

inconsistent wait status %o

The wait system call returned a value that BRU was not able to

understand. Generally this error should not occur, but if it

does, it probably indicates a kernel bug.

interaction needed, aborted by -B option

BRU was run with the -B option, indicating that no user was

present and that the desired behavior, if interaction was

necessary, was to abort,

internal bug in routine function

BRU has detected some sort of internal bug. This sort of error

should not occur. If it does, it may possibly be a real bug in BRU

or a hardware or software problem,

media size smaller than I/O buffer size!

The media size is inconsistent with the I/O buffer size. The

media size must be at least as large as the I/O buffer. In other

words, it is not possible to write a 1MB I/O buffer to a media

that is only 500K.

C-52 BRU

need more than 000 shared memory segments

BRU was not able to allocate enough shared memory segments

to properly set up double buffering,

no default device in brutab file, use -f option

BRU could not find any default device in the Brutab file.

no double buffer child to reap

While waiting for the double buffer child to exit, the wait

system call failed for some reason that was unexpected in the

parent process,

pathname filename too big

The pathname exceeds the maximum size which is permitted

by the BRU archive format. This is currently 127 characters.

This restriction may be lifted in a future version of BRU. For

now it is suggested to archive the file using only part of the

pathname, or reduce the number of intervening directories

from the root directory.

pathname too big. lost filename

While building a file tree, BRU has created a path that

exceeds the specified maximum pathname size (currently

127 characters).

problem setting up double buffering

BRU encountered a problem setting up the double buffering.

Sometimes reducing the I/O buffer size will cure the problem,

process: fatal error; stopped by signal 000

The child process that BRU was waiting for was stopped by the

specified signal.

process: fatal error; terminated by signal 000

The child process that BRU was waiting for was terminated by

the specified signal.

BRU C-53

seek error on archive

BRU got an unrecoverable seek error on an archive file,

specify mode (—cdeghitx)

BRU was run without specifying any sort of major mode.

Rerun with one or more mode flags specified.

support for obsolete brutab format not compiled in

Support for the original Brutab format, now obsolete, has not

been compiled into this particular version of BRU, but BRU

was asked to read an obsolete format Brutab file. Convert your

Brutab file to the new format.

untermmated character class

BRU detected a Shell-style wildcard file specification that was

^—. syntactically incorrect.

Fountain D-l

"" Appendix D. Fountain

The Fountain utility, in the System drawer of the Extras2.0

disk, manages the installation of Intellifont® outline fonts

onto your Amiga. The outline fonts are included on the

AmigaFonts2.0 disk, along with the standard Amiga bitmap

fonts. In general, Fountain works best on computers equipped

with hard disks, although it is possible to use it with floppy

disk systems.

Traditionally, the Amiga has used bitmap fonts. For each font

style supplied on disk, there is a separate file containing the

^_^ data used to produce each available size of that style. For

instance, the Helvetica directory contains the following files:

9,11,13,15, 18 and 24. Those files store the data used to create

the corresponding Helvetica type sizes. Some application

programs include conversion programs that allow you to use

other sizes of the font. For instance, if you want to use

Helvetica 20, the program will take the next closest Helvetica

size and enlarge or reduce it to the appropriate size.

Outline fonts do not have separate files for each point size.

Instead, the computer uses a mathematical formula to convert

the basic font to whatever size is needed. While it takes

slightly longer to access an outline font than a bitmap font, you

do not need to store all the individual font files on your disks.

Also, outline fonts appear on the screen just as they will appear

on your printout, regardless of the type of printer you use. You

no longer need to use a postscript printer to get high-quality

output. Of course, the sizes you use on your screen are

generally much smaller than the sizes you print.

D-2 Fountain

Installing Fountain

If you have just brought a new Amiga computer with a hard

drive, the program will already be installed in the System2.0

partition. If you are upgrading your software the UpdateWB

program on the 2.0Install disk installs the files in the

appropriate directories. If you need to install Fountain

manually, please read the following section to learn how to

install Fountain on your computer.

On a hard disk system:

You need to copy the contents of the AmigaFonts2.0 disk to

your System2.0 (SYS:) partition. To do this, follow the steps

below:

1. Insert the AmigaFonts2.0 disk into the floppy disk

drive.

2. Open the Shell icon in the System2.0 disk window.

3. Use the COPY command to copy the contents of the

AmigaFonts2.0 disk to the System2.0 partition. Type:

COPY AmigaFonts2.0: Sys: ALL

This will copy all the files on the AmigaFonts2.0 disk to

the appropriate directories on System2.0.

NOTE: This will replace the standard diskfont.library file with

a new outline fonts diskfont.library. You should not need the

standard diskfont.library as the new library handles both

bitmap and outline fonts. If for some reason you wish to use

the standard library, you can restore it from your original

Workbench2.0 disk.

Fountain D-3

On a floppy disk system:

To use Fountain with a floppy disk system, we recommend you

have at least two disk drives, and at least one megabyte of

RAM. Boot your system with the Workbench2.0 disk, or

another bootable application disk, and keep your

AmigaFonts2.0 disk in the second drive. You will have to add

an ASSIGN statement to the User-Startup file of your bootable

disk telling the system that the Fonts directory is on the

AmigaFonts2.0 disk. Open the User-Startup file, and add the

following line:

ASSIGN FONTS: AmigaFonts2.0: DEFER ADD

The DEFER option tells ASSIGN not to request the

AmigaFonts2.0 disk until the system needs it. Your system

will then access the AmigaFonts2.0 disk whenever it needs to

use the Fountain program or a font file.

Using Fountain

Double-click on the Fountain icon, and a window appears:

c Fountain iFiitnHHFi

Outline Font Source Destination Font Drauer

Source Typefaces

i

>

Install Harked Typefaces

£)||Systefl2.B:Fonts w

i

O| Fonts: Path Component 11

Existing Fonts & Typefaces

CGTines
courier
dianond
enerald
garnet
helvetica
LetterGothic
opal
ruby
sapphire
tines

Modify Existing Typefaces...

IHIB

S\

V

3 <l>l(^

D-4 Fountain

NOTE: If you press Help while in the Fountain program,

instruction windows will appear to explain the gadgets in the

window.

This window allows you to install additional fonts (aside from

the fonts installed during the installation process) in one of

your fonts directories. Fountain understands two typeface

formats: Amiga Compugraphic® font disks and standard

Compugraphic disks containing FAIS files. In the case of

standard Compugraphic disks, you will have to first use an

MS-DOS handler utility or Amiga Bridgeboard™ to convert the

files to AmigaDOS format, since they are in MS-DOS format.

Once the fonts are properly installed, they will be available to

any application programs that use them.

You must specify the complete path to the disk containing the

fonts. To do this, either type the path in the Outline Font

Source text gadget, or select the file folder gadget next to the

text gadget to open a file requester. (Since you only need to

specify a directory, the file text gadget is ignored in this

requester.) Once the full path has been specified, Fountain will

then display the available outline fonts in the Source Typefaces

scroll gadget.

The typefaces will be installed in the drawer displayed in the

Destination Font Drawer text gadget. If you have more than

one fonts directory set up in your assign path, you can use the

Fonts: Path Component cycle gadget to switch between the

directories. You can also type in a non-assigned directory. (In

this case, the cycle gadget will display Not in FONTS: Path.

The contents of the Destination Font Drawer are shown in the

Existing Fonts & Typefaces scroll gadget. Outline fonts are

indicated with a small bullet (•].

Fountain D-5

r>

~

Select each typeface that you want to install by clicking on it.

A plus (+) sign will appear. Then select the Installing New

Typefaces gadget. These typefaces will be copied to the

Destination Font Drawer. While the fonts are being installed,

the minute hand in the wait pointer indicates approximately

how much time is left in the process.

Whenever you install a typeface, the fountain environment

variable ENV:Sys/Fountain is used to initialize the list of sizes

that will typically be presented by applications in their font

menus. You can change these sizes by selecting the Modify

Existing Typefaces gadget. This will open a new window:

1 Fountain: Hod ify Existing Typefaces

Existing Outline Typefaces

|Systen2.B:Fonts
Size & Bitnap

CGTines
LetterGothic
UrtiversHediun

18
29
38
48
58

CGTines Size M8

Delete Typeface
Create Bitnapl

fjelete Size | Delete Bitnapl

Perforn Changes Cancel

The outline typefaces are listed in the Existing Outline

Typefaces scroll gadget on the left side of the window. The path

to the directory containing the fonts is shown in the display

box above the scroll gadget. This directory cannot be changed

from within the Modify Existing Typefaces window. (If you

need to change it, select Cancel to return to the original

Fountain window.) To select a typeface to modify, click on it.

The selected typeface appears in the display box underneath

the scroll gadget.

for more information

on environment vari

ables, see Chapter 7,

"Using AmigaDOS."

D-6 Fountain

The available sizes for the selected typeface, as determined by

the Fountain environment variable, are shown in the Size &

Bitmap scroll gadget. The smaller sizes are appropriate for

document text, while the larger sizes are often used for

presentation graphics.

You can create new sizes for the typeface or create a bitmap file

for a specific size by using the gadgets in the lower right corner

of the window. These gadgets are described below:

Add Size Enter the desired size into the Size display

box, then choose the Add Size gadget.

Delete Size Select the desired size or enter it into the Size

display box, then choose the Delete Size

gadget.

Create Creates a bitmap for the size displayed in the

Bitmap Size gadget. A bitmap file takes disk space but

is quicker to load. If you routinely use one

size, you may want to create a bitmap for it.

Delete Deletes the bitmap file for the size displayed.

Bitmap The size will still be available as an outline

font.

Keyboard shortcut: Instead of selecting the above gadgets, you

can simply press the initial letter of the gadget (underlined on

the display). For instance, pressing A is the same as selecting

the Add Size gadget.

To save your changes you must select the Perform Changes

gadget. The Cancel gadget returns you to the original Fountain

window. If you select the close gadget, you will close both

Fountain windows and exit the program.

Fountain D-7

Changing Environment Variables

Fountain uses two environment variables to store

specifications about your outline fonts: Fountain and

Diskfont. The Fountain environment variable, stored in

ENV:Sys/Fountain, is used to create the list of sizes that will

typically be presented by applications in their font menus. By

default these sizes are 15,30,45, 60 and 75. If you find yourself

always using different sizes, you may want to change this

variable. To do so, use a text editor and save the file to

SYS:Prefs/Env-Archive/Sys/Fountain. The file should include

a list of sizes saved in ASCII format. The maximum number of

sizes permissible is 20.

The Diskfont variable, stored in ENV:Sys/Diskfont, specifies

the parameters used by the diskfont library when it converts an

outline typeface into an Amiga graphics font. The format of the

variable is:

XDPI/N, YPOI/N, XDOTP/N, YDOTP/N

The XDPI and YDPI parameters adjust the aspect ratio. By

default, the ratio is 1:1. If you know that the fonts will be used

in the Hires display mode, you can adjust the aspect ratio

appropriately by changing the XDPI value to 100 and the YDPI

value to 50. To do so, use a text editor and save the file to

SYS:Prefs/Env-Archive/Sys/Diskfont. Your file would look

something like this:

XOP1100 YDPI 50

If XDPI is specified, YDPI must also be specified.

D-8 Fountain

The XDOTP and YDOTP parameters control the dot size

percentage — the space a dot fills in relation to the screen

resolution. The default value for both XDOTP and YDOTP is

100. This means that a dot fills the same size as implied by the

resolution. There should be no need to change this default. If

XDOTP is specified, YDOTP must also be specified.

NOTE: Very large or very small values of XDOTP or YDOTP

are required before you see a difference.

Glossary

This glossary provides definitions of terms selected from the

Introducing the Amiga and Using the System Software

manuals.

absolute path
The explicit identification of a file or directory—one that includes the

device or partition name and any directories that lead to the file.

acceleration

An option, selected through the Input editor, which causes the pointer

movement to increase as the mouse is moved at a constant speed.

Acceleration provides a higher degree of control for small mouse

movements and less control, but greater mouse speed, for large

movements.

action gadget
A box in a window that lets you choose an operation to be performed in

the window by selecting the box. Common action gadgets are Save,

Continue, and Cancel.

active
Currently selected, used in reference to the selected Workbench window.

address
An identifying number assigned to a device attached to the Amiga. For

example, each SCSI device attached to your Amiga needs a separate

address. The Amiga uses the address to locate the device.

alias
An alternative name for an AmigaDOS command or command string,

specified with the ALIAS command.

AmigaDOS
The disk operating system (DOS) used by Amiga computers. A disk

operating system provides the basic functions of the computer.

application
Instructions that tell the Amiga how to perform specific tasks, such as

those required by a word processor, database, or video titler.

archive
1. (n) A backup copy of a file or files.

2. (v] To copy files to disk or tape for backup purposes.

Glossary

argument

An additional piece of information, such as a filename, value, or option,

included along with a command. This information determines the exact

action of the command.

argument passing
Specifying, on the command liner parameters for a program or command

to follow.

ASCII (American Standard Code for Information

Interchange)
A standardized format for text that allows the exchange of information

between different types of computers.

assign
To link a directory name to a logical device name, with the ASSIGN

command, so that programs that use that directory can look for one device

name rather than having to search through several volumes for the

directory. For instance, the RAM:T directory is commonly assigned to

the device name T:.

attributes
A series of flags stored with every file. Attributes indicate file type and

control the operations (read, write, delete, etc.) permissible on the file.

Also called protection bits.

autoscroll
To automatically move a screen when the pointer reaches the edges of the

viewable area.

background process
A program that is started from the Shell with the RUN command. The

program does not take over the Shell but is run in the "background."

backup

A copy of a file on disk or tape used to replace lost data.

back up
To make a backup copy.

bad block

A faulty area on a disk that cannot properly store information. Hard disk
utilities often have provisions for "mapping out" (finding and marking as
unusable] bad blocks detected on a hard disk.

Glossary

nbaud rate
The speed at which a device receives or transmits information in serial

communication. Roughly equivalent to bits per second.

binary
The base-2 number system which only uses the digits 0 and 1.

bit

1. A single binary digit 11 or 0).

2. A flag that has only two possible states (for example, delctable or

undelctable|.

block

1. A contiguous series of bytes (usually 5321 treated as a single logical

unit in RAM or permanent storage media.

2. A contiguous, related section of a text file (for example, an IF block in a

script).

boolean
Having two possible states: on or off, true or false, yes or no.

boot

To read the information needed to start the system from a storage device,

such as a floppy or hard disk, into the computer's memory. Also refers to

items used in this process: the boot disk. (See reboot.]

bootable
Refers to a device from which the Amiga can boot. A bootable disk must

contain all the system files needed for the computer to start operation.

boot priority
A value assigned to each device to determine the order in which devices

are checked to determine the boot device.

Bridgeboard
^^^ An expansion board made by Commodore that allows the Amiga to

emulate PC and PC-compatible computers.

brush

An IFF graphics file, usually a section cut from a full-sized picture.

Glossary

buffer
A temporary storage area in RAM.

bug

An error in software or hardware.

byte

A unit of memory consisting of eight bits, usually equivalent to one

character.

cache

A temporary storage area (memory] used to improve system performance.

character pointer
In EDIT, the > symbol which is used to indicate the current position of

the line window (line segment).

check box
A gadget that lets you turn an option on or off. When a check mark

appears in the box, the option is selected, or on.

chip
A miniaturized electronic circuit, housed in a small, black, rectangular

block edged by metal connector pins. A computer is made up of a variety

of specialized chips.

Chip RAM

The area of RAM accessible to the Amiga's custom chip set. This memory

is used for graphics and sound data. Also called graphics memory.

clear
1. To change a bit or flag to its 0, off or disabled state. Opposite of set.

2. To erase a screen or window display.

CLI (Command Line Interface)
A means of communicating with a computer by issuing commands from

the keyboard. The program to let you do this on the Amiga is called the

Shell. Before the Shell was available, the program used was called the CLI.

click
To press and release a mouse button.

Glossary

~
close

To remove a window from the screen.

close gadget
A gadget which may appear in the upper left corner of a window to allow

you to close the window.

cold reboot
To reset the Amiga by turning the power off, waiting 20 seconds, then

restoring power.

color correction
A printing option, selected through the PrinterGfx editor, that tries to

better match the colors of a printout to the colors on the screen.

command
A statement given to the Amiga to perform a task or achieve a result.

command history
A feature of the Shell which allows you to recall previously entered

command lines by using the cursor keys.

command line
The line on which commands and their arguments are typed. Also, all the

information that has been typed on the line.

compress

To make files smaller. Commonly used in backup programs so that you

can fit more files on a floppy disk.

condition flag
A variable that contains a return code value indicating the success or

failure of command execution.

console window
A window used for the input and output of text.

contiguous
Continuous; consisting of a series of adjacent items. Contiguous memory

is a block of memory.

Glossary

Control-key combination
A key combination that performs a special function, entered by holding

down Ctrl while pressing another key on the keyboard. Some Control-key

combinations are executed as soon as they are pressed, such as when

Ctrl-C is used to abort the execution of an AmigaDOS command. Some

produce a reversed character image and have no immediate effect.

controller
A hardware device, such as a hard disk controller, which acts as an

interface between the computer and a peripheral.

coprocessor

A separate processor chip that assists the CPU by performing specific

tasks, such as mathematical computations or rapid data transfer.

copy and paste
The act of copying a block of text to a new location within a console

window.

CPU (Central Processing Unit)
The "brain" of a computer; the integrated circuit chip primarily

responsible for executing the instructions in a program.

current directory
The current location in the directory structure. The directory AmigaDOS

will use as the default directory to operate within, if no other directory

is specified.

cursor

A highlighted rectangle on the screen used to indicate text position.

cycle gadget
A gadget for selecting one of several options. One option is displayed at a

time, and as the gadget is selected, the other options become visible. The

displayed option is the selected option.

cylinder
A logical division of a magnetic storage disk. Amiga 3.5 inch floppy disks

are divided into 80 cylinders during the formatting process.

Glossary

~

~

data
A collection of information.

dead key
A key, or key combination, which modifies the output of the next key

to be pressed. For instance, on an American keyboard, Alt-H will

superimpose a caret (■] symbol over the next key to be pressed. Alt-H

is a dead key combination.

debug
To find and fix mistakes in software or hardware.

default
A value or action assumed if you have not specified anything.

Default Tool
A tool specified in the project icon's Information window. When the

project icon is opened, the Default Tool is automatically loaded and run.

delete
To erase or discard a file, buffer, or other stored item.

delimiter
A character that marks the beginning and end of a string.

density

The number of dots per inch. Many printers support several print

densities. Usually, the higher the density, the clearer the printout will be.

depth gadget
A gadget which may appear in the upper right corner of a window or

screen for moving that window or screen in front of or behind other

windows or screens. This is sometimes referred to as depth adjusting.

destination
The device, directory or file that is receiving information. For instance, in

EDIT, the file that the revised text is being sent to is the destination file.

device
A physical mechanism, such as a printer or disk drive, or a software entity

[logical device), such as CON: or NIL:, used as a source or destination for

information.

8 Glossary

device handler
Files that act as intermediate stages between AmigaDOS and physical

devices, such as the Port-handler file in the L; directory which handles the

interface for the PAR:, SER:, and PRT: devices.

device name
A short name, such as DFO:, FH2:, or PRT:, that identifies a particular

hardware or software device. Device names must end in a colon (:).

directory
A subdivision in a computer's filing system used to organize files and

other directories (subdirectories!. Directories are represented on the

Workbench as drawer icons.

disk
A medium for mass storage of computer data. Most computer disks store

information magnetically; optical (laser-read) disks arc also used.

disk drive
A storage device that reads and writes data from and to a storage disk,

such as a floppy disk.

disk operating system
Software, supplied on floppy or hard disk, that controls the basic

functions of a computer.

display box
A rectangular box, usually under a scroll gadget or next to a selection

gadget, that displays the current selection. You cannot edit a display box.

display mode
A name given to the number of horizontal and vertical pixels that make

up the screen. For instance, a Hires display mode is 640 pixels wide and

200 pixels high (for NTSC machines!.

dithering
1. Creating smoother color or grey-scale shading of screen or printed

displays by alternating pixel color or density. The Preferences

PrinterGfx editor provides several settings for automatic dithering of

printed graphics.

1. Creating the illusion of a color by using a pattern of other colors. For

instance, creating the illusion of purple, by alternating pixels of red

and blue.

Glossary

•—s double-click
To press and release the selection button twice.

drag

To move an icon, window, gadget, or screen across the display by pointing

to the object, holding down the selection button, and moving the mouse.

drag selection
The process of selecting several icons at once by holding down the

selection button and using the mouse to draw a box around the icons you

want to select. When you release the mouse button, all the icons in the

box will be selected.

drawer
A subdivision of a disk storage area. A drawer corresponds to an

AmigaDOS directory.

drive name

A name assigned to a floppy disk drive or hard disk, such as DFO: or FH2:.

dump

A printout of the image displayed on the screen.

echo
To print a text string to the screen with the ECHO command.

ECS (Enhanced Chip Set)
The upgraded versions of the Amiga's Agnus and Denise coprocessor

chips. The Enhanced Chip Set offers new display modes (ECS modes] and

expands existing graphics capabilities. Many of the benefits of the ECS are

available only in conjunction with Version 2.0 of the Amiga operating

system.

editor

A program that lets you create and/or modify certain types of files. The

Amiga provides Preferences editors to change Prcfs settings and the text

editors ED, MEmacs, and EDIT for changing text files.

environment variable
A variable used by AmigaDOS to represent a string or a value.

Environment variables are commonly used in scripts and are supported by

various programs, such as the Shell and More.

10 Glossary

error code
A number identifying an error that has occurred during execution of a

command or program.

escape sequence

A sequence of characters, beginning with the Escape character, that will

perform a special function when entered on a command line or printed

as part of a string. Escape sequences arc typically used to change the

appearance of text in a console window or to alter the style of type used by

a printer.

execute

To carry out the instructions in a command line, program or script.

extended selection
The process of selecting several icons at once by holding down Shift while

selecting each icon with the mouse.

extraction
In BRU, the process of restoring archived files.

FastFileSystem (FFS)
An enhanced Amiga file system usable with both floppy and hard disks. A

volume is formatted as either FFS or OldFileSystem (OFS|.

Fast RAM
General memory used by programs and data.

fatal
Describes an error serious enough to halt the process which caused it.

field
The screen area behind the text under a Workbench icon. The color of the

field can be changed with the Font editor.

file
An organized collection of data referred to by a name.

file compression
See compress.

Glossary 11

~

~

file system
The method of organizing stored files and the software for reading and

writing them. The Amiga's native file systems are the FastFileSystcm

(FFS) and the OldFileSystem (OFS).

flag
A status indicator variable with a limited number of possible states.

floppy disk
A removable magnetic storage medium. The Amiga uses 3.5 inch, double-

sided, double-density floppy disks in a rigid plastic case; they can store

approximately 900,000 bytes (880K) of information.

font
A particular design of a set of letters, symbols, and numbers used for text

display, such as Topaz and Helvetica. Fonts are usually available in several

sizes, defined in points (10 point, 12 point, etc.).

format
1. To prepare a disk for use with the Amiga. Formatting a disk erases all

previously stored data.

2. A way of describing the proper syntax for AmigaDOS commands.

fragmentation
An uneven distribution of data on a disk, causing the computer to look in

different locations on the disk to find the information.

function keys
Keys at the top of the Amiga keyboard, labeled Fl to F10, that can be

programmed to perform special tasks.

t

Any of various programmed graphic images which may appear in a

window, requester or screen, that can be manipulated with the mouse to

perform a certain function. Each gadget is of a specific type and performs

a specific action. When selected, gadgets may appear to sink into the

screen.

genlock
A device that allows Amiga graphics to be synchronized and combined

with external video sources, such as a TV or VCR.

12 Glossary

ghosting
Displaying menu or gadget items on the screen less distinctly than

normal to indicate that they are currently unavailable.

global
Effective in all processes. Opposite of heal.

graphics memory
See Chip RAM.

GUI (Graphical User Interface)
A visually-oriented system allowing you to tell a computer what to do by

manipulating graphic symbols rather than by typing in commands. The

Workbench is the Amiga GUI.

HAM [Hold And Modify)
An Amiga graphics mode that allows all the Amiga's 4096 colors to be

displayed on the screen at the same time.

handshaking
The electronic protocol required (or communication between two

computing devices.

hard disk
A high-speed, large-capacity mass-storage device, from which the disks

usually cannot be removed. Often called a hard drive or hard disk drive.

hexadecimal
The base-16 number system often used in computer programming.

Hexadecimal [hex] numbers use the letters A-F as well as the digits 0-9,

and must be preceded by the characters Ox or #x to be recognized as such

by AmigaDOS.

hex number
See hexadecimal

hierarchical
A term used to describe the multi-leveled AmigaDOS file structure in

which directories can contain other directories and/or files.

history buffer
A section of memory that stores the most recent commands for a given

Shell.

Glossary 13

hold down
To continually press a mouse button until instructed to release it.

hot key
A key or key combination used by Commodity Exchange programs to

open a hidden window.

icon
An image appearing on the screen to represent a disk, drawer, project or

tool. Icons can be moved and selected with the mouse to allow you to

work with the items they represent.

IFF (Interchange File Format)
The standardized format in which the Amiga stores picture and sound

data.

.info file
^^^ A file containing the image and position data for an icon,- pronounced

"dot-info."

initialize
A synonym for format.

input buffer
An area of memory used during serial communication to hold incoming

information.

interlace
An aspect of some Amiga display modes that doubles the vertical screen

resolution.

Internal
Refers to an AmigaDOS command that is built into the Shell, rather than

loaded from disk.

jumper
A small component on a circuit board that can be adjusted to one of

several positions, used to control a certain aspect of the system

configuration, such as how many disk drives have been installed or how

much expansion memory has been added.

K (Kilobyte)
1024 bytes. Often abbreviated as KB.

14 Glossary

key block
A number which identifies the block on the disk where a file is stored.

Also known as a file header block.

keyboard shortcut
A method for performing a mouse action by pressing a key or key

combination.

keymap
A file which determines the arrangement of characters on the keyboard

and determines the meaning of each key. Different languages have

different keymaps.

keyword
A word recognized by an AmigaDOS command as identifying an

argument or specifying an option.

Kickstart
Software that is read from disk to boot the Amiga. Also refers to the

portion of the operating system that is in ROM.

label
A point in a script to which execution may be directed to skip if certain

conditions are met; specified with the LAB command.

library
A related set of functions and collections of data that can be shared by

various programs. For instance, the Commodities.library in the LIBS:

directory is used by all the Commodity Exchange programs.

line verification
In EDIT, the process of displaying a revised line after the command to

change the line has been executed.

line window
In EDIT, a subsection of the current line.

link
A file that is a pointer to another file. When the original file is called, the

linked file will be used.

local
Effective only in the process in which it was defined. Opposite of global.

Glossary 15

~

~

low-level format
To prepare a new hard disk, making it possible for it to read and write

information.

LUN (Logical unit number)
A value from 0 to 7 used as a secondary address. It is used when a device

controls multiple devices, such as when a controller card with a SCSI

address controls multiple hard disks. Each device attached to the

controller must have a different LUN.

macro

A single command that represents a sequence of commands. Many editors

and applications support the use of macros to facilitate commonly used

command sequences.

MB (Megabyte)
1024K (1,048,576 bytes). Often abbreviated as M or Meg.

memory

The Amiga's internal storage circuitry which holds programs and data.

The Amiga has both Chip (graphics] RAM, Fast (normal) RAM, and 512K

of ROM memory. The amount of RAM memory limits the size and

number of programs that can be operating within the Amiga at one time.

menu

A list of on-screen options, displayed by using the menu button, from

which you can choose commands that contra! a program.

menu bar
The list of headings that appears across the top of the screen when the

menu button is held down.

menu button
The right mouse button.

menu item
An option that appears in a menu. For example, New Drawer is the first

menu item in the Workbench's Window menu.

modem
A device allowing serial communication over telephone lines.

16 Glossary

module
An element of a program that performs a task of a limited scope, e.g., a *—'

module used to open a requester. A module may be used by a number of

programs.

monitor
Avideo display terminal on which a computer's visual output is shown.

There are many types of monitors; the Amiga's standard output uses an

analog RGB color monitor to display both graphics and text.

motherboard
The main circuit board in a computer on which the CPU, main memory,

etc. are located.

MountList
A text file in the DEVS: directory that contains information about devices

that have been attached to or installed in the Amiga.

mouse

The device used to move the pointer on the screen and to communicate

with the Amiga. Its buttons can be used for displaying menus, and for

selecting and dragging icons, windows and screens.

multiprocessing
The ability to have more than one CPU chip in a computer functioning

simultaneously, each executing it own processes, thus vastly improving

overall performance. For instance, the CPU can perform calculations

while another processor is drawing an object on the screen.

multiscan
A type of video monitor than can accept several different scan rates (types

of video output).

multitasking
The ability to perform more than one operation, or task, at a time. The

Amiga can have several independent programs running at once. For

instance, you could simultaneously be displaying an animation, playing

a sound file, communicating with another computer, and formatting

a floppy disk.

nonproportional font
A font in which each character takes up an equal amount of space. For

instance, an uppercase W is alloted the same amount of space as a

lowercase 1.

Glossary 17

null string
An empty string. Null strings are commonly used in text editors to delete

information. If you replace a word with a null string, the word is deleted.

offset
To shift ur move over.

open

To make (he selected object available for use. You open an icon by double-

clicking on it or by selecting it then choosing the Open menu item from

the Icons menu. When you open a disk or drawer icon, its contents are

displayed. When you open a proiect or tool icon, a program is started.

output queue

In EDIT, the area of memory that is reserved to hold processed lines before

writing them to the destination file.

-^ overscan area

The normally unused area surrounding a standard-size screen. The

Overscan editor allows you to expand your screen to fill this area.

overwrite

To write information to a file or disk, replacing any information that

previously was stored there.

parallel
An interface port that transfers data one complete byte (8 bits) at a time,

contrasted to a serial interface which sends a single bit at a time. The

Amiga has an external parallel port to which a printer is often connected.

parent

The window or directory from which another window, directory, or file

was generated. For instance, the Workbench window is the parent

window of the disk windows. The Devs directory is the parent directory

of the Printers directory.

parity
A method of detecting errors in serial communication by attaching an

extra bit to bytes of data.

partition
A distinct section of a hard disk, used for data storage, which works as

a physically separate device.

18 Glossary

path
The series of device, directory, and subdirectory names that define the

location of a file.

pattern

A set of characters shared by one or more file or directory names.

pattern matching
An AmigaDOS feature that lets you specify file and directory names by

using wildcard characters. With wildcards, you can create search patterns

that allow you to refer to a number of files that share a common text

pattern without naming each file individually.

peripheral
An external hardware device connected to the Amiga.

pitch
The number of characters printed in a horizontal inch.

pixels
The dots of light that make up the Amiga screen display. A pixel is the

smallest unit of display information on a given screen.

pointer
An image on the screen, usually arrow-shaped, that moves as you move

the mouse. You use the pointer to select icons and gadgets and to choose

menu items.

Preferences (Prefs)
A Workbench drawer containing editors that let you configure and

customize your Amiga environment, such as changing the colors of your

screen and setting the specifications for communication through the

serial port.

printer driver
A program that enables the Amiga to communicate with your printer.

A printer driver works as a translator between a computer and a printer,

taking the information from the computer and presenting it to the printer

in a format that the printer can understand.

Glossary 19

n

~

priority

A variable determining the proportion of the Amiga's processing time that

will be allotted to a given task. Each task has an independent priority.

Task priority is set automatically but can be changed with the

CHANGETASKPRI command.

process

A task that can communicate with AmigaDOS. Each process has a unique

process number. Shell process numbers are usually displayed as part of the

Shell prompt.

program

A series of instructions that tell the Amiga how to perform certain tasks.

Applications and system software are programs.

project
A file in which information created or used by a tool is stored. For

instance, files created with a text editor or paint program are projects.

prompt

A message or symbol, such as 1 >, that indicates that text input to the

computer is possible.

protection bits
(See attributes.}

pseudo-icon
An icon that is displayed, when the Show All Files menu item is chosen,

for an object that does not have a .info file.

pure

Describes a command or program that can be made resident. If a file is

pure, the p attribute is set.

qualified string
In EDIT, an argument that pertains to a particular area of the current line,

such as the beginning or end. For instance, a qualified string may specify

that text should be replaced only if it appears at the beginning of the line.

If it appears elsewhere in the line, it is left alone.

20 Glossary

qualifier
1. A key, such as Shift, Ctrl, or Alt, that changes the Amiga's

interpretation of a simultaneous or subsequent keystroke or mouse

click, Commonly used with Commodity Exchange programs,

2. In EDIT, a character used with a command to designate where in the

line the command should act. For instance, if a B qualifier is used with

a command, the command will only work on the beginning of the line,

radio button
A circular gadget beside an option on a list. To select an option, select its

radio button. You can only select one option from the list at a time.

RAM (Random Access Memory)
Part of the Amiga's internal memory that can be used for data storage and

is directly accessible by the CPU. Applications are loaded into RAM from

disk and use additional RAM to process and store data while the computer

is on. Data in RAM is lost when the Amiga is rebooted or powered off.

Ram Disk
A section of RAM set aside to function as if it were a disk drive. This

is much faster than a physical drive, since there arc no mechanical

elements. The Ram Disk is also known by the logical device name

of RAM:.

read
To retrieve stored information.

Read Only
If disk status is Read Only, you can only look at the contents of the disk,

you cannot alter them.

Read/Write
If disk status is Read/Write, you can both look at and alter the contents of

the disk.

read/write head
A small, electromagnet that uses magnetic impulses to record or read data

on a hard disk.

reboot
To reset the Amiga by pressing Ctrl, left Amiga, and right Amiga. This is

roughly equivalent to turning the power off, then on again. Memory is

reset. Also called warm boot.

Glossary 21

redirect
To change the source or destination of a command's input or output from

the default by using the special characters < or >.

relative path
In BRU, the path to a file or directory that does not include the device or

partition name that leads to the file.

requester

A window that appears when the system needs a response from you. A

requester contains action gadgets that give you a choice of continuing or

aborting the operation in progress. To exit the requester, you must select

one of the displayed gadgets.

resident
Describes a command or program that has been copied into memory, with

the RESIDENT command, for quicker execution. Resident commands are

specially set up to prevent reloading on subsequent executions. Only pure

files can be made resident.~

~

resolution
The number of pixels associated with a particular display mode. For

example, a normal NTSC Hires screen has a resolution of 640 (horizontal!

by 200 (vertical] pixels.

restore

To retrieve files that have been backed up or archived.

return code
A numerical value, generated upon execution of a command, to indicate

its level of success. The number is 0 if the command was successful, and

usually 5, 10, or 20 if there was a problem in executing the command. The

return code value is assigned to the condition flag.

RGB (Red-Green-Blue)
A type of video signal in which the three primary color signals are sent

separately. Standard Amiga output uses an RGB monitor.

ROM (Read Only Memory)
Permanent memory- that is pre-programmed with system instructions and

does not change. The contents of ROM are not affected by user commands

or program operation.

22 Glossary

root block
The area of a disk that contains the name of the disk and information

pertaining to the disk layout. If the root block is erased, you cannot

retrieve any information from the disk — it is effectively blank.

root directory
The main directory on a volume. The root directory is at the top of the

filing hierarchy, and is created when a volume is formatted. All other

directories on the volume exist within the root. The root directory is

specified by the volume name followed by a colon.

scaling
Changing the size of an image during printing. Usually, a screen image is

scaled down to a smaller size for printing, but you can also enlarge, or

scale up, an image.

screen

An area of the display that shares the same video attributes, such as

resolution and colors. Screens are always at least the full width of the

viewable area.

script

A text file containing a series of commands that can be automatically

executed to perform a complex or repetitive task. An example of a script is

the Startup-sequence file executed when you boot your Amiga.

scroll
To move through the viewing area of a window.

scroll arrows
Gadgets which may appear in a window to allow you to move the viewing

area continuously.

scroll bar

The highlighted area within the scroll box that can be dragged to display

the hidden contents of a window. It changes in size to indicate the portion

of the window that is currently visible.

scroll box

The shaded area within which the scroll bar can be dragged. You can ciick

in the scroll box to move the scroll bar.

Glossary 23

n

~

scroll gadget
A gadget which may appear in a window to let you move through a list of

options or through the viewing area of a window. A scroll gadget is made

up of the scroll bar, scroll box, and scroll arrows.

scrolling list
The options that appear inside a scroll gadget. If the list is longer than

what can be displayed in the scroll gadget, you can use the scroll bar or

scroll arrows to move (scroll] through the list.

SCSI (Small Computer System Interface)
A standard interface protocol for connecting peripherals, usually mass

storage devices, to computer equipment. |Pronounced "scuzzy".)

search path

The list of directories that AmigaDOS uses when it is looking for a

command. Directories are added or removed from the search path with

the PATH command.

sector

The smallest unit of storage on a hard disk, usually equal to 512 bytes.

select
To choose an item to work with by pointing to it with the mouse, then

pressing and releasing the selection button.

selection button
The left mouse button.

selection gadget
A gadget from which you can choose one of several displayed options,

often used for colors.

serial
An interface port that transfers data one single bit at a time, contrasted to

a parallel interface which sends one complete byte [eight bits) at a time.

The Amiga has an external serial port to which a modem, MIDI interface,

or printer is often connected.

set

To change a bit or flag to its on or enabled state. Opposite of clear.

24 Glossary

Shell
The command line interface used to send typed commands to the Amiga.

The Shell is a console window which supports many special features,

such as command-line history, aliases, and copy and paste operations.

sizing gadget
A gadget which may appear m the lower right corner of a window to allow

you to enlarge or shrink the size of the window.

slider gadget
A gadget from which you can select a value by dragging a bar through the

gadget. As you move the slider bar, different values are displayed.

slider value
A number that appears next to a slider gadget to indicate the currently

selected value.

slot
An internal receptacle with a certain number of connector pins into

which an expansion board can be inserted.

smoothing
A printing option available in the PrinterGfx editor that attempts to

eliminate, or smooth, jagged lines that can sometimes appear in

printouts.

snapshot
To save the positions of a window and/or the icons within it.

socket
The receptacle, attached to a circuit board, into which a chip (such as a

RAM chipl can be inserted.

source

A device, directory or file that is supplying information. For instance,

when you copy a disk, the disk you are copying is the source disk. If you

are using EDIT, the file you have read into memory and want to edit is the

source file.

stack
A special area of RAM reserved by a program for temporary storage.

Glossary 25

r Startup-sequence
An AmigaDOS script file, executed when the Amiga is booted, that helps

set up the hardware and directory systems.

stop bits
Extra bits added to signal the end of a character, used during serial

communication.

streaming tape

A high-capacity, mass-storage device that uses a magnetic tape cartridge

to hold data; generally used to back up large hard disks.

string

A piece of text treated as a single unit.

subdirectory
A directory that is within another directory; equivalent to a drawer

within a drawer.

submenu
A secondary menu that appears when some menu items are highlighted. If

a menu item produces a submenu, a >> symbol appears to the right of the

menu item.

swap

To alternately place different floppy disks into the same drive, as when

performing a single-drive disk copy.

switch

A command keyword that turns an option on or off. If the keyword is

present, the option is used.

syntax

The rules for the proper arrangement of commands, keywords, and

punctuation in a command line or programming language.

task
A software function spawned by a process. A program, command, or

system operation that is being executed is a task.

Template
A way of specifying the proper syntax for an AmigaDOS command. You

can display a command's Template by typing the command name

followed by space and a question mark [?).

26 Glossary

terminator
In EDIT, text that specifies that the end of a block has been reached.

text gadget
A rectangular box in which you can type information, such as a filename

or command. Text gadgets are used by the Rename and Execute

Command menu items, as well as many programs.

threshold
A PrintcrGfx value related to color intensity. It determines which colors

are printed as black and which arc printed as white during black-and-

white printing.

timestamp
The date and time associated with a file. This is usually the date and time

when the fiie was created or last modified.

title bar
The top border of a screen or window, which commonly displays the name

of the screen or window.

tool
A program that creates or uses data, such as a text editor or paint program.

Tool Type
An optional parameter that you can enter in an icon's Information

window to control a program. For instance, if you enter the SECONDS

Tool Type in the Clock's information window, the Clock will display the

seconds every time it is opened.

track
Divides a hard disk platter into concentric circles.

Trashcan
A directory lor storing files that you want to delete.

type ahead
A feature of the Shell that lets you enter commands as a previous

command's output is being displayed.

verbosity
In BRU, the mode in which the program becomes "talkative" and reports

each action it takes as it is happening.

version

A number identifying a piece of software: Workbench version 36.68.

volume

A floppy disk or hard disk partition.

Glossary 27

~

volume name
The name under the icon for a disk or partition. Renaming a disk changes

its volume name.

wait pointer
An image of a stopwatch that appears in place of the normal pointer when

the Workbench is busy and cannot accept further input.

wildcard
A symbol used in pattern matching to represent a range of possible values,

such as when specifying filenames that all start or end with the same

character. The question mark (■ I, for example, is used as a wildcard to

match any single character.

window
A rectangular screen area that can accept or display information. A

window has a title bar identifying it and may contain gadgets in its border.

Workbench
The Amiga's icon-based, graphical user interface.

Workbench2.0 disk
The floppy disk (bat contains the AmigaDOS Version 2.0 software.

write
To record data m memory or on a magnetic storage medium such as disk

or tape.

write-enable

To allow information to be written onto a storage device. When a floppy

disk is writc-enahled, a small, plastic tab is covering the hole in the corner

of the disk.

write-protect

To prevent information from being written onto a storage device. An

individual file can be writc-protected by clearing its w attribute. Floppy

disks have a plastic tab which can be moved to writc-protcct the entire

disk.

zoom gadget
A gadget which may appear in the upper right corner of a window to allow

the window to alternate between two sizes.

Zorro
The name for the 100-pin expansion slot specification used by Amiga

computers. Amiga 2000 and .1000 families contain Zorro 11 and Zorro 111

slots, respectively.

Index

~

A2024 monitor, 4-7

ABBREV, 10-91, 10-92

about your hard disk, 6-1—6-3

ABS, 10-92

absolute path, C-17

action gadgets, 2-21, 2-34, 2-39

active, 1-15

ADDBUFFERS, 8-7, 8-8

adding a Tool Type, 4-2—4-4, 4-16, 4-17

adding an ASSIGN statement to your

User-startup, 6-8—6-13

example ASSIGN statement, 6-11—

6-13

adding bad blocks to the bad blocks list,

6-78—6-80

ADDLIB, 10-92, 10-93

AddMonitor, 4-6—4-10, 5-2

ADDMONITOR, 8-8, 8-9

ADDRESS, 10-50, 10-51, 10-93

advanced options with partitioning,

6-60—6-62

alias, 7-41, 7-42

ALIAS, 8-9, 8-10

ALLOCMEM, 10-129, 10-130

Amiga drive names, 1-28

Amiga key, 1-41

AmigaDOS command conventions,

8-1—8-6

Format, 8-3, 8-4

Template, 8-4—8-6

AmigaDOS command specifications,

8-7—8-132

ADDBUFFERS, 8-7, 8-8

ADDMONITOR, 8-8, 8-9

ALIAS, 8-9, 8-10

ASK, 8-11

ASSIGN, 8-12—8-16

AUTOPOINT, 8-16, 8-17

AVAIL, 8-17, 8-18

BINDDRIVERS, 8-18

BINDMONITOR, 8-19

BLANKER, 8-20, 8-21

BREAK, 8-21, 8-22

CALCULATOR, 8-22

CD, 8-22, 8-23

CHANGETASKPRI, 8-24

CLOCK, 8-25, 8-26

CMD, 8-26, 8-27

COLORS, 8-27, 8-28

COPY, 8-28—8-30

CPU, 8-31—8-33

DATE, 8-33, 8-34

DELETE, 8-35, 8-36

DIR, 8-36—8-38

DISKCHANGE, 8-38, 8-39

DISKCOPY, 8-39, 8-40

DISKDOCTOR, 8-40—8-42

DISPLAY, 8-42—8-44

ECHO, 8-44, 8-45

ED, 8-45

EDIT, 8-45

ELSE, 8-46, 8-47

ENDCLI, 8-47

ENDIF, 8-47

ENDSHELL, 8-48

ENDSKIP, 8-48

EVAL, 8-49—8-52

EXCHANGE, 8-52

EXECUTE, 8-53—8-58

FAILAT, 8-58, 8-59

FAULT, 8-60

FILENOTE, 8-60, 8-61

FIXf ONTS, 8-62

FKEY, 8-62, 8-63

FONT, 8-63, 8-64

FORMAT, 8-65

Index

GET, 8-66

GETNV, 8-66, 8-67

GRAPHICDUMP, 8-67

ICONEDIT, 8-68

ICONTROL, 8-68, 8-69

ICONX, 8-69, 8-70

IF, 8-70—8-72

IHELP, 8-72, 8-73

INFO, 8-73, 8-74

INITPRINTER, 8-74

INPUT, 8-75

INSTALL, 8-76, 8-77

IPREFS, 8-77

JOIN, 8-77, 8-88

KEYSHOW, 8-78

LAB, 8-78

LIST, 8-79—8-82

LOADWB, 8-83

LOCK, 8-83, 8-84

MAKEDIR, 8-84, 8-85

MAKELINK, 8-85

MORE, 8-86

MOUNT, 8-87

NEWCLI, 8-88

NEWSHELL, 8-88—8-90

NOCAPSLOCK, 8-90

NOFASTMEM, 8-91

OVERSCAN, 8-91, 8-92

PALETTE, 8-92

PATH, 8-93, 8-94

POINTER, 8-95

PRINTER, 8-96

PRINTERGFX, 8-96, 8-97

PRINTFILES, 8-97

PROMPT, 8-98, 8-99

PROTECT, 8-99—8-101

QUIT, 8-101,8-102

RELABEL, 8-102

REMRAD, 8-103

RENAME, 8-103, 8-104

RESIDENT, 8-104—8-107

RUN, 8-107, 8-108

SAY, 8-108,8-109

SCREENMODE, 8-109,8-110

SEARCH, 8-110, 8-111

SERIAL, 8-112

SET, 8-113

SETCLOCK, 8-114

SETDATE, 8-115

SETENV, 8-116

SETFONT, 8-117

SETMAP, 8-118

SETPATCH, 8-119

SKIP, 8-119, 8-120

SORT, 8-121

STACK, 8-122

STATUS, 8-123

TIME, 8-124

TYPE, 8-124, 8-125

UNALIAS, 8-125

UNSET, 8-125

UNSETNV, 8-126

VERSION, 8-126, 8-127

WAIT, 8-127

WBCONFIG, 8-128

WBPATTERN, 8-129, 8-130

WHICH, 8-130, 8-131

WHY, 8-131,8-132

AmigaDOS error messages, 8-133—

8-136

AmigaDOS reference, 8-1

application software, 1-1, 1-42, 1-43, 2-3

archive, 6-14, C-l

AREXX Built-in Function Library, 10-90,

10-91

AREXX Built-in Functions, 10-85, 10-87,

10-91—10-128

ABBREV, 10-91, 10-92

ABS, 10-92

ADDLIB, 10-92, 10-93

ADDRESS, 10-93

ARG, 10-93

Index

~

B2C, 10-94

BITAND, 10-94

BITCHG, 10-94

BITCLR, 10-9S

BITCOMI1, LO-95

BITOR, 10-95

BITSET, 10-96

BITTST, 10-96

BITXOR, 10-96

Built-in Functions-examples, 10-125-

10-128

C2B, 10-97

C2D, 10-97

C2X, 10-97

CENTER or CENTRE, 10-98

CLOSE, 10-98

COMPRESS, 10-98

COMPARE, 10-99

COPIES, 10-99

D2C, 10-99

D2X, 10-100

DATE, 10-100, 10-101

DATATYPE, 10-101, 10-102

DELSTR, 10-102

DELWORD, 10-102

DIGITS, 10-102

EOF, 10-103

ERRORTEXT, 10-103

EXISTS, 10-103

EXPORT, 10-103, 10-104

FORM, 10-104

FIND, 10-104

FREESPACE, 10-104, 10-105

FUZZ, 10-105

CETCL1P, 10-105

GETSPACE, 10-106

HASH, 10-106

IMPORT, 10-106

INDEX, 10-107

INSERT, 10-107

LASTPOS, 10-107, 10-108

LEFT, 10-108

LENGTH, 10-108

LINES, 10-108

MAX, 10-109

MIN, 10-109

OPEN, 10-109

OVERLAY, 10-110

POS, 10-110

PRAGMA, 10-110—10-112

RANDOM, 10-112

RANDU, 10-112, 10-113

READCH, 10-113

READLN, 10-113

REMLIB, 10-113, 10-114

REVERSE, 10-114

RIGHT, 10-114

SEEK, 10-114

SETCLIP, 10-115

SHOW, 10-115

SIGN, 10-116

SOURCELINE, 10-116

SPACE, 10-116

STORAGE, 10-117

STRIP, 10-117, 10-118

SUBSTR, 10-118

SUBWORD, 10-119

SYMBOL, 10-118, 10-119

TIME, 10-119

TRACE, 10-120

TRANSLATE, 10-120

TRIM, 10-121

TRUNC, 10-121

UPPER, 10-121

VALUE, 10-122

VERIFY, 10-122

WORD, 10-122

WORDINDEX, 10-123

WORDLENGTH, 10-123

WORDS, 10-123

WRITECH, 10-123

WRITELN, 10-124

Index

X2C, 10-124

X2D, 10-124

XRANGE, 10-124, 10-125

AREXX Commands, 10-74—10-82

command clauses, 10-74, 10-75

command interface, the, 10-78, 10-79

command inhibition, 10-82

host address, the, 10-75—10-78

using AREXX with command shells,

10-81

using commands in macro programs,

10-79, 10-80

AREXX Error Messages, 10-157—10-166

AREXX functions, 10-82—10-90

Built-in functions, 10-85, 10-87

Clip List, the, 10-89, 10-90

External AREXX programs, 10-86

External Function Libraries, 10-88,

10-89

Function Libraries and Function

Hosts, 10-86

Internal functions, 10-85, 10-87

Library List, the, 10-83, 10-84

syntax and search order, 10-84—10-89

AREXX Instructions, 10-18—10-26,

10-50—10-73

ADDRESS, 10-50, 10-51

ARG, 10-52, 10-64

BREAK, 10-52

BREAK—C, 10-71

BREAK—D, 10-71

BREAK—E, 10-72

BREAK—F, 10-72

CALL, 10-53

DIGITS, 10-65

DO, 10-53—10-56

DROP, 10-56

ECHO, 10-56

ELSE, 10-56, 10-57

END, 10-57

ERROR, 10-72

EXIT, 10-57, 10-58, 10-70

EXPOSE, 10-69

exposing variables, 10-69

EXTERNAL, 10-64, 10-65

FORM, 10-65

FUZZ, 10-65

HALT, 10-72

IF, 10-58, 10-59, 10-72

INTERPRET, 10-59, 10-72

IOERR, 10-72

ITERATE, 10-60

LEAVE, 10-60, 10-61

NOP, 10-61

NOVALUE, 10-72

NUMERIC, 10-61, 10-62, 10-65

OPTIONS, 10-62, 10-63

OTHERWISE, 10-63

PARSE, 10-64—10-68

PROCEDURE, 10-68, 10-69

PULL, 10-65, 10-69

RETURN, 10-70

SAY, 10-70

SELECT, 10-70—10-72

SHELL, 10-71

SIGL, 10-73

SIGNAL, 10-71 — 10-73

SOURCE, 10-65

SYNTAX, 10-72

UPPER, 10-64

VALUE, 10-65

VAR, 10-65

VERSION, 10-65

WHEN, 10-73

AREXX introduction, 10-1—10-7

chapter organization, 10-3, 10-4

What do you have to know to use

AREXX?, 10-3

What is AREXX?, 10-7

Who is AREXX for?, 10-2

AREXX language features, 10-15, 10-16

AREXX on the Amiga, 10-4—10-6

Index

n

~

displaying output, 10-13

Interprocess communication and

ports, 10-5, 10-6

Multitasking, 10-5

Multitasking and Interprocess

communication together, 10-6

AREXX Parsing and Templates, 10-66,

10-67, 10-146—10-154

additional notes, 10-154

multiple templates, 10-153

pattern parsing, 10-151, 10-152

positional markers, 10-152

scanning process, the, 10-149, 10-150

template objects, 10-148, 10-149

template structure, 10-146, 10-147

templates in action, 10-150, 10-151

AREXX program examples, 10-16, 10-17

AREXX support, ED, 9-25—9-27

AREXX system files, 10-14, 10-15

SYS:LIBS Directory, 10-14

SYS:Rexxc Directory, 10-15

SYS:rexx, 10-15

SYSTEM: Directory, 10-14

AREXX Tracing and Interrupts, 10-134—

10-145

command inhibition, 10-139

display formatting, 10-136, 10-137

error processing, 10-141

external tracing flag, the, 10-142

failure level for commands, 10-142

global tracing console, 10-137, 10-138

interactive tracing, 10-140, 10-141

interrupts, 10-143—10-145

tracing options, 10-135, 10-136

tracing output, 10-138, 10-139

tracing prefix codes, 10-137

AREXX, elements of, 10-26—10-50

boolean values, 10-38

clause classification, 10-34

clause continuation, 10-34

clauses, 10-31—10-33

execution environment, 10-46

expressions, 10-35

external environment, 10-47

format, 10-27

input and output, 10-49

internal environment, 10-47, 10-48

numbers and numeric precision,

10-37—10-39

operators, arithmetic, 10-39—10-44

order of evaluation, 10-36, 10-37

resource tracking, 10-49, 10-50

stems and compound symbols,

10-44—10-46

symbol resolution, 10-36

tokens, 10-27—10-31

ARG, 10-52, 10-64, 10-93

arguments, EDIT, 9-68—9-72

arrows, 5-18

ASCII, 4-25, 4-29, 4-29

ASK, 8-11

ASSIGN, 8-12—8-16

autopoint, 5-31

AUTOPOINT, 8-16, 8-17

AVAIL, 8-17, 8-18

B

B2C, 10-94

backing up your hard disk, 6-14—6-48,

C-1,C-12

backup disks, 1-27—1-37

basic AmigaDOS commands, 7-11—7-28

CD, 7-12, 7-19—7-21, 7-25

COPY, 7-12, 7-18, 7-19, 7-23, 7-24,

7-50

DATE, 7-12, 7-27, 7-28

DELETE, 7-12, 7-24, 7-25

DIR, 7-12, 7-15—7-17

DISKCOPY, 7-12, 7-26, 7-27,

ENDSHELL, 7-12, 7-28, 7-41

FORMAT, 7-12, 7-25, 7-26

Index

INFO, 7-12, 7-15, 7-18

LIST, 7-12, 7-15, 7-17

MAKEDIR, 7-12, 7-18,7-19

NEWSHELL, 7-12, 7-28

PATH, 7-12, 7-22, 7-23

RELABEL, 7-12, 7-26

RENAME, 7-12, 7-24, 7-49

SETCLOCK, 7-12, 7-27, 7-28

TYPE, 7-12, 7-24

Bindmonitor, 4-6, 4-10

BINDMONITOR, 8-19

BINDDRIVERS, 8-18

BIT AND, 10-94

BITCHG, 10-94

BITCLR, 10-95

BITCOMP, 10-95

BITOR, 10-95

BITSET, 10-96

BITTST, 10-96

B1TXOR, 10-96

blanker, 5-31,5-32

BLANKER, 8-20, 8-21

boolean, C-3

boolean fields, C-5, C-6

boolean values, 10-38

bootable, 1-40

booting, 1-3

box gadget, 5-16

BREAK, 8-21, 8-22, 10-52

BREAK_C, 10-71

BREAK_D, 10-71

BREAK_E, 10-72

BREAK_F, 10-72

BRU argument reference section, C-20—

C-35

control options, C-26—C-33

file selection options, C-33—C-35

modes, C-20—C-25

BRU command lines, C-7—C-9

BRU error messages, C-39—C-53

messages starting with filename,

C-40—C-45

messages starting with warning,

C-47—C-50

other messages, C-50—C-53

BRU with UNIX, C-36—C-39

control options, C-36—C-38

selection options, C-39

BRU, C-l

Brutab, C-2

Brutab fields, C-4, C-5

Built-in functions, 10-85, 10-87

C2B, 10-97

C2D, 10-97

C2X, 10-97

calculator, 5-4—5-6

CALCULATOR, 8-22

CALL, 10-53

cancelling, 2-19

CD, 7-12, 7-19—7-21, 7-25, 8-22, 8-23

CENTER or CENTRE, 10-98

center picture, 3-60

CHANGETASKPRI, 8-24

changing a Tool Type, 4-4, 4-5

changing the current directory,

AmigaDOS, 7-19—7-21

changing the drive type, 6-80—6-86

changing the prompt, AmigaDOS, 7-34

changing the search path, AmigaDOS,

7-22, 7-23

check box, 2-40

Chip RAM, 2-26

circle gadget, 5-15

clause classification, 10-34

clause continuation, 10-34

clauses, 10-31—10-33

clear, 5-17

CLI, 4-6

click, 2-5

Index

^

clicking, 1-7

Clip List, the, 10-89, 10-90

Clock, 4-18—4-23

Alarm menu, 4-21

Date menu, 4-21

Mode menu, 4-20

Seconds menu, 4-20

Tool Types, 4-23

Type menu, 4-20

CLOCK, 8-25, 8-26

close gadget, 1-25, 2-37, 2-38

CLOSE, 10-98

CLOSEPORT, 10-130

closing the Shell, AmigaDOS, 7-41

CMD, 5-7, 5-8, 8-26, 8-27

color correct, 3-57

color selection gadget, 5-11, 5-13, 5-14

color sliders, 5-11

colors, 5-8—5-11

COLORS, 8-27, 8-28

command clauses, 10-74, 10-75

command history, 7-35

command inhibition, 10-82, 10-139

command interface, the, 10-78, 10-79

command line, AmigaDOS, 7-14

command line characters, AmigaDOS,

7-29—7-31

commands not in menus, MEmacs,

9-59—9-61

commands, AmigaDOS, 7-2

commands, EDIT, 9-68, 9-73—9-90

Commodities, 4-27—4-29

Commodities drawer, the, 5-27—5-30

common additions to the startup files,

7-64—7-66

COMPARE, 10-99

components of the Brutab file, the, C-3—

C-6

COMPRESS, 10-98

condition flags, AmigaDOS, 7-51, 7-52

console window, 7-34

continue gadget, 1-30—1-32, 1-36, 1-46,

1-47,2-70,2-71,2-84

continuous freehand gadget, 5-15

control (Ctrl) key, 1-41

control options, BRU, C-26—C-33

Amiga specific flags, C-26

asking BRU to wait for confirmation,

C-32

exclude remotely mounted files, C-30

fast mode, C-28

interaction option, C-28

labeling an archive, C-29

pass over archive files by reading, C-29

pathname handling and expansion,

C-30

set archive buffer size, C-26

setting the verbosity level, C-31, C-32

specify size of archive media, C-30

telling BRU to run without user

intervention, C-26, C-27

turn on sparse file options, C-31

use paths as the archive file, C-27

use nbits for compression, C-29

use LZW file compression, C-33

control options, BRU with UNIX,

C-36— C-38

change the owner of extracted file,

C-36

control string, C-36

do not reset access time, C-36

double buffer, C-37

fllesystem, C-38

ignore unresolved links, C-37

interaction option, C-37

limit directory expansions to same

mounted

select files owned by user, C-38

COPIES, 10-99

COPY, 7-12, 7-18, 7-19, 7-23, 7-24, 7-50,

8-28—8-30

copying a disk, 2-68—2-74

8 Index

copying a disk in AmigaDOS, 7-26, 7-27

copying a drawer, 2-72-—2-74

copying a project or tool, 2-72

copying by dragging, 2-73, 2-74

copying software to your hard disk, 6-4—

6-6

CPU, 8-31—8-33

creating a new directory, AmigaDOS,

7-18, 7-19

creating a new drawer, 2-59

current directory, AmigaDOS, 7-19—

7-21

current line, EDIT, 9-65, 9-66

cursor, 2-22

customizing ED, 9-21—9-24

customizing MEmacs, 9-61, 9-62

customizing the window, AmigaDOS,

7-38—7-40

cutting and pasting, AmigaDOS, 7-37,

7-38

cycle gadget, 2-41

cylinders, 1-31, 1-36,6-2

D

D2C, 10-99

D2X, 10-100

data, 1-43

DATATYPE, 10-101, 10-102

DATE, 7-12, 7-27, 7-28, 8-33, 8-34,

10-100, 10-101

dead keys, 5-25

DELETE, 7-12, 7-24, 7-25, 8-35, 8-36

deleting a Tool Type, 4-4

delimiters, ED, 9-5

DELSTR, 10-102

DELWORD, 10-102

densities, B-l

depth gadget, 1-17, 1-18, 2-31, 2-32

destination disk, 1-29, 1-33

device handlers, 7-85

device name, AmigaDOS, 7-4

devices, AmigaDOS, 7-3—7-5

DEVS: directory, the, 7-80—7-85

keymaps, 7-84, 7-85

Mountlist, 7-81—7-84

printers, 7-85

DF0:, 1-34

DIGITS, 10-65, 10-102

DIR, 7-12, 7-15—7-17, 8-36—8-38

directories, AmigaDOS, 7-5, 7-6

disk operating system, 7-1

disk swap, 1-29, 1-33

DISKCHANGE, 8-38, 8-39

DiskCopy, 4-6, 4-11

DISKCOPY, 1-33, 1-36, 7-12, 7-26, 7-27,

8-39, 8-40

DISKDOCTOR, 8-40—8-42

disks gadget, 2-24

Display, 4-18, 4-19

DISPLAY, 8-42—8-44

display box, 2-43

display formatting, 10-136, 10-137

display mode, 3-3

displaying output, AREXX, 10-13

dithering, 3-60—3-62

DO, 10-53—10-56

double-click, 1-12, 2-11,3-9

drag selection, 2-9, 2-10

dragging, 1-8, 1-35,2-11—2-14

dragging a screen, 2-13, 2-14

dragging a window, 2-12, 2-13

dragging an icon, 2-11, 2-12

DROP, 10-56

drawer icon, 2-30

drawers, 1-14, 1-15

drive names, 1-28

ECHO, 8-44, 8-45, 10-56

ED, 8-45, 9-1—9-27

w

Index

~-

EDIT commands, 9-73—9-91

changing command, input, and output

files, 9-87—9-91

editing the current line, 9-75—9-77

editing line windows, 9-80—9-82

ending EDIT, 9-91

inserting and deleting lines, 9-77—

9-79

inspecting the source file, 9-85

making global changes, 9-86, 9-87

renumbering lines, 9-83, 9-84

selecting the current line, 9-73—

9-75

splitting and joining lines, 9-82,

9-83

verifying lines, 9-84

Edit menu, MEmacs, 9-38—9-43

EDIT, 8-45, 9-1, 9-63—9-91

editing, AmigaDOS, 7-35—7-37

editing a drive type or defining a new

drive type, 6-82—6-86

editing the Startup sequence, 7-62—7-64

editor menus and presets drawer, 3-80—

3-83

Edit menu, the, 3-82

Options menu, the, 3-82

Proiect menu, the, 3-81

Using the presets drawer, 3-83

editors, 9-1

ELSE, 8-46, 8-47, 10-56, 10-57

empty disk icon, 1-48

END, 10-57

ENDCLI, 8-47

ENDIF, 8-47

ENDSHELL, 7-12, 7-28, 7-41, 8-48

ENDSK1P, 8-48

environmental variables, AmigaDOS,

7-52—7-55

EOF, 10-103

error processing, 10-141

ERROR, 10-72

ERRORTEXT, 10-103

EVAL, 8-49—8-52

Exchange, 4-18, 4-27, 4-28

EXCHANGE, 8-52

EXECUTE, 8-53—8-58

execution environment, 10-46

EXISTS, 10-103

EXIT, 10-57, 10-58, 10-70

EXPORT, 10-103, 10-104

EXPOSE, 10-69

exposing variables, 10-69

expressions, 10-35

extended commands, ED, 9-10—9-19

altering text, 9-15, 9-16

block control, 9-16,9-17

cursor control, 9-14, 9-15

program control, 9-11-—9-14

searching and exchanging, 9-18, 9-19

extended selection, 2-11

EXTERNAL, 10-64, 10-65

External AREXX programs, 10-86

external environment, 10-47

External Function Libraries, 10-88, 10-89

external tracing flag, the, 10-142

Extras 2.0 disk, 1-36,4-9

Extras menu, MEmacs, 9-54—9-59

extras programs, the, 5-1

FAILAT, 8-58, 8-59

failure level for commands, 10-142

fast RAM, 2-26

FAULT, 8-60

features of the Shell, 7-34—7-41

closing the Shell, 7-41

customizing the window, 7-38—7-40

cutting and pasting, 7-37, 7-38

editing, 7-35—7-37

file attributes, 2-65

file selection options, BRU, C-33—C-35

10 Index

selecting files by date, C-33—C-35

unconditional file type extraction,

C-35

file system, AmigaDOS, 7-2, 7-3

file system maintenance, hard drive,

6-90—6-95

FILENOTE, 8-60, 8-61

files, AmigaDOS, 7-6, 7-7, 7-23—7-25

fill gadget, 5-17

FIND, 10-104

FixFonts, 4-6, 4-11,4-12

FIXFONTS, 8-62

FKey, 5-33—5-35

FKEY, 8-62, 8-63

floppy disk, 1-2, 1-3

FONT, 8-63, 8-64

Font editor, the, 3-26—3-30

font gadget, 3-28, 3-29

text/field, 3-29, 3-30

text radio buttons, 3-27, 3-28

FONTS: directory, the, 7-89

Fonts drawer, 4-11, 4-12

FORM, 10-65, 10-104

Format, 4-6, 4-12, 10-27

FORMAT, 7-12, 7-25, 7-26, 8-65

formatting a disk, 1-44—1-47

freehand gadget, 5-14

FREEMEM, 10-129, 10-130

FREESPACE, 10-104, 10-105

Function Libraries and Function Hosts,

10-86

FUZZ, 10-65, 10-105

gadgets, 1-15

GET, 8-66

GETARG, 10-131

GETCLIP, 10-105

GETNV, 8-66, 8-67

GETPKT, 10-131

GETSPACE, 10-106

getting information about disks,

AmigaDOS, 7-15—7-18

getting started, 1-2—1-5

ghosted menu, 2-16

ghosted menu items, 1-13

global tracing console, 10-137, 10-138

GraphicDump, 5-12

GRAPHICDUMP, 8-67

H

F1ALT, 10-72

hard disk, 1-2

hard disk partitions, 6-3, 6-4

hard drive preparation, partitioning and

formatting screen, 6-51—6-53

HASH, 10-106

HDBackup, 6-14—6-48, C-l

checking differences, 6-38—6-40

creating a full backup, 6-15—6-27

creating an incremental backup,

6-27—6-36

file selection gadget, 6-30

include and exclude gadgets, 6-29

selected files and selected size

display, 6-29

selecting files by archive bit status,

6-30, 6-31

selecting files by date, 6-33, 6-34

selecting files by pattern, 6-31, 6-32

selecting files by size, 6-34, 6-35

smaller log file option, 6-35, 6-36

file compression option, 6-36—6-38

inspecting a backup, 6-40—6-42

restoring files, 6-42—6-44

tool types, 6-45—6-48

HDToolbox, 6-49—6-93

advanced options with partitioning,

6-60—6-62

adding bad blocks to the bad blocks

list, 6-78—6-80

Index 11

changing the drive type, 6-80—6-85

file system maintenance, 6-89—6-93

to add a new file, 6-91, 6-92

to delete a file system, 6-92

to update an existing file system,

6-93

hard drive preparation, partitioning

and formatting screen, 6-50—6-53

low level formatting, 6-72—6-74

locating bad blocks, 6-75-—6-77

modifying file systems, 6-86—6-89

partitioning, 6-53—6-59

adding a new partition, 6-57

adjusting the size of a partition, 6-56

deleting a partition, 6-58

renaming a partition, 6-57

-■^ saving and formatting your new

partitions, 6-59

sliding a partition within a

partitioning bar, 6-56, 6-57

using HDToolbox's default setup for

the drive, 6-58, 6-59

preparing a new hard disk, 6-63—6-72

HI, 10-155

Highlight Menu, 5-20—5-21

Backfill, 5-21

Compliment, 5-21

Image, 5-22

host address, the, 10-75—10-78

hot key, 5-29

IconEdit, 5-13—5-18

arrows, 5-18

box gadget, 5-15

circle gadget, 5-15

clear, 5-17

color selection gadget, 5-14

continuous freehand gadget, 5-15

fill gadget, 5-17

freehand gadget, 5-14

line gadget, 5-16

magnified view box, 5-14

Normal/Selected radio buttons, 5-17,

5-18

Undo, 5-17

IconEdit menus, 5-19—5-23

Project, 5-19,5-20

Type, 5-20

Highlight, 5-20, 5-21

Images, 5-22, 5-23

Misc, 5-23

ICONEDIT, 8-68

icons, 1-4,2-49,2-50

Icons menu, the, 1-11,2-67—2-87

Copy, 2-68—2-74

Delete. . .,2-81,2-82

Empty Trash, 2-86, 2-87

Format Disk . . ., 2-82—2-85

Information . . ., 2-76—2-79

Leave Out, 2-80

Open, 2-67, 2-68

Put Away, 2-81

Rename . . ., 2-75, 2-76

Snapshot, 2-79

Unsnapshot, 2-80

ICONTROL, 8-68, 8-69

IControl editor, the, 3-74—3-78

coercion, 3-76, 3-77

command keys, 3-75

mouse screen drag, 3-75, 3-76

screen menu snap, 3-77

text gadget filter, 3-77, 3-78

verify timeout, 3-74, 3-75

ICONX, 8-69, 8-70

IF, 8-70—8-72, 10-58, 10-59, 10-72

IFF ILBM format, 4-23

IHelp, 5-35, 5-36

1HELP, 8-72, 8-73

Images menu, 5-22, 5-23

Copy, 5-22

Exchange, 5-22

12 Index

Load, 5-22

Restore, 5-23

Save IFF Brush, 5-23

immediate commands, ED, 9-6—9-9

changing case, 9-9

deleting text, 9-9

inserting text, 9-8

moving the cursor, 9-7, 9-8

IMPORT, 10-106

INDEX, 10-107

INFO, 7-12, 7-15, 7-18, 8-73, 8-74

.info files, AmigaDOS, 7-7

initializing your printer, 5-24

InitPrinter, 5-24

INITPRINTER, 8-74

INPUT, 8-75

input and output, 10-49

Input editor, 3-7

INSERT, 10-107

INSTALL, 8-76, 8-77

instructions, AREXX, 10-18—10-24,

10-50—10-73

interactive tracing, 10-140, 10-141

interlaced, 3-31

internal environment, 10-47, 10-48

Internal functions, 10-85, 10-87

INTERPRET, 10-59, 10-72

Interprocess communication and ports,

10-5, 10-6

interrupting BRU while it is operating,

C-9

interrupts, 10-143—10-145

introduction to AmigaDOS, 7-1, 7-2

IOERR, 10-72

IPREFS, 8-77

ITERATE, 10-60

JOIN, 8-77, 8-88

K

key repeat delay, 3-10

key repeat rate, 3-1 1

key repeat test, 3-11

keyboard shortcuts, 1-12

keymap icon, 4-16

keyshow, 5-24—5-26

KEYSHOW, 8-78

KEYWORD, 4-2

L: directory, the, 7-85—7-89

Aux-Handler, 7-86

Pipe-Handler, 7-86, 7-87

Port-Handler, 7-87

Speak-Handler, 7-87—7-89

LAB, 8-78

language features, AREXX, 10-15, 10-16

LASTPOS, 10-107, 10-108

LEAVE, 10-60, 10-61

LEFT, 10-108

LENGTH, 10-108

Library List, the, 10-83, 10-84

LIBS: directory, the, 7-89, 7-90

line gadget, 5-16

Line menu, MEmacs, 9-48—9-50

LINES, 10-108

LIST, 7-12, 7-15, 7-17, 8-79—8-82

LOADWB, 8-83

locating bad blocks, 6-57—6-77

LOCK, 8-83, 8-84

low level formatting, 6-72—6-74

M

magnified view box, 5-14

MAKEDIR, 7-12, 7-18, 7-19, 8-84, 8-85

MAKELINK, 8-85

making backup copies of disks, 1 -27—

1-37

Index 13

using one disk drive, 1-29—1-33

using two disk drives, 1-33—1-37

making commands resident,

AmigaDOS, 7-67, 7-68

making room on your Workbench disk,

AmigaDOS, 7-69—7-71

MAX, 10-109

MEmacs, 7-47—7-49, 9-1, 9-28—9-62

MEmacs screen, 5-9, 5-10

menu bar, 1-9, 2-26

menu button, 1-7, 1-9, 2-15

menu commands, MEmacs, 9-32, 9-33

menu items, 1-9

MIN, 10-109

Misc menu, 5-23

Auto Top Left, 5-23

— Grid, 5-23

Remap B/W, 5-23

modes, BRU, C-20—C-25

creating an archive, C-20

differences in size, C-20, C-21

estimating the size, C-21, C-22

extraction, C-25

give information on archive header,

C-22

inspecting an archive, C-23

listing the table of contents, C-24

print the BRU help screen, C-23

modifying file systems, hard drive,

6-87—6-90

Monitors drawer, 4-7, 4-9, 4-10

MonitorStore drawer, 4-7, 4-8, 5-3

More, 4-18, 4-29—4-31

MORE, 8-86

MOUNT, 8-87

mouse, 2-5—2-7

mouse shortcut, 1-12

mouse speed, 3-8—3-10

mouse techniques, 2-5—2-7

Move menu, MEmacs, 9-46, 9-47

moving the Workbench screen, 2-27

multiple commands, EDIT, 9-72, 9-73

multiple templates, 10-153

Multiscan monitor, 4-7

multitasking, 1-15, 10-5

N

naming AREXX programs, 10-13—10-15

naming files, 1-54

naming files and directories,

AmigaDOS, 7-9

new drawer, 1-49, 1-50

new features of ED, 9-2

NEWCL1, 8-88

NEWSHELL, 7-12, 7-28, 8-88—8-90

NoCapsLock, 5-37

NOCAPSLOCK, 8-90

NoFastMem, 4-6, 4-12, 4-13

NOFASTMEM, 8-91

NOP, 10-61

NTSC monitor, 4-7

numbers and numeric precision, 10-37,

10-38

NUMERIC, 10-61, 10-62

O

OPEN, 10-109

opening an icon, 2-67, 2-68

opening/closing Shellwindows,

AmigaDOS, 7-28

OPTIONS, 10-62, 10-63

order of evaluation, 10-36

organizing information on a disk, 1-47—

1-51

other Workbench directories, 7-78—7-90

DEVS: directory, 7-80—7-85

FONTS: directory, 7-89

L: directory, 7-85—7-89

LIBS: directory, 7-89, 7-90

14 Index

S: directory, 7-78—7-80

OTHERWISE, 10-63

output processing, EDIT, 9-67, 9-68

OVERLAY, 10-110

OVERSCAN, 8-91, 8-92

Overscan editor, the, 3-42—3-48

edit standard overscan .. ., 3-46, 3-47

edit text overscan . . ., 3-44, 3-45

screen sizes, 3-47, 3-48

PAL monitor, 4-7

PALETTE, 8-92

Palette editor, the, 3-12—3-14

parent, 2-25

PARSE, 10-64—10-68

partitioning, 6-51—6-59

adding a new partition, 6-57

adjusting the size of a partition, 6-56

deleting a partition, 6-58

sliding a partition within a

partitioning bar, 6-56, 6-57

using HDToolbox's default setup for

the drive, 6-58, 6-59

partitions, 6-3, 6-4

PATH, 7-12, 7-22, 7-23, 8-93, 8-94

paths, 1-51—1-53, 7-8

pattern matching, AmigaDOS, 7-31,

7-32

pattern parsing, 10-151, 10-152

peripheral devices, AmigaDOS, 7-4, 7-5

point, 2-5

pointer, 1-5, 2-5

POINTER, 8-95

Pointer editor, the, 3-22—3-25

POS, 10-110

positional markers, 10-152

PRAGMA, 10-110—10-112

preferences, 3-1

Prefs drawer, the, 3-2, 3-3

preparing a new hard disk, 6-63—6-72

PRINTER, 8-96

printer drivers, 3-3, B-l—B-21

CalComp^ColorMaster, B-2, B-3

CBM_MPS1000, B-3, B-4

Commodore MPS-1250 printer, B-6,

B-7

Diablo_630, B-4

Epson Q, B-5

EpsonX, B-6, B-7

EpsonXOld, B-8

Howtek—Pixelmaster, B-9

HP_Deskfet, B-9, B-l0

HP_LaserJet, B-10

HP_PaintJet, B-l 1

HP_Thinkfet, B-l 1

Imagewriterll, B-l2

NEC_Pin writer, B-13

Okidata_2931,B-14

Okidata_92, B-15

Okimate_20, B-15, B-16

Seiko_5300, B-l6, B-l7

Tektronix_4693D, B-17

Tektronix_4696, B-18

Toshiba_P351C, B-19

Toshiba_P351SX, B-20

Xerox_4020, B-21

Printer editor, the, 3-49^3-56

left margin, 3-52

paper length, 3-52

paper size, 3-54

paper type, 3-53

print pitch, 3-55

print quality, 3-56

print spacing, 3-55

printer port, 3-53

right margin, 3-53

printer escape sequences, B-22—B-26

Printer Graphics editor, the, 3-57—3-69

aspect, 3-64

center picture, 3-60

color correct, 3-57

density, 3-69

dithering, 3-60—3-62

height, 3-69

Index 15

~

~

image, 3-64

left offset/no, inches, 3-60

limits/type, 3-66—3-68

PrinterGFX icon, 3-57

scaling, 3-63

shade, 3-65

smoothing, 3-59

threshold, 3-65, 3-66

tips for printing screen dumps, 3-58

width, 3-69

PRINTERGFX, 8-96, 8-97

PrintFiles, 5-26, 5-27

PRINTFILES, 8-97

PROCEDURE, 10-68, 10-69

program examples, AREXX, 10-16, 10-17

Project menu, 5-19, 5-20

New, 5-19

Open.. .,5-19

Save, 5-19

Save As..., 5-19

Save As Default Icon, 5-19

Quit, 5-20

Project menu, MEmacs, 9-33—9-37

PROMPT, 8-98, 8-99

prompt, AmigaDOS, 7-13

prompts, EDIT, 9-66, 9-67

PROTECT, 8-99—8-101

pseudo-icon, 2-64, 2-65

PULL, 10-69

Q

QUIT, 8-101, 8-102

quarterl window, 1-50

R

radio button, 2-42,5-17, 5-18

RAM Disk, 1-5, 1-14, 1-40, 7-72—7-74

RANDOM, 10-112

RANDU, 10-112, 10-113

read/write heads, 6-2, 6-3

READCH, 10-113

READLN, 10-113

rebooting the Amiga, 1-40, 1-41

recoverable RAM disk, the, 7-74—7-77

redirection, AmigaDOS, 7-33, 7-34

RELABEL, 7-12, 7-26, 8-102

relative path, C-17

REMLIB, 10-113, 10-114

REMRAD, 8-103

RENAME, 7-12, 7-24, 7-49, 8-103, 8-104

rename menu item, 1-38

renaming an icon, 2-75, 2-76

renaming your backup disks, 1-38—1-40

repeating commands, ED, 9-20

Reports disk window, 1-49

requesters, 1-25, 2-20—2-25

action requesters, 2-21

file requester, 2-24, 2-25

text requester, 2-22, 2-23

RESIDENT, 8-104—8-107

resolution, 3-30

resource tracking, 10-49, 10-50

restoring files to your hard disk, C-17—

C-19

RETURN, 10-70

return code, 7-51

REVERSE, 10-114

review and additional notes, AREXX,

10-24—10-26

REXXC Directory, command utilities,

10-154—10-157

HI, 10-155

RX, 10-155

RXC, 10-156

RXSET, 10-155

TCC, 10-156

TCO, 10-156

TE, 10-156, 10-157

TS, 10-156

WaitForPort, 10-157

RexxMast, 4-6

REXXSUPPORT.LIBRARY Functions,

10-129—10-134

ALLOCMEM, 10-129, 10-130

16 Index

CLOSEPORT, 10-130

FREEMEM, 10-129, 10-130

GETARG, 10-131

GETPKT, 10-131

OPENPORT, 10-130, 10-132

REPLY, 10-130, 10-132

SHOWD1R, 10-132, 10-133

SHOWLIST, 10-133

STATEF, 10-133

WAITPKT, 10-131, 10-134

RIGHT, 10-114

ROM, 3-26, 4-10, 4-11

root block, 2-85

RUN, 8-107, 8-108

running programs, AmigaDOS, 7-46—

7-51

RX, 10-155

RXC, 10-156

RXSET, 10-155

S: directory, the, 7-78—7-80

ED-Startup, 7-79

HD Backup, con fig, 7-79

PCD, 7-80

SPal, DPat, 7-79

sample path chart, 1-53

Say, 4-18, 4-32-^-35

SAY, 8-108, 8-109, 10-70

scaling, 3-63

scanning process, the, 10-149, 10-150

SCREENMODE, 8-109, 8-110

ScreenMode editor, the, 3-37—3-41

AutoScroll, 3-41

choose display mode, 3-37

colors, 3-41

height, 3-40

properties of the selected mode, 3-38

screen sizes, 3-39

width, 3-40

script commands, AmigaDOS, 7-50, 7-51

scripts, AmigaDOS, 7-2, 7-49—7-51

scroll arrows, 1-24, 2-24, 2-35

scroll bars, 1-21—1-23, 2-24, 2-34

scroll boxes, 1-21, 2-34

scroll gadgets, 1-21—1-24, 2-33—2-35,

2-43, 2-44

scrolling, 1-15

scrolling list, 2-43

SEARCH, 8-110, 8-111

Search menu, MEmacs, 9-52—9-54

search path, 7-21—7-23

sectors, 6-2

SEEK, 10-114

SELECT, 10-70, 10-71

selecting, 2-8, 2-9

selecting multiple icons, 2-9—2-11

selection button, 1-7, 1-8, 2-8—2-11

selection gadget, 2-45

selection options, BRU with UNIX, C-39

SERIAL, 8-112

Serial editor, the, 3-70—3-73

baud rate, 3-70, 3-71

bits/char, 3-73

handshaking, 3-71, 3-72

input buffer size, 3-71

parity, 3-72

stop bits, 3-73

SET, 8-113

SETCLIP, 10-115

SETCLOCK, 7-12, 7-27, 7-28, 8-114

SETDATE, 8-115

SETENV, 8-116

SETFONT, 8-117

SetMap, 4-7, 4-13—4-17

SETMAP, 8-118

SETPATCH, 8-119

setting AREXX to start automatically,

10-9—10-12

setting environment variables for BRU,

C-6, C-7

setting the clock, AmigaDOS, 7-27, 7-28

Shell, the, 7-13, 7-14

SHELL, 10-71

Shell program, 2-4

Shell-startup file, the, 7-41—7-46

Index 17

changing the prompt, 7-43

using aliases, 7-41, 7-42

using escape sequences, 7-43—7-46

SHOW, 10-115

SHOWLIST, 10-133

SIGN, 10-115

SIGNAL, 10-71—10-73

single floppy disk systems, AmigaDOS,

7-66, 7-67

sizing gadget, 1-20, 2-35, 2-36

SKIP, 8-119,8-120

slider bar, 2-46

slider box, 2-46

slider gadget, 2-46

slider value, 2-46

smoothing, 3-59

^ SORT, 8-121

source disk, 1-29, 1-33

SOURCELINE, 10-116

SPACE, 10-116

special AmigaDOS characters, 7-29—

7-34

command line characters, 7-29—7-31

pattern matching, 7-31, 7-32

redirection, 7-33, 7-34

STACK, 8-122

standard escape sequences for console

windows, AmigaDOS, 7-45

starting AREXX on the Amiga, 10-7-

10-12

automatically, 10-8

manually, 10-8

setting AREXX to start automatically,

^ 10-9—10-12

starting AREXX through the shell,

10-8

starting ED, 9-3, 9-4

starting EDIT, 9-64, 9-65

starting MEmacs, 9-28, 9-29

Startup-sequence, the, 7-55—7-62

STATEF, 10-133

STATUS, 8-123

stems and compound symbols, 10-44—

10-46

STORAGE, 10-117

STRIP, 10-117, 10-118

submenus, 2-17, 2-18

SUBSTR, 10-118

SUBWORD, 10-119

swap requester, 1-30

SYMBOL, 10-118, 10-119

symbol resolution, 10-36

syntax and search order, 10-85—10-89

SYS:LIBS Directory, 10-14

SYS:rexx, 10-15

SYSrRexxc Directory, 10-15

SYSTEM: Directory, 10-14

System drawer, the, 4-5—4-16

AddMonitor, 4-6—4-10

BindMonitor, 4-6, 4-10

CLI, 4-6

DiskCopy, 4-6, 4-11

FixFonts, 4-6, 4-11,4-12

Format, 4-6, 4-12

NoFastMem, 4-6, 4-12, 4-13

RexxMast, 4-6

SetMap, 4-7,4-13—4-17

TCC, 10-156

TCO, 10-156

TE, 10-156

template objects, 10-148, 10-149

template structure, 10-146, 10-147

templates in action, 10-150, 10-151

text gadget, 1-39, 2-22, 2-23, 2-47, 2-48

text string, ED, 9-5

TIME, 8-124, 10-119

Time editor, 3-5, 3-6

tips for printing screen dumps, 3-58

title bar, 1-16, 1-17, 2-26,2-30

Tool Types, 2-79, 4-1—4-5

Tools drawer, the, 5-3, 5-4

Tools menu, the, 2-87

Topaz, 4-11

TRACE, 10-120

18 Index

tracing options, 10-135, 10-136

tracing output, 10-138, 10-139

tracks, 6-1, 6-2

TRANSLATE, 10-120

trashcan, 2-86, 2-87

TRIM, 10-121

troubleshooting, hard disk, 6-7, 6-8

TRUNC, 10-121

TS, 10-156

tutorial, 1-1

TYPE, 7-12, 7-24, 8-124, 8-125

Type menu, 5-20

disk, 5-20

drawer, 5-20

garbage, 5-20

project, 5-20

tool, 5-20

types of commands, AmigaDOS, 7-11-

7-13

types of displays, 3-30—3-36

A2024, 3-36

Hires, 3-33

possible display modes, 3-32

Productivity mode, 3-35

SuperHires, 3-34

U

UN ALIAS, 8-125

unconditional file type extraction, BRU

with UNIX, C-39

undo, 5-17

UNSET, 8-125

UNSETNV, 8-126

UPPER, 10-64, 10-121

using a hard disk, 6-1

using aliases, AmigaDOS, 7-41, 7-42

using AmigaDOS, 7-1

using application software, 1-42—1-54

formatting a disk, 1-44—1-47

naming files, 1-54

organizing information on a disk,

1-47—1-51

paths, 1-51—1-53

using AREXX with command shells,

10-81

using ASSIGN'S PATH option, 7-68,

7-69

using BRU-a tutorial, C-10—C-19

adding control and selection options,

C-14—C-L7

backing up only a few files or

directories, C-13

backing up your entire hard disk, C-12

combining modes, C-14

current directory, C-10—C-12

estimating the size and creating a

backup of the current directory,

C-10—C-12

restoring files to your hard disk,

C-17—C-19

using colors, 5-10, 5-11

using commands in macro programs,

10-79, 10-80

using ED, 9-5—9-27

using EDIT, 9-65—9-91

using escape sequences, AmigaDOS,

7-43—7-46

using HDBackup for the first time, 6-15

using MEmacs, 9-29—9-62

using menus, 1-11, 1-13,2-15—2-18

using the Amiga without a mouse, 2-6

using the mouse, 1-6—1-10

menu button, 1-7, 1-9, 1-10

selection button, 1-7, 1-8

Utilities drawer, the, 4-18—4-35

Clock, 4-18—4-23

Display, 4-1,4-23—4-26

Exchange, 4-18, 4-27, 4-28

More, 4-18, 4-29^-31

Say, 4-18, 4-32^1-35

VALUE, 10-122

VERIFY, 10-122

Index 19

VERSION, 8-126, 8-127

volume name, 1-28

W

WAIT, 8-127

WaitForPort, 10-157

WAITPKT, 10-134

WBCONFIG, 8-128

WBPATTERN, 8-129, 8-130

WBStartup drawer, the, 4-35, 4-36

WHEN, 10-73

WHICH, 8-130,8-131

WHY, 8-131,8-132

window, 1-4

Window menu, the, 2-58—2-66

Clean Up, 2-63

Close, 2-61

New Drawer, 2-59

Open Parent, 2-60

Select Contents, 2-62

Show, 2-64, 2-65

Snapshot, 2-63, 2-64

Update, 2-61,2-62

View By, 2-65, 2-66

Window menu, MEmacs, 9-44, 9-45

WORD, 10-122

Word menu, MEmacs, 9-50, 9-51

WORDINDEX, 10-123

WORDLENGTH, 10-123

WORDS, 10-123

Workbench, 1-1

Workbench 2.0 disk, 1-16, 1-38, 1-40,

2-4, 4-9

Workbench 2.0 disk icon, 1-2, 1-8, 1-11,

1-34, 1-35

Workbench 2.0 disk window, 1-14

Workbench Configuration editor, the,

3-79, 3-80

Workbench icon, 2-2, 2-3

Workbench menu, the, 2-2, 2-3, 2-50—

2-57

Backdrop, 2-51

Execute Command . . ., 2-52—2-54

Keyboard Shortcuts, 2-51

Last Message, 2-55

Quit. . ., 2-56, 2-57

Redraw All, 2-54

Update All, 2-54

version, 2-55

Workbench Pattern editor, 3-15—3-22

actual-size box, 3-20

clear, 3-21

color selection gadget, 3-19

magnified view box, 3-20

pattern, 3-20, 3-21

presets gadget, 3-20

test, 3-21

undo, 3-21

Workbench programs, 4-1

Workbench screen, 1-4, 2-26—2-87

Workbench screen features, 2-2—2-4

Workbench system, 2-2—2-4

Workbench windows, 2-2, 2-3, 2-27—

2-29

working with disks, AmigaDOS, 7-25—

7-27

working with files, Amigados, 7-23—

7-25

working with windows, 1-14—1-25

close gadget, 1-25

depth gadget, 1-17, 1-18

scroll gadgets, 1-21—1-24

sizing gadget, 1-20

title bar, 1-16, 1-17

zoom gadget, 1-19

write-enable, 1-27

write-protected, 1-43

WRITECH, 10-123

WRITELN, 10-124

X2C, 10-124

X2D, 10-124

zoom gadget, 1-19, 2-31

	Using the system software.pdf
	Chapter 01 Tutorial
	Chapter 02 Basic Operations
	Chapter 03 Preferences
	Chapter 04 The Workbench Programs
	Chapter 05 The Extras Programs
	Chapter 06 Using a Hard Disk
	Chapter 07 Using AmigaDOS
	Chapter 08 AmigaDOS Reference
	Chapter 09 Editors
	Chapter 10 AREXX Programming Language
	Appendix A Troubleshooting
	Appendix B Printers
	Appendix C Backing up for Hard Disk with BRU
	Appendix D Fountain
	Glossary
	Index

