

by Steven Vickers

edited by Robin Bradbeer

Second Edition 1983
@ 1982 by Sinclair Research

x N
BASIC programming

Front cover illustration by John Harris of Young Artists

Contents

Contents
CHAPTER 1
Introduction Page 5
A guide ot the 2X Spectrum keyboard and a
description of the display

CHAPTER 2
, Basic programmiBg concepts Page I T

Programs, line numbers, editing programs
using t. + and EDIT, RUN, LIST, GO TO,
CONTINUE, INPUT, NEW, REM, PRINT,
STOP in INPUT data, BREAK

CHAPTER 3
Decisions Page 23
IF, STOP,
=.<.>,<=,>=,<>

CHAPTER 4
Looping Page 29
FOR, NEXT, TO, STEP
Introducing FOR-NEXT loops

CHAPTER 5
Subroutines Page 35
GO SUB. RETURN

CHAPTER 6
READ, DATA, RESTORE Page 39

CHAPTER 7
Expressions Page 43
Mathematical expressions using
+.-.*.I
scientific notation and variable names

CHAPTER 8
Strings Page 49
Handling strings and slicing

CHAPTER 9
Functions Page 55
User-definable functions and others readily
available on the ZX Spectrum using DEF.
LEN, STRS, VAL. SGN, ABS, INT. SQR, FN

CHAPTER 10
Mathematical functions Page 63
including simple trigonometry
t, PI. EXP. LN. SIN. COS, TAN, ASN,

ACS. ATN

CHAPTER 11
Random numbers Page 71
using RANDOMIZE and RND

CHAPTER 12
Arrays Page 77
String and numeric arrays
DIM

CHAPTER 13
Conditions Page 83
and logical expressions
AND, OR, NOT

CHAPTER 14
The character set Page 89
A look at the 2X Spectrum character set
including graphics and how to construct
your own graphic characters
CODE, CHRS. POKE, PEEK. USR. BIN

CHAPTER 15
More about PRINT and INPUT Page 99
Some more complicated uses of these
commands using separators : , ; ‘, TAB, AT.
LINE and CLS

CHAPTER 16
Colours Page 7 07
INK, PAPER, FLASH, BRIGHT, INVERSE,
OVER, BORDER

CHAPTER 17
Graphics Page 179
PLOT, DRAW, CIRCLE, POINT

(cont. over)

Contents

CHAPTER 18
Motion Page 127
Animated graphics using
PAUSE, INKEYS and PEEK

CHAPTER 19
BEEP Page 733
The sound capabilities of the ZX Spectrum
using BEEP

CHAPTER 20
Tape storage Page 139
How to store your programs on cassette
tape
SAVE, LOAD, VERIFY, MERGE

CHAPTER 21
The 2X Printer Page 149
LLIST. LPRINT. COPY

CHAPTER 22
Other equipment Page 153
Connecting the ZX Spectrum to other
machines and devices

CHAPTER 23
IN and OUT Page 157
Input/Output ports and their uses
IN, OUT

CHAPTER 24
The memory Page 161
A look at the internal workings of the ZX
Spectrum
CLEAR

CHAPTER 25
The system variables Page 7 77

APPENDICES
A The character set Page 183
B Reports Page 789
C (part 1) A description of the 2X

Spectrum for reference Page 193
C (part 2) The BASIC Page 197
D Example programs Page 209

xadecimal Page 2 17

Index Page 221

CHAPTER 26
Using machine code Page I77
Introducing USR with a numeric argument

- -

CHAPTER

a.

Chapter 1

Introduction
Whether you read the introductory book first, or came straight here, you should be
aware that commands are obeyed straight away, and instructions begin with a line
number and are stored away for later. You should also be aware of the commands:
PRINT, LET. and INPUT (which can be used on all machines that use BASIC), and
BORDER, PAPER and BEEP (which are used on the Spectrum).

This BASIC manual starts by repeating some things given in the introductory
booklet, but in much more detail, telling you exactly what you can and cannot do. You
will also find some exercises at the end of each chapter. Don’t ignore these; many of
them illustrate points that are hinted at in the text. Look through them, and do any
that interest you, or that seem to cover ground that you don’t understand properly.

Whatever else you do, keep using the computer. I f you have the question “what
does it do if I tell it such and such?” then the answer is easy: type it in and see.
Whenever the manual tells you to type something in, always ask yourself, “what
could I type instead?“, and try out your replies. The more of your own programs you
write, the better you will understand the computer.

At the end of this programming manual are some appendices. These include
sections on the way the memory is organised, how the computer manipulates
numbers, and a series of example programs illustrating the power of the ZX
Spectrum.

The keyboard
ZX Spectrum characte[s comprise not only the single symbols (letters, digits, etc),
but also the compound tokens (keywords, function names, etc) and all these are
entered from the keyboard rather than being spelled out. To obtain all these functions
and commands, some keys have five or more distinct meanings, given partly by
shifting the keys (i.e. pressing either the CAPS SHIFT key or the SYMBOL SHIFT key
at the same time as the required one) and partly by having the machine in different
modes.

The mode is indicated by the cursor, a flashing letter that shows where the next
character from the keyboard will be inserted.

K (for keywords) mode automatically replaces L mode when the machine is
expecting a command or program line (rather than INPUT data), and from its position
on the line it knows it should expect a line number or a keyword. This is at the
beginning of the line, or just after THEN, or just after : (except in a string). I f
unshifted, the next key will be interpreted as either a keyword (written on the keys),
or a digit.

L (for letters) mode normally occurs at all other times. If unshifted, the next key will
be interpreted as the main symbol on that key, in lower case for letters.

In both K and L modes, SYMBOL SHIFT and a key will be interpreted as the
subsidiary red character on ,the key and CAPS SHIR with a digit key will be
interpreted as the control function written in white above the key. CAPS SHIFT with
other keys does not affect the keywords in K mode, and in L mode it converts lower
case to capitals.

7

Chapter 1

C (for capitals) mode is a variant of L mode in which all letters appear as capitals,
CAPS LOCK causes a change from L mode to C mode or back again.

E (for extended) mode is used for obtaining further characters, mostly tokens. It
occurs after both shift keys are pressed together, and lasts for one key depression
only. In this mode, a letter gives one character or token (shown in green above it) if
unshifted, and another (shown in red below it) if pressed with either shift. A digit key
gives a token if pressed with SYMBOL SHIFT; otherwise it gives a colour control
sequence.

G (for graphics) mode occurs after GRAPHICS (CAPS SHIFT and 9) is pressed, and
lasts until it is pressed again or 9 is pressed on its own. A digit key will give a mosaic
graphic, quit GRAPHICS or DELETE, and each of the letter keys apart from V. W. X, Y
and Z, will give a user-defined graphic.

I f any key is held down for more than about 2 or 3 seconds, it will start repeating.
Keyboard input appears in the bottom half of the screen as it is typed, each

character (single symbol or compound token) being inserted just before the cursor.
The cursor can be moved left with CAPS SHIFT and 5, or right with CAPS SHIFT and
8. The character before the cursor can be deleted with DELETE (CAPS SHIFT and 0).
(Note: the whole line can be deleted by typing EDIT (CAPS SHIFT and 1) followed by
ENTER.)

When ENTER is pressed, the line is executed, entered into the program, or used as
INPUT data as appropriate, unless it contains a syntax error. In this case a flashing &1
appears next to the error.

As program lines are entered, a listing is displayed in the top half of the screen. The
last line entered is called the current line and is indicated by the symbol q ; this can
be moved by using the keys + (CAPS SHIFT and 8) and 6 (CAPS SHIFT and 7). I f
EDIT (CAPS SHIFT and I) is pressed, the current line is brought down to the bottom
part of the screen and can be edited.

When a command is executed or a program run, output is displayed in the top half
of the screen and remains until a program line is entered, or ENTER is pressed with
an empty line, or & or + is pressed. In the bottom part appears a report giving a code
(digit or letter) referred to in Appendix 6. The report remains on the screen until a key
is pressed (and indicates,K mode).

In certain circumstances, CAPS SHIFT with the SPACE key acts as a BREAK,
stopping the computer with report D or L. This is recognised

(i) at the end of a statement while a program is running, or
(ii) while the computer is using the cassette recorder or printer.

The television screen
This has 24 lines, each 32 characters long, and is divided into two parts. The top part
is at most 22 lines and displays either a listing or program output. When printing in
the top part has reached the bottom, it all scrolls up one line; if this would involve
losing a line that you have not had a chance to see yet, then the computer stops with
the message scroll?. Pressing the keys N, SPACE or STOP will make the program
stop with report D BREAK - CONT repeats; any other key will let the scrolling

8

Chapter 1

continue. The bottom part is used for inputting commands, program lines, and INPUT
data, and also for displaying reports. The bottom part starts off as two lines (the upper
one blank), but it expands to accommodate whatever is typed in. When it reaches the
current print position in the top half, further expansions will make the top half scroll

up.

9

CHAPTER

Chapter 2

Basic Programming Concepts
Summary

Programs
Line numbers
Editing programs using W, 6, and EDIT
RUN, LIST
GO TO, CONTINUE, INPUT, NEW, REM, PRINT
STOP in INPUT data
BREAK

Type in these two lines of a computer program to print out the sum of two numbers:

20 PRINT a
10 LET a=10

so that the screen looks like this:

20 PRINT a

As you already know, because these lines began with numbers, they were not
obeyed immediately but stored away, as program lines, You will also have noticed
here that the line numbers govern the order of the lines within the program: this is
most important when the program is run, but it is also reflected in the order of the
lines in the listing that you can see on the screen now.

So far you have only entered one number, so type

15 LET b=15

13

Chapter 2

and in it goes. It would have been impossible to insert this line between the first two
if they had been numbered 1 and 2 instead of 10 and 20 (line numbers must be whole
numbers between 1 and 9999). so that is why, when first typing in a program, it is
good practice to leave gaps between the line numbers.

Now you need to change line 20 to

20 PRINT a+b

You could type out the replacement in full, but it is easier to use the EDIT facility
described in the introductory booklet. The m by line 15 is called the program cursor,
and the line it points to is the current line. This is usually the last line that you entered,
but you can use the & or + keys to move the program cursor down or up. (Try it,
leaving the program cursor eventually at line 20.)

When you press the EDIT key, then a copy of the current line will be displayed at
the bottom of the screen - in your case, a copy of line 20. Hold down thee key until
the q cursor moves to the end of the line, and then type

+b (without ENTER)

The line at the bottom should now read

20 PRINT a+b

Type ENTER and it will replace the old line 20, so that the screen looks like this:

10 LET a=10
15 LET b=15
20WRINT a+b

Run this program using RUN and ENTER and the sum will be displayed.
Run the program again and then type

14

PRINT a, b

Chapter 2

The variables are still there, even though the program has finished.
There is a useful method using EDIT to get rid of the bottom part of the screen.

Type in a load of rubbish (without ENTER) and then decide that you don’t want it after
all. One way to delete it is to hold the DELETE key down until the line is gone; but
another way is as follows. If you press EDIT, the rubbish at the bottom of the screen
will be replaced by a copy of the current line. If you now press ENTER, the current
line will be put back in the program unaltered, leaving the bottom part of the screen
clear.

I f you enter a line by mistake, say

12 LET b=8

it will go up into the program and you will realise your mistake. To delete this
unnecessary line, type

12 (with ENTER of course)

You will notice with surprise that the program cursor has gone. You should imagine
it as being hidden in between lines 10 and 15, so if you press & it will move up to line
10, while if you press w it will move down to line 15.

Type

12 (and ENTER)

Again, the program cursor will be hidden between lines 10 and 15. Now press EDIT
and line 15 will come down: when the program cursor is hidden between two lines,
EDIT brings down the next line following the new line number. Type ENTER to clear
the bottom part of the screen.

Now type

39 (and ENTER)

This time, the program cursor is hidden after the end of the program: and if you
press EDIT, then line 20 will be brought down.

Lastly, type

LIST 15

You will now see on the screen

15 LET b=15
20 PRINT a+b

Line 10 has vanished from the screen, but it is still in your program-which you can
prove by pressing ENTER. The only effects of LIST 15 are to produce a listing that

15

Chapter 2

starts at line 15, and to put the program cursor at line 15. If you have a very long
program, then LIST will probably be a more useful way of moving the program cursor
than + and 4).

This illustrates another use of line numbers: they act as names for the program
lines so that you can refer to them, rather like the way in which variables have names.

LIST on its own makes the listing start at the beginning of a program.
Another command seen in the introductory booklet is:

NEW

This erases any old programs and variables in the computer. Now carefully type in
this program, which changes Fahrenheit temperatures to Centigrade.

10 REM temperature conversion
20 PRINT “deg F”, “deg C”
30 PRINT
40 INPUT “Enter deg F”, F
50 PRINT F,(F-32)*5/g
60 GO TO 40

You will need to type the words in line 10. Also, although GO TO has a space in it, it
is really all one keyword (on G).

Now run it. You will see the headings printed on the screen by line 20, but what
happened to line 10? Apparently the computer has completely ignored it. Well, it has.
REM in line 10 stands for remark, or reminder, and is there solely to remind you of
what the program does. A REM command consists of REM followed by anything you
like, and the computer will ignore it right up to the end of the line.

By now, the computer has got to the INPUT command on line 40 and is waiting for
you to type in a value for the variable F - you can tell this because where you might
have expected a Q cursor there is instead an q cursor. Enter a number; remember
ENTER. Now the computer has displayed the result and is waiting for another
number. This is because of line 60, GO TO 40, which means exactly what it says.
Instead of running out of program and stopping, the computer jumps back to line 40
and starts again. So, enter another temperature.

After a few more of these you might be wondering if the machine will ever get
bored with this, it won’t. Next time it asks for another number, type STOP. The
computer comes back with a report H STOP in INPUT in line 4&l, which tells you
why it stopped, and where (in the first command of line 40).

I f you want to continue the program type

CONTINUE

and the computer will ask you for another number.
When CONTINUE is used the computer remembers the line number in the last

report that it sent you, as long as it was not 0 OK, and jumps back to that line: in our

16

Chapter 2

case, this involves jumping to line 40, the INPUT command.
Replace line 60 by GO TO 31- it will make no perceptible difference to the running

of the program. If the line number in a GO TO command refers to a non-existent line,
then the jump is to the next line after the given number. The same goes for RUN; in
fact RUN on its own actually means RUN 0.

Now type in numbers until the screen starts getting full. When it is full, the
computer will move the whole of the top half of the screen up one line to make room,
losing the heading off the top. This is called scrolling.

When you are tired of this, stop the program using STOP and get the listing by
pressing ENTER.

Look at the PRINT statement on line 50. The punctuation in this -the comma (,) -
is very important, and you should remember that it follows much more definite rules
than the punctuation in English.

Commas are used to make the printing start either at the left hand margin, or in the
middle of the screen, depending on which comes next, Thus in line 50, the comma
causes the centigrade temperature to be printed in the middle of the line. With a
semicolon, on the other hand, the next number or string is printed immediately after
the preceding one. You can see this in line 50, if the comma is replaced by a
semicolon.

Another punctuation mark you can use like this in PRINT commands is the
apostrophe (‘1. This makes whatever is printed next appear at the beginning of the
next line on the screen but this happens anyway at the end of each PRINT command,
so you will not need the apostrophe very much. This is why the PRINT command in
line 50 always starts its printing on a new line, and it is also why the PRINT command
in line 30 produces a blank line.

If you want to inhibit this, so that after one PRINT command the next one carries
on on the same line, you can put a comma or semicolon at the end of the first. To see
how this works, replace line 50 in turn by each of

and

59 PRINT F,
50 PRINT F;

50 PRINT F

and run each version - for good measure you could also try

58 PRINT F

The one with the comma spreads everything out in two columns, that with the
semicolon crams everything together, that without either allows a line for each
number and so does that with the apostrophe - the.apostrophe gives a new line of its
own, but inhibits the automatic one.

Remember the difference between commas and semicolons in PRINT
commands; also, do not confuse them with the colons (:) that are used to separate
commands in a single line.

17

Chapter 2

Now type in these extra lines:

100 REM this polite program remembers your name
110 INPUT nS
120 PRINT “Hello “;n$;“!”
130 GO TO 110

This is a separate program from the last one, but you can keep them both in the
computer at the same time. To run the new one, type

RUN 100

Because this program inputs a string instead of a number, it prints out two string
quotes-this is a reminder to you, and it usually saves you some typing as well. Try it
once with any alias you care to make up for yourself.

Next time round, you will get two string quotes again, but you don’t have to use
them if you don’t want to. Try this, for example. Rub them out (with $ and DELETE
twice), and type

n$

Since there are no string quotes, the computer knows that it has to do some
calculation: the calculation in this case is to find the value of the string variable called
n$, which is whatever name you happen to have typed in last time round. Of course,
the INPUT statement acts like LET n$=n$, so the value of n$ is unchanged.

The next time round, for comparison, type

nS

again, this time without rubbing out the string quotes. Now, just to confuse you, the
variable n$ has the value “n$“.

I f you want to use STOP for string input, you must first move the cursor back to the
beginning of the line, using 4.

Now look back at that RUN 100 we had earlier on. That just jumps to line 100, so
couldn’t we have said GO TO 100 instead? In this case, it so happens that the answer
is yes; but there is a difference. RUN 180 first of all clears all the variables and the
screen, and after that works just like GO TO 188. GO TO lOtI doesn’t clear anything.
There may well be occasions where you want to run a program without clearing any
variables; here GO TO would be necessary and RUN could be disastrous, so it is
better not to get into the habit of automatically typing RUN to run a program.

Another difference is that you can type RUN without a line number, and it starts off
at the first line in the program. GO TO must always have a line number.

Both these programs stopped because you typed STOP in the input line;
sometimes - by mistake - you write a program that you can’t stop and won’t stop
itself. Type

200 GO TO 209
RUN 200

18

Chapter 2

This looks all set to go on for ever unless you pull the plug out; but there is a less
drastic remedy. Press CAPS SHIFT with the SPACE key, which has BREAK written
above it. The program will stop, saying L BREAK into program.

At the end of every statement, the program looks to see if these keys are pressed;
and if they are, then it stops. The BREAK key can also be used when you are in the
middle of using the cassette recorder or the printer, or various other bits of machinery
that you can attach to the computer-just in case the computer is waiting for them to
do something but they’re not doing it.

In these cases there is a different report, D BREAK - CONT repeats. CONTINUE
in this case (and in fact in most other cases too) repeats the statement where the
program was stopped; but after the report L BREAK into program, CONTINUE
carries straight on with the next statement after allowing for any jumps to be made.

Run the name program again and when it asks you for input type

n$ (after removing the quotes)

n$ is an undefined variable and you get an error report 2 Variable not found.
If you now type

LET n$=“something definite”

(which has its own report of 8 OK, g:l) and

CONTINUE

you will find that you can use n$ as input data without any trouble.
In this case CONTINUE does a jump to the INPUT command in line 110. It

disregards the report from the LET statement because that said ‘OK’, and jumps to
the command referred to in the previous report, the first command in line 110. This is
intended to be useful. I f a program stops over some error then you can do all sorts of
things to fix it, and CONTINUE will still work afterwards.

As we said before, the report L BREAK into program is special, because after it
CONTINUE does not repeat the command where the program stopped.

The automatic listings (the ones that are not the resuli of a LIST command but
occur after entering a new line) may well have you puzzled. If you type in a program
with 50 lines, all REM statements,

1 REM
2 REM
3 REM

4i3 REM
50 REM

then You will be able to experiment.

19

Chapter 2

The first thing to remember is that the current line (withm) will always appear on
the screen, and usually near the middle.

Type

LIST (and ENTER of course)

and when it asks scroll? (because it has filled up the screen) press n for ‘No’. The
computer will give the report D BREAK - CONT repeats as though you had typed
BREAK. You might at some stage find out what happens if you press y instead of n;
n. SPACE and STOP count as No, while everything else counts as Yes.

Now press ENTER again to get an automatic listing and you should see lines 1 to
22 on the screen. Now type

23 REM

and you get lines 2 to 23 on the screen; type

28 REM

and you get lines 7 to 28. (In both cases, by typing a new line, you have moved the
program cursor so that a new listing has been made.)

Maybe this looks a little arbitrary to you. It is actually trying to give you exactly what
you want, although, humans being unpredictable creatures, it doesn’t always guess
right.

The computer keeps a record not only of the current line, the one that has to
appear on the screen, but also the top line on the screen. When it tries to make a
listing, the first thing it does is compare the top line to the current line.

If the top line comes after, then there is no. point in starting there, so it uses the
current line for a new top line and makes its listing.

Otherwise, its method is to start making the listing from the top line, and carry on
until it has listed the current line, scrolling if necessary. However, it first does a rough
calculation to see how long this would take, and if the answer is much too long, then
it moves the top line down to be a lot closer to the current line. Now, having worked
out its top line, it starts listing from there. If, when it reaches the end of the program
or the bottom of the screen, the current line has been listed, then it stops. Otherwise,
it scrolls until the current line is on the screen, and for each extra line that it lists it
moves the top line down one so that the top line drifts into the neighbourhood of the
current line.

Experiment with moving the current line about by typing

line number REM

LIST moves the current line but not the top line, so subsequent listings might be
different. For instance, type

LIST

20

Chapter 2

to get the LIST listing and then press ENTER again to make line 0 the top line. You
should have lines 1 to 22 on the screen. Type

LIST 22

which gives you lines 22 to 43; when you press ENTER again, you get back lines 1 to
22. This tends to be more useful for short programs than for long ones.

Using the program full of REMs above, type

LIST

and then n when it asks you scroll?. Now type

CONTINUE

CONTINUE is a bit quirky here, because the bottom part of the screen goes blank;
but you can restore normality with BREAK. The reason is that LIST was the first
command in the line, so CONTINUE repeats this command. Unfortunately, the first
command in the line is now CONTINUE itself so the computer just sits there doing
CONTINUE over and over again until you stop it.

You can vary this by replacing LIST with

: LIST

for which CONTINUE gives 0 OK (because CONTINUE jumps to the second
command in the line, which is taken to be its end) or

.* LIST . .

for which CONTINUE gives N Statement lost (because CONTINUE jumps to the
third command in the line, which no longer exists).

You have now seen the statements PRINT, LET, INPUT, RUN, LIST, GO TO,
CONTINUE, NEW and REM, and they can all be used either as direct commands or
in program lines - this is true of almost all commands in ZX Spectrum BASIC. RUN,
LIST, CONTINUE and NEW are not usually of much use in a program, but they can
be used.

Exercises

1. Put a LIST statement in a program, so that when you run it, it lists itself.

2. Write a program to input prices and print out the tax due (at 15 per cent). Put in
PRINT statements so that the computer announces what it is going to do, and asks

21

Chapter 2

for the input price with extravagant politeness. Modify the program so that you can
also input the tax rate (to allow for zero ratings or future changes).

3. Write a program to print a running total of numbers you input. (Suggestion: have
two variables called total - set to 0 to begin with - and item. Input item, add it to
total, print them both, and go round again.)

4. What would CONTINUE and NEW do in a program? Can you think of any uses at
all for this?

22

CHAPTER

Chapter 3

Decisions
Summary
IF, STOP
=, <. >, <=, >=. <>

All the programs we have seen so far have been pretty predictable - they went
straight through the instructions, and then went back to the beginning again. This is
not very useful. In practice the computer would be expected to make decisions and
act accordingly. The instruction used has the form IF something is true, or not
true THEN do something else.

For example, use NEW to clear the previous program from the computer and type
in and run this program. (This is clearly meant for two people to play!)

10 REM Guess the number
26 INPUT a: CLS
30 INPUT “Guess the number”, b
40 IF b=a THEN PRINT “That is correct”:,STOP
56 IF b<a THEN PRINT “That is too small, try again”
66 IF b>a THEN PRINT “That is too big, try again”
70 GO TO 36

You can see that an IF statement takes the form

IF condition THEN

where the I. .’ stands for a sequence of commands, separated by colons in the usual
way. The condition is something that is going to be worked out as either true or false:
if it comes out as true then the statements in the rest of the line after THEN are
executed, but otherwise they are skipped over, and the program executes the next
instruction,

The simplest conditions compare two numbers or ttio strings: they can test
whether two numbers are equal or whether one is bigger than the other; and they
can test whether two strings are equal, or (roughly) one comes before the other in
alphabetical order. They use the relations =, <, >, <=, >= and c>.

= means ‘equals’. Although it is the same symbol as the = in a LET command, it is
used in quite a different sense.

< (SYMBOL SHIFT with R) means ‘is less than’ so that

1<2
-2<-1
-3<1

are all true, but

25

Chapter 3

I<0
0<-2

are false.
Line 40 compares a and b. If they are equal then the program is halted by the STOP

command. The report at the bottom of the screen 9 STOP, statement, 39:3 shows
that the third statement, or command, in line 30 caused the program to halt, i.e.
STOP.

Line 50 determines whether b is less than a, and line 60 whether b is greater than
a. If one of these conditions is true then the appropriate comment is printed, and the
program works its way to line 70 which tells the computer to go back to line 30 and
start all over again.

The CLS, clear screen, command in line 20 was to stop the other person seeing
what you put in.

So > (SYMBOL SHIFT with T) means ‘is greater than’, and is just like c but the
other way round. You can remember which is which, because the thin end points to
the number that is supposed to be smaller.

<= (SYMBOL SHIFT with Q - do not type it as < followed by =) means ‘is less
than or equal to’, so that it is like < except that it is true even if the two numbers are
equal: thus 2<=2 is true, but 2~2 is false.

>= (SYMBOL SHIFT with E) means ‘is greater than or equal to’ and is similarly like
>.

<> (SYMBOL SHIFT with W) means ‘is not equal to’, the opposite in meaning to
=.

Mathematicians usually write <=, >= and <> as 6, z and f. They also write
things like ‘2<3<4’ to mean ‘2~3 and 3<4’, but this is not possible in BASIC.

Note: in some versions of BASIC - but not on the ZX Spectrum -the IF statement
can have the form

IF condition THEN line number

This means the same as

IF condition THEN GO TO line number

Exercises
1. Try this program:

I

18 PRINT “x”: STOP: PRINT “y”

When you run it, it will display x and stop with report 9 STOP statement, 10:2.
Now type

CONTINUE

26

Chapter 3

You might expect this to jump back to the STOP command - CONTINUE usually
repeats the statement referred to in the report. However, here this would not be very
useful, because the computer would just stop again without displaying-y. Therefore,
things are arranged so that after report 9 CONTINUE jtimps to the command after
the STOP command - so in our example, after CONTINUE, the computer prints y
and reaches the end of the program.

27

CHAPTER

Chapter 4

Looping

Summary
FOR, NEXT
TO, STEP

Suppose you want to input five numbers and add them together. One way (don’t type
this in unless you are feeling dutiful) is to write

10 LET total=0
26 INPUT a
30 LET total=total+a
46 INPUT a
50 LET total=total+a
66 INPUT a
76 LET-total=total+a

-86 INPUT a
SO LET total=total+a

100 INPUT a
110 LET total=total+a
126 PRINT total

This method is not good programming practice. It may be just about controllable for
five numbers, but you can imagine how tedious a program like this to add ten
numbers would be, and to add a hundred would be just impossible.

Much better is to set up a variable to count up to 5 and then stop the progam, like
this (which you should type in):

10 LET total=0
26 LET count=1
36 INPUT a
46 REM count=number of times that a has been input so far
50 LET total=total+a
60 LET count=count+l
70 IF count<=5 THEN GO TO 30
86 PRINT total

Notice how easy it would be to change line 70 so that this program adds ten
numbers, or even a hundred.

This sort of counting is so useful that there are two special commands to make it
easier: the FOR command and the NEXT command. They are always used together.

31

Chapter 4

Using these, the program you have just typed in does exactly the same as

10 LET total=0
20 FOR c=l TO 5
30 INPUT a
40 REM c=number of times that a has been input so far
50 LET total=total+a
60 NEXT c
80 PRINT total

(To get this program from the previous one, you just have to edit lines 20,40, 60, and
70. TO is SYMBOL SHIFT with F.)

Note that we have changed count to c. The counting variable - or controlvariable -
of a FOR - NEXT loop must have a single letter for its name.

The effect of this program is that c runs through the values 1 (the initialvalue), 2, 3,
4 and 5 (the limit), and for each one, lines 30, 40 and 50 are executed. Then, when c
has finished its five values, line 80 is executed.

An extra subtlety to this is that the control variable does not have to go up by 1
each time: you can change this 1 to anything you like by using a STEP part in the FOR
command. The most general form for a FOR command is

FOR control variable = initial value TO limit STEP step

where the control variable is a single letter, and the initial value, limit and step are all
things that the computer can calculate as numbers - like the actual numbers
themselves, or sums, or the names of numeric variables. So, if you replace line 20 in
the program by

20 FOR c=l TO 5 STEP 3/2

then c will run through the values 1, 2.5 and 4. Notice that you don’t have to restrict
yourself to whole numbers, and also that the control value does not have to hit the
limit exactly - it carries on looping as long as it is less than or equal to the limit.

Try this program, to print out the numbers from 1 to 10 in reverse order.

10 FOR n=lB TO 1 STEP -1
20 PRINT n
30 NEXT n

We said before that the program carries on looping as long as the control variable is
less than or equal to the limit. I f you work out what this would mean in this case, you
will see that it gives nonsense. The normal rule has to be modified: when the step is
negative, the program carries on looping as long as the control variable is greater than
or equal to the limit.

You must be careful if you are running two FOR - NEXT loops together, one inside

32

Chapter 4

the other. Try this program, which prints out the numbers for a complete set of six
spot dominoes.

10 FOR m=6 TO 6
20 FOR n=0 TO m
30 PRINT m;“:“;n;” “;
46 NEXT n
50 PRINT
60 NEXT m

1 n-loop
m-loop

You can see that the n-loop is entirely inside the m-loop - they are properly nested.
What must be avoided is having two FOR - NEXT loops that overlap without either
being entirely inside the other,like this:

5 REM this program is wrong
10 FOR m=0 TO 6
20 FOR n=0 TO m
30 PRINT m;“:“;n;” “;
40 NEXT m
50 PRINT
66 NEXT n

m-loop I n-loop

Two FOR - NEXT loops must either be one inside the other, or be completely
separate.

Another thing to avoid is jumping into the middle of a FOR - NEXT loop from the
outside. The control variable is only set up properly when its FOR statement is
executed, and if you miss this out the NEXT statement will confuse the computer.
You will probably get an error report saying NEXT without FOR or variable not
found.

There is nothing whatever to stop you using FOR and NEXT in a direct command.
For example, try:

FOR m=0 TO 10: PRINT m: NEXT m

You can sometimes use this as a (somewhat artificial) way of getting round the
restriction that you cannot GO TO anywhere inside a command - because a
command has no line number. For instance,

FOR m=6 TO 1 STEP 0: INPUT a: PRINT a: NEXT m

The step of zero here makes the command repeat itself forever.
This sort of thing is not really recommended, because if an error crops up then you

have lost the command and will have to type it in again - and CONTINUE will not
work.

33

Chapter 4

Exercises
1. A control variable has not just a name and a value, like an ordinan/ variable, but
also a limit, a step, and a reference to the statement after the corresponding FOR
statement. Persuade yourself that when the FOR statement is executed all this
information is available (using the initial value as the first value the variable takes). and
also that this information is enough for the NEXT statement to know by how much to
increase the value, whether to jump back, and if so where to jump back to.

2. Run the third program above and then type

PRINT c

Why is the answer 6, and not 5?
[Answer: the NEXT command in line 60 is executed five times, and each time 1 is
added to c. The last time, c becomes 6; and then the NEXT command decides not to
loop back, but to carry on, c being past its limit.]

What happens if you put STEP 2 in line 20?

3. Change the third program so that instead of automatically adding five numbers, it
asks you to input how many numbers you want adding. When you run this program,
what happens if you input 0, meaning that you want no numbers adding? Why might
you expect this to cause problems for the computer, even though it is clear what you
mean? (The computer has to make a search for the command NEXT c, which is not
usually necessary.) In fact this has all been taken care of.

4. In line 10 of the fourth program above, change 10 to 100 and run the program. It
will print the numbers from 100 to 79 on the screen, and then say scroll? at the
bottom. This is to give you a chance to see the numbers that are about to be scrolled
off the top. If you press n, STOP or the BREAK key, the program will stop with the
report D BREAK- CONT repeats. If you press any other key, then it will print another
22 lines and ask you again.

5. Delete line 30 from the fourth program. When you run the new curtailed program,
it will print the first number and stop with the message 0 OK. If you type

NEXT n

the program will go once round the loop, printing out the next number.

34

CHAPTER

Chapter 5

Subroutines
Summary
GO SUB, RETURN

Sometimes different parts of the program will have rather similar jobs to do, and you
will find yourself typing the same lines in two or more times; however this is not
necessary. You can type the lines in once, in a form known as a subroutine, and then
use, or call, them anywhere else in the program without having to type them in again.

To do this, you use the statements GO SUB (GO to SUBroutine) and RETURN.
This takes the form

GO SUB n

where n is the line number of the first line in the subroutine. It is just like GO TO n
except that the computer remembers where the GO SUB statement was so that it
can come back again after doing the subroutine. It does this by putting the line
number and the statement number within the line (together these constitute the
return address) on top of a pile of them (the GO SUB stack);

RETURN

takes the top return address off the GO SUB stack, and goes to the statement after
it.

As an example, let’s look at the number guessing program again. Retype it as
follows:

10 REM “A rearranged guessing game”
20 INPUT a: CLS
36 INPUT “Guess the number “,b
46 IF a=b THEN PRINT “Correct”: STOP
50 IF acb THENGO SUB 166
60 IF a>b THEN GO SUB 100
70 GO TO 30

166 PRINT “Try again”
110 RETURN

The GO TO statement in line 70 is very important because otherwise the program
will run on into the subroutine and cause an error (7 RETURN without GO SUB)
when the RETURN statement is reached.

Here is another rather silly program illustrating the use of GO SUB.

37

Chapter 5

166 LET x=10
116 GO SUB 500
120 PRINT s
130 LET x=x+4
140 GO SUB 566
156 PRINT s
160 LET x=x+2
170 GO SUB 566
166 PRINT s
166 STOP
560 LET s=O
516 FOR y=l TO x
526 LET s=s+y
530 NEXT y
540 RETURN

When this program is run, see if you can work out what is happening. The
subroutine starts at line 500.

A subroutine can happily call another, or even itself (a subroutine that calls itself is
recursive), so don’t be afraid of having several layers.

38

CHAPTER

Chapter 6

READ, DATA, RESTORE
Summary
READ, DATA, RESTORE

In some previous programs we saw that information, or data, can be entered directly
into the computer using the INPUT statement. Sometimes this can be very tedious,
especially if a lot of the data is repeated every time the program is run. You can save a
lot of time by using the READ, DATA and RESTORE commands. For example:

10 READ a,b,c
20 PRINT a,b,c
30 DATA l&20,30
40 STOP

A READ statement consists of READ followed by a list of the names of variables,
separated by commas. It works rather like an INPUT statement, except that instead
of getting you to type in the values to give to the variables, the computer looks up the
values in the DATA statement.

Each DATA statement is a list of expressions - numeric or string expressions -
separated by commas. You can put them anywhere you like in a program, because
the computer ignores them except when it is doing a READ. You must imagine the
expressions from all the DATA statements in the program as being put together to
form one long list of expressions, the DATA list. The first time the computer goes to
READ a value, it takes the first expression from the DATA list; the next time, it takes
the second; and thus as it meets successive READ statements, it works its way
through the DATA list. (If it tries to go past the end of the DATA list, then it gives an
error.)

Note that it’s a waste of time putting DATA statements in a direct command,
because READ will not find them. DATA statements have to go in the program.

Let’s see how these fit together in the program you’ve just typed in. Line 10 tells
the computer to read three pieces of data and give them the variables a, b and c. Line
20 then says PRINT these variables. The DATA statement in line 30 gives the values
of a, b and c. Line 40 stops the program. To see the order in which things work
change line 20 to:

20 PRINT b,c,a

The information in DATA can be part of a FOR. NEXT loop. Type in:

10 FOR n=l TO 6
20 READ D
30 DATA 2 , 4 I 6 , 6 , 10.12
40 PRINT D
50 NEXT n
60 STOP

41

Chatter 6

When this program is RUN you can see the READ statement moving through the
DATA list, DATA statements can also contain string variables. For example:

10 READ d$
20 PRINT “The date is”,d$
30 DATA “June lst, 1982”
40 STOP

This is the simple way of fetching expressions from the DATA list: start at the
beginning and work through until you reach the end. However, you can make the
computer jump about in the DATA list, using the RESTORE statement. This has
RESTORE, followed by a line number, and makes subsequent READ statements
start getting their data from the first DATA statement at or after the given line
number. (You can miss out the line number, in which case it is as though you had
typed the line number of the first line in the program.)

Try this program:

10 READ a,b
20 PRINT a,b i
30 RESTORE 10
40 READ x,y,z
60 PRINT x,y,r
60 DATA l,2,3
70 STOP

In this program the data required by line 10 made a=1 and b=2. The RESTORE 10
instruction reset the variables, and allowed x, y and z to be READ starting from the
first number in the DATA statement. Rerun this program without line 30 and see
what happens.

42

CHAPTER

Chapter 7

Expressions
Summary
Operations: +, -, l , /
Expressions, scientific notation, variable names

You have already seen some of the ways in which the ZX Spectrum can calculate
with numbers. It can perform the four arithmetic operations +, -, * and / (remember
that * is used for multiplication, and I is used for division), and it can find the value of a
variable, given its name.

The example:

LET tax=sum*l5/100

gives just a hint of the very important fact that these calculations can be combined.
Such a combination, like sum*l!V100, is called an expression: so an expression is
just a short-hand way of telling the computer to do several calculations, one after the
other. In our example, the expression sum*lW100 means ‘look up the value of the
variable called “sum”, multiply it by 15, and divide by 100’.

I f you haven’t yet done so, we recommend that you look through the introductory
booklet to see how the ZX Spectrum handles numbers, and the order in which it
evaluates mathematical expressions.

To recap:
Multiplications and divisions are done first. They have higher priority than addition

and subtraction. Relative to each other, multiplication and division have the same
priority, which means that the multiplications and divisions are done in order from left
to right. When they are dealt with, the additions and subtractions come next - these
again have the same priority as each other, so we do them in order from left to right.

Although all you really need to know is whether one operation has a higher or lower
priority than another, the computer does this by having a number between 1 and 16
to represent the priority of each operation: l and I have priority 8, and + and - have
priority 6.

This order of calculation is absolutely rigid, but you can circumvent it by using
brackets: anything in brackets is evaluated first and then treated as a single number.

Expressions are useful because, whenever the computer is expecting a number
from you, you can give it an expression instead and it will work out the answer. The
exceptions to this rule are so few that they will be stated explicitly in every case.

You can add together as many strings (or string variables) as you like in a single
expression, and if you want, you can even use brackets.

We really ought to tell you what you can and cannot use as the names of variables.
As we have already said, the name of a string variable has to be a single letter
followed by $; and the name of the control variable of a FOR - NEXT loop must be a
single letter; but the names of ordinary numeric variables are much freer. They can
use any letters or digits as long as the first one is a letter. You can put spaces in as

45

Chapter 7

well to make it easier to read, but they won’t count as part of the name. Also, it
doesn’t make any difference to the name whether you type it in capitals or lower
case letters.

Here are some examoles of the names of variables that are allowed:

X

t42
this name is so long that I shall never be able to type it out again without
making a mistake
now we are six (these last two names are considered the same, and
nOWeaReSiX refer to the same variable)

These are not allowed to be the names of variables:

2eg1 (it begins with a digit)
3 bears (begins with a digit)
M*A*S*H (* is not a letter or a digit)
Fotherington-Thomas (- is not a letter or a digit)

Numerical expressions can be represented by a number and exponent: again refer
to the introductory booklet. Try the following to prove the point:

PRINT 2.3468
PRINT 2.3461
PRINT 2.3462

and so on up to

PRINT 2.34e15

You will see that after a while the computer also starts using scientific notation.
This is because no more than fourteen characters can be used to write a number.
Similarly, try

PRINT 2.348-l
PRINT 2.34e-2

and so on.
PRINT gives only eight significant digits of a number. Try

PRINT 4294967295,4294967295-429e7

This proves that the computer can hold the digits of 4294967295, even though it is
not prepared to display them all at once.

The 2X Spectrum uses floating point arithmetic, which means that it keeps

46

Chapter 7

separate the digits of a number (its mantissa) and the position of the point (the
exponent). This is not always exact, even for whole numbers. Type

PRINT le10+1-lel@,le10-lel0+l

Numbers are held to about nine and a half digits accuracy, so 1 e10 is too big to be
held exactly right. The inaccuracy (actually about 2) is more than 1, so the numbers
1 el0 and lel0+1 appear to the computer to be equal.

For an even more peculiar example, type

PRINT 5e9+1-5e9

Here the inaccuracy in 5e9 is only about 1, and the 1 to be added on in fact gets
rounded up to 2. The numbers 5e9+1. and 5e9+2 appear to the computer to be
equal.

The largest integer (whole number) that can be held completely accurately is 1 less
than 32 2’s multiplied together (or 4,294,967,295).

The string “” with no characters at all is called the empry or nullstring. Remember
that spaces are significant and an empty string is not the same as one containing
nothing but spaces.

TV
PRINT “Have you finished “Finnegans Wake” yet?”

When you press ENTER, you will get the flashing question mark that shows there
is a mistake somewhere in the line. When the computer finds the double quotes at
the beginning of “Finnegans Wake”, it imagines that these mark the end of the string
“have you finished”, and it then can’t work out what ‘Finnegans Wake’ means.

There is a special device to get over this: whenever you want to write a string
quote symbol in the middle of a string, you must-write it twice, like this:

PRINT “Have you finished ““Finnegans Wake”” yet?”

As you can see from what is printed on the screen, each double quote is only really
there once; you just have to type it twice to get it recognized.

47

CHAPTER

Chapter 8

Strings

Summary
Slicing, using TO. Note that this notation is not standard BASIC

Given a string, a substring of it consists of some consecutive characters from it,
taken in sequence. Thus “string” is a substring of “bigger string”, but “b sting” and
“big reg” are not.

There is a notation called slicing for describing substrings, and this can be applied
to arbitrary string expressions. The general form is

string expression (start TO finish)

so that, for instance,

“abcdef”(2 TO 5)=“bcde”

If you omit the start,‘then 1 is assumed; if you omit the finish then the length of the
string is assumed. Thus

“abcdef”(TO 5I=“abcdef”(l TO !iI=“abcde”
“abcdef”l2 TO I=“abcdef”(2 TO 6I=“bcdef’
“abcdef”(TO)=“abcdef”(l TO 6i)=“abcdef”

(You can also write this last one as “abcdef”0, for what it’s worth.)
A slightly different form misses out the TO and just has one number.

“abcdef”(3)=“abcdef”(3 TO 3)=“c”

Although normally both start and finish must refer to existing parts of the string,
this rule is overridden by another one: if the start is more than the finish, then the
result is the empty string. So

“abcdef”(5 TO 7)

gives error 3 subscript wrong because the string only contains 6 characters and 7 is
too many, but

“abcdef”(8 TO 7)=“”

and

“abcdef”(1 TO 0)=“*’

51

Chapter 8

The start and finish must not be negative, or you get error B integer out of range.
This next program is a simple one illustrating some of these rules.

10 LET a$=“abcdef”
20 FOR n=l TO 6
30 PRINT a$(n TO 6)
40 NEXT n
50 STOP

Type NEW when this program has been run and enter the next program:

10 LET a$=“ABLE WAS I”
20 FOR n=l TO 10
30 PRINT a$(n TO 10I,a$((l&n) TO 10)
40 NEXT n
50 STOP

For string variables, we can not only extract substrings, but also assign to them.
For instance, type

LET a$=“l’m the 2X Spectrum”

and then

LET a$(5 TO 8)=“******”

and

PRINT a8

Notice how since the substring a$(5 TO 81 is only 4 characters long, only the first
four stars have been used. This is a characteristic of assigning to substrings: the
substring has to be exactly the same length afterwards as it was before. To make
sure this happens, the string that is being assigned to it is cut off on the right if it is
too long, or filled out with spaces if it is too short - this is called Procrustean
assignment after the inn-keeper Procrustes who used to make sure that his guests
fitted the bed by either stretching them out on a rack or cutting their feet off.

I f you now try

LET a$O=“Hello there”

and

52

PRINT a$;“.”

Chapter 8

you will see that the same thing has happened again (this time with spaces put in)
because a$0 counts as a substring.

LET a$=“Hello there”

will do it properly.
Complicated string expressions will need brackets round them before they can be

sliced. For example,

“abc”+“def”(l TO 2)=“abcde”
(“abc”+‘“def”)(l TO 2)=“ab”

Exercise
1. Try writing a program to print out the day of the week using string slicing. Hint: let
the string be SunMonTuesWedThursFriSat.

53

CHAPTER

Chapter 9

Functions
Summary
DEF
LEN, STFl$, VAL, SGN. ABS. INT. SQR
FN

Consider the sausage machine. You put a lump of meat in at one end, turn a handle,
and out comes a sausage at the other end. A lump of pork gives a pork sausage, a
lump of fish gives a fish sausage, and a load of beef a beef sausage.

Functions are practically indistinguishable from sausage machines but there is a
difference: they work on numbers and strings instead of meat. You supply one value
(called the argument), mince it up by doing some calculations on it, and eventually get
another value. the result.

Meat in+ Sausage Machine +Sausage out

Argument in--+ Function -3 Result out

Different arguments give different results, and if the argument is completely
inappropriate the function will stop and give an error report.

Just as you can have different machines to make different products - one for
sausages, another for dish cloths, and a third for fish-fingers and so on, different
functions will do different calculations. Each will have its own value to distinguish it
from the others.

You use a function in expressions by typing its name followed by the argument,
and when the expression is evaluated the result of the function will be worked out.

As an example, there is a function called LEN, which works out the length of a
string. Its argument is the string whose length you want to find, and its result is the
length, so that if you type

PRINT LEN “Sinclair”

the computer will write the answer 8, the number of letters in ‘Sinclair’. (To get LEN,
as with most function names, you must use extended mode: press CAPS SHIFT and
SYMBOL SHIFT at the same time to change the cursor from 0 to 0, and then press
the K key.)

I f you mix functions and operations in a single expression, then the functions will
be worked out before the operations. Again, however, you can circumvent this rule
by using brackets. For instance, here are two expressions which differ only in the
brackets, and yet the calculations are performed in an entirely different order in each
case (although, as it happens, the end results are the same).

57

Chapter 9

LEN “Fred”+ LEN “Bloggs” LEN (“Fred”+“Bloggs”)

4+LEN “Bloggs” LEN (“FredBloggs”)

4+6 LEN “FredBloggs”

10 10

Here are some more functions

STRS converts numbers into strings: its argument is a number, and its result is the
string that would appear on the screen if the number were displayed by a PRINT
statement. Note how its name ends in a $ sign to show that its result is a string. For
example, you could say

LET a$=STR$ le2

which would have exactly the same effect as typing

LET a$=“1 89”

Or you could say

PRINT LEN STR$ lOO.bc)(N

and get the answer 3, because STR6 100.000@=“100”.

VAL is like STR$ in reverse: it converts strings into numbers. For instance,

VAL “3.5”=3.5

In a sense, VAL is the reverse of STRS, because if you take any number, apply
STRS to it, and then apply VAL to it, you get back to the number you first thought of.

However, if you take a string, apply VAL to it, and then apply STR$ to it, you do not
always get back to your original string.

VAL is an extremely powerful function, because the string which is its argument is
not restricted to looking like a plain number - it can be any numeric expression. Thus,
for instance,

VAL ‘*2*3”= 6

or even,
VAL (“2”+“*3”) = 6

There are two processes at work here. In the first, the argument of VAL is

58

Chapter 9

evaluated as a string: the string expression “2”+“*3” is evaluated to give the string
“2*3”. Then, the string has its double quotes stripped off, and what is left is
evaluated as a number: so 2*3 is evaluated to give the number 6.

This can get pretty confusing if you don’t keep your wits about you; for instance,

(Remember that inside a string a string quote must be written twice. If you go down
into further depths of strings, then you find that string quotes need to be quadrupled,
or even octupled.)

There is another function, rather similar to VAL. although probably less useful,
called VAL$. Its argument is still a string, but its result is also a string. To see how this
works, recall how VAL goes in two steps: first its argument is evaluated as a string,
then the string quotes stripped off this, and whatever is left is evaluated as a number.
With VALS, the first step is the same, but after the string quotes have been stripped
off in the second step, whatever is left is evaluated as another string. Thus

VAL$ “““Fruit punch”“” = “Fruit punch”

(Notice how the string quotes proliferate again.) Do

LET a$=‘%”

and print out all of the following: VAL a$, VAL “a$.., VAL “““a$“““, VALS a$,
VALS “a$” and VAL$ “‘*“a$“*“‘. Some of these will work, and some of them
won’t; try to explain all the answers. (Keep a cool head.)

SGN is the sign function (sometimes called signurn). h is the first function you
have seen that has nothing to do with strings, because both its argument and its
result are numbers. The result is +I if the argument is positive, 0 if the argument is
zero, and -1 if the argument is negative.

ABS is another function whose argument and result are both numbers. It converts
the argument into a positive number (which is the result) by forgetting the sign, 30
that for instance

ABS -3.2 = ABS 3.2 = 3.2

INT stands for ‘integer part’ - an integer is a whole number, possibly negative. This
function converts a fractional number into an integer by throwing away the fractional
part, so that for instance,

INT 3.9 = 3

Be careful when you are applying it to negative numbers, because it always rounds
down: thus, for instance,

INT -3.9 = -4

59

Chapter 9

SQR calculates the square root of a number - the result that, when multiplied by
itself, gives the argument. For instance,

SQR 4 = 2 because 2*2=4
SQR 0.25 = 0.5 because 0.5*0.5=0.25
SQR 2 = 1.4142136 (approximately)

because 1.4142136*1.4142136=2.0000001

If you multiply any number (even a negative one) by itself, the answer is always
positive. This means that negative numbers do not have square roots, so if you apply
SQR to a negative argument you get an error report An Invalid Argument.

You can also define functions of you own. Possible names for these are FN
followed by a letter (if the result is a number) or FN followed by a letter followed by $
(if the result is a string). These are much stricter about brackets: the argument must
be enclosed in brackets.

You define a function by putting a DEF statement somewhere in the program. For
instance, here is the definition of a function FN s whose result is the square of the
argument:.

10 DEF FN s(x)=x*x: REM the square of x

DEF is obtained in extended mode, using SYMBOL SHIR and 1. When you type
this, the computer will give you FN automatically, because in a DEF statement the
DEF is always followed immediately by FN. After this, the s completes the name FN
s of the function.

The x in brackets is a name by which you wish to refer to the argument of the
function. You can use any single letter you like for this (or, if the argument is a string,
a single letter followed by $1.

After the = sign comes the actual definition of the function. This can be any
expression, and it can also refer to the argument using the name you’ve given it (in
this case, x) as though it were an ordinary variable.

When you have entered this line, you can invoke the function just like one of the
computer’s own functions, by typing its name, FN s, followed by the argument.
Remember that when you have defined a function yourself, the argument must be
enclosed in brackets. Try it out a few times:

PRINT FN s(2)
’ PRINT FN s(3+4)

PRINT l+INT FN s (LEN “chicken”/2+3)

Once you have put the corresponding DEF statement into the program, you can
use your own functions in expressions just as freely as you can use the computer’s

60

Chapter 9

Note: in some dialects of BASIC you must even enclose the argument of one of
the computer’s functions in brackets. This is not the case in ZX Spectrum BASIC.

INT always rounds down. To round to the nearest integer, add .5 first - you could
write your own function to do this.

20 DEF FN r(x)=INT (x+0.5): REM gives x rounded to the nearest
integer.

You will then get, for instance,

FN r(2.9) = 3 FN r(2.4) = 2
FN r(-2.9) = -3 FN r(-2.4) = -2

Compare these with the answers you get when you use INT instead of FN r.
Type in and run the following:

10 LET x=8: LET y=0: LET a=10
20 DEF FN p(x,yl=a+x*y
30 DEF FN q()=a+x*y
40 PRINT FN p(2,3),FN q()

There are a lot of subtle points in this program. _
First, a function is not restricted to just one argument: it can have more, or even

none at all - but you must still always keep the brackets.
Second, it doesn’t matter whereabouts in the program you put the DEF

statements. After the computer has executed line 10, it simply skips over lines 20
and 30 to get to line 40. They do, however, have to be somewhere in the program.
They can’t be in a command.

Third, x and y are both the names of variables in the program as a whole, and the
names of arguments for the function FN p. FN p temporarily forgets about the
variables called x and y, but since it has no argument called a, it still remembers the
variable a. Thus when FN p(2,3) is being evaluated, a has the value 10 because it is
the variable, x has the value 2 because it is the first argument, and y has the value 3
because it is the second argument. The result is then, 10+2*3=16. When FN q() is
being evaluated, on the other hand, there are no arguments, so a, x and y all still refer
to the variables and have values 10, 0 and 0 respectively. The answer in this case is
10+0*0=10.

Now change line 20 to

20 DEF FN p(x,y)=FN q()

This time, FN ~(2.3) will have the value 10 because FN q will still go back to the
variables x and y rather than using the arguments of FN p.

Some BASICS (not the ZX Spectrum BASIC) have functions called LEFT% RIGHT%
MID$ and TL$.

61

Chapter 9

LEFT$ (a$.n) gives the substring of a$ consisting of the first n characters.
RIGHT$ (a$,n) gives the substring of a$ consisting of the characters from nth on.
MID$ (a$, nl, n2) gives the substring of a$ consisting of n2 characters starting at

the nlth.
TL$ (a$) gives the substring of a$ consisting of all its characters except the first.
You can write some user-defined functions to do the same: e.g.

10 DEF FN t$(a$)=aS(2 TO): REM TLS
20 DEF FN I$(a$,n)=a$(TO n): REM LEFTS

Check that these work with strings of length 0 or 1.
Note that our FN I$ has two arguments, one a number and the other a string. A

function can have up to 26 numeric arguments (why 26?) and at the same time up to
26 string arguments.

Exercise
Use the function FN s(x)=x*x to test SQR: you should find that

FN s(SQR x)=x

if you substitute any positive number for x, and

SQR FN s(x)=ABS x

whether x is positive or negative (Why the ABS?).

62

CHAPTER

0

Chapter 10

Mathematical functions
Summary

t
PI, EXP, LN. SIN, COS, TAN, ASN, ACS, ATN

This chapter deals with the mathematics that the ZX Spectrum can handle. Quite
possibly you will never have to use any of this at all, so if you find it too heavy going,
don’t be afraid of skipping it. It covers the operation 1 (raising to a power), the
functions EXP and LN. and the trigonometrical functions SIN, COS, TAN and their 1
inverses ASN, ACS, and ATN.

t and EXP
You can raise one number to the power of another - that means ‘multiply the first
number by itself the second number of times’. This is normally shown by writing the
second number just above and to the right of the first number; but obviously this
would be difficult on a computer so we use the symbol t instead. For example, the
powers of 2 are

2?1=2
2 f 2=2*2=4
2 t 3=2*2*2=8
2 t 4=2*2*2*2=16

(2 squared, normally written 2’)
(2 cubed, normally written 23)
(2 to the power four, normally written 24)

Thus at its most elementary level, ‘a t b’ means ‘a multiplied by itself b times’, but
obviously this only makes sense if b is a positive whole number. To find a definition
that works for other values of b, we consider the rule

a t (b+c)=a t b*a t c

(Notice that we give t a higher priority than * and I so that when there are several
operations in one expression, the t s are evaluated before the *s and Is.) You should
not need much convincing that this works when b and c are both positive whole
numbers; but if we decide that we want it to work even when they are not, then we
find ourselves compelled to accept that

aT0=1
at (-b)=l/a t b
a t (l/b)=the bth root of a, which is to say, the number that you have to multiply by

itself b times to get a
,~

and
a t (b*c)=(a t b) t c

If you have never seen any of this before then don’t try to remember it straight
away; just remember that

65

Chapter 10

a f (-1)=1/a
and
a t (1/2)=SQR a

and maybe when you are familiar with these the rest will begin to make sense.
Experiment with all this by trying this program:

10 INPUT a,b,c
20 PRINT a t (b+c),a t b*a f c
30GOTO 10

Of course, if the rule we gave earlier is true, then each time round the two
numbers that the computer prints out will be equal. (Note - because of the way the
computer works out t, the number on the left - a in this case - must never be
negative.)

A rather typical example of what this function can be used for is that of compound
interest. Suppose you keep some of your money in a building society and they give
15% interest per year. Then after one year you will have not just the 100% that you
had anyway, but also the 15% interest that the building society have given you,
making altogether 115% of what you had originally. To put it another way, you have
multiplied your sum of money by 1.15, and this is true however much you had there
in the first place. After another year, the same will have happened again, so that you
will then have 1.15*1.15=1.15 12=1.3225 times your original sum of money. In
general, after y years, you will have 1.15 r y times what you started out with.

I f you try this command

FOR y=@ TO 100: PRINT y,10*1.15 t y: NEXT y

you will see that even starting off from just fl0, it all mounts up quite quickly, and
what is more, it gets faster and faster as time goes on. (Although even so, you might
still find that it doesn’t keep up with inflation.)

This sort of behaviour, where after a fixed interval of time some quantity multiplies
itself by a fixed proportion, is called exponentialgrowth, and it is calculated by raising
a fixed number to the power of the time.

Suppose you did this:

10 DEF FN a(xI=a T x

Here, a is more or less fixed, by LET statements: its value will correspond to the
interest rate, which changes only every so often.

There is a certain value for a that makes the function FN a look especially pretty to
the trained eye of a mathematician: and this value is called e. The ZX Spectrum has a
function called EXP defined bv

EXPx = etx

66

ChaDter 10

Unfortunately, e itself is not an especially pretty number: it is an infinite
non-recurring decimal. You can see its first few decimal places by doing

PRINT EXP 1

because EXP 1 = e t 1 = e. Of course, this is just an approximation. You can never
write down e exactly.

LN
The inverse of an exponential function is a logarithmic function: the logarirhm (to
base a) of a number x is the power to which you have to raise a to get the number x,
and it is written Iog,x. Thus by definition a t log,x=x; and it is also true that
log (a t x)=x.

You may well already know how to use base 10 logarithms for doing
multiplications; these are called common logarithms. The ZX Spectrum has a
function LN which calculates logarithms to the base e; these are called natural
logarithms. To calculate logarithms to any other base, you must divide the natural
logarithm by the natural logarithm of the base:

log,x= LN d LN a

PI
Given any circle, you can find its perimeter (the distance round its edge; often called
its circumference) by multiplying its diameter (width) by a number called IT. (n is a
Greek p, and it is used because it stands for perimeter. Its name is pi.)

Like e, n is an infinite non-recurring decimal; it starts off as
3.141592653589. . .The word PI on the Spectrum (extended mode, then M) is
taken as standing for this number - try PRINT PI. ’ . ,

\
.

‘SIN, COS and TAN; ASN, ACS and ATN
The trigonomeVica/ functions measure what happens when a point moves round a’
circle. Here is a circle of radius 1 (I what? It doesn’t matter, as long as we keep to the
same unit all the way through. There is nothing to stop you inventing a new unit of
your own for every circle that you happen to be interested in) and a point moving
round it. The point started at the 3 o’clock position, and then moved round in an
anti-clockwise direction.

67

Chapter 10

f-axis

radius=1

\

We have also drawn in two lines called axes through the centre of the circle. The
one through 9 o’clock and 3 o’clock is called the x-axis, and the one through 6 o’clock
and 12 o’clock is called the y-axis.

To specify where the point is, you say how far it has moved round the circle from
its 3 o’clock starting position: let us call this distance a. We know that the
circumference of the circle is 2n(because its radius is 1 and its diameter is thus 2): so
when it has moved a quarter of the way round the circle, a=rr/2; when it has moved
halfway round, a=n; and when it has moved the whole way round, a=2rr.

Given the curved distance round the edge, a, two other distances you might like to
know are how far the point is to the right of the y-axis, and how far it is above the
x-axis. These are called, respectively, the cosine and sine of a. The functions COS
and SIN on the computer will calculate these.

68

Chapter 10

m-axis

come of a=COS a
/

x-axis

Note that if the point goes to the left of the y-axis, then the cosine becomes
negative; and if the point goes below the x-axis, the sine becomes negative.

Another property is that once a has got up to 2rr, the point is back where it started
and the sine and cosine start taking the same values all over again:

SIN (a+2*PI) = SIN a
COS (a+2*PI) = COS a

The fangent of a is defined to be the sine divided by the cosine; the corresponding
function on the computer is called TAN.

Sometimes we need to work these functions out in reverse, finding the value of a
that has given sine, cosine or tangent. The functions to do this are called amine

69

Chapter 10

(ASN on the computer), arccosine (ACS) and arcfangenr (ATN).
In the diagram of the point moving round the circle, look at the radius joining the

centre to the point. You should be able to see that the distance we have called a, the
distance that the point has moved round the edge of the circle, is a way of measuring
the angle through which the radius has moved away from the x-axis. When a=ti2,
the angle is 90 degrees; when a=nthe angle is 180 degrees; and so round to when
a=2n, and the angle is 360 degrees. You might just as well forget about degrees, and
measure the angle in terms of a alone: we say then that we are measuring the angle
in radians. Thus n/2 radians=90 degrees and so on.

You must always remember that on the ZX Spectrum SIN, COS and so on use
radians and not degrees. To convert degrees to radians, divide by 180 and multiply by
t-r; to convert back from radians to degrees, you divide by rr and multiply by 180.

70

CHAFTER

Chapter 11

Random numbers
Summary
RANDOMIZE
RND

This chapter deals with the function RND and the keyword RANDOMIZE. They are
both used in connection with random numbers, so you must be careful not to get
them mixed up. They are both on the same key (T); RANDOMIZE has had to be
abbreviated to RAND.

In some ways RND is like a function: it does calculations and produces a result. It is
unusual in that it does not need an argument.

Each time you use it, its result is a new random number between 0 and I.
(Sometimes it can take the value 0, but never 1.)

TV

10 PRINT RND
20 GO TO 10

to see how the answer varies. Can you detect any pattern? You shouldn’t be able to;
‘random’ means that there is no pattern.

Actually, RND is not truly random, because it follows a fixed sequence of 65536
numbers. However, these are so thoroughly jumbled up that there are at least no
obvious patterns and we say that RND is pseudo-random.

RND gives a random number between 0 and 1, but you can easily get random
numbers in other ranges. For instance, 5*RND is between 0 and 5, and
1.3+0.7*RND is between 1.3 and 2. To get whole numbers, use INT (remembering
that INT always rounds down) as in 1 +INT (RND*6), which we shall use in a program
to simulate dice. RND*G is in the range 0 to 6, but since it never actually reaches 6,
INT (RND*G) is 0,1,2,3,4 or 5.

Here is the program:

10 REM dice throwing program
20 CLS
30 FOR n=l TO 2
40 PRINT l+INT (RND*G);” “,
50 NEXT n
60 INPUT a$: GO TO 26

Press ENTER each time you want to throw the dice.
The RAF(DOMIZE statement is used to make RND start off at a definite place in its

sequence of numbers, as you can see with this program:

10 RANDOMIZE 1
20 FOR n=l TO 5: PRINT RND ,: NEXT n
30 PRINT : GO TO 16

73

Chapter 11

After each execution of RANDOMIZE 1, the RND sequence starts off again with
0.0022735596. You can use other numbers between 1 and 65535 in the
RANDOMIZE statement to start the RND sequence off at different places.

If you had a program with RND in it and it also had some mistakes that you had not
found, then it would help to use RANDOMIZE like this so that the program behaved
the same way each time you ran it.

RANDOMIZE on its own (and RANDOMIZE 0 has the same effect) is different,
because it really does randomize RND - you can see this in the next program.

10 RANDOMIZE
20 PRINT RND : GO TO 10

The sequence you get here is not very random, because RANDOMIZE uses the
time since the computer was switched on. Since this has gone up by the same
amount each time RANDOMIZE is executed, the next RND does more or less the
same. You would get better randomness by replacing GO TO 10 by GO TO 20.

Note: Most dialects of BASIC use RND and RANDOMIZE to produce random
numbers, but not all use them in the same way.

Here is a program to toss coins and count the numbers of heads and tails.

16 LET heads=6: LET tails=0
20 LET coin=INT (RND*2)
36 IF coin=0 THEN LET heads=heads+l
40 IF coin=1 THEN LET tails=tails+l
56 PRINT heads;“,“;tails,
66 IF tailso0 THEN PRINT heads/tails;
70 PRINT : GO TO 26

The ratio of heads to tails should become approximately 1 if you go on long
enough, because in the long run you expect approximately equal numbers of heads
and tails.

Exercises
1. Test this rule:

Suppose you choose a number between 1 and 872 and type

RANDOMIZE your number

Then the next value of RND will be

(75*(your number+ l)- 1 j/65536

2. (For mathematicians only.)
Let p be a (large) prime, and let a be a primitive root modulo p.
Then if 4 is the residue of a’ modulo p (1 s&p-1). the sequence

74

Chapter 11

b,-l
P-l

is a cyclical sequence of p-l distinct numbers in the range 0 to 1 (excluding 1). By
choosing a suitably, these can be made to look fairly random.

65537 is a Fermat prime, 216+1. Because the multiplicative group of non-zero
residues modulo 65537 has a power of 2 as its order, a residue is a primitive root if
and only if it is not a quadratic residue. Use Gauss’ law of quadratic reciprocity to
show that 75 is a primitive root modulo 65537.

The ZX Spectrum uses p=65537 and a=75. and stores some b,-1 in memory.
RND entails replacing b,-1 in memory by 6,+,-l, and yielding the result
(b,,, -1),(p- 1). RANDOMIZE n (with 1 sns65535) makes b, equal to n+ 1.

RND is approximately uniformly distributed over the range 0 to I.

75

CHAPTER

Chapter 12

Arrays
Summary
Arrays (the way the ZX Spectrum handles string arrays is slightly non-standard).
DIM

Suppose you have a list of numbers, for instance the marks of ten people in a class.
To store them in the computer you could set up a single variable for each person, but
you would find them very awkward. You might decide to call the variable Bloggs 1,
Bloggs 2. and so on up to Bloggs 10. but the program to set up these ten numbers
would be rather long and boring to type in.

How much nicer it would be if you could type this:

5 REM this program will not work
10 FOR n=l TO 10
20 READ Bloggs n
30 NEXT n
40 DATA 10,2,5,19,16,3,11,1,0,6

Well you can’t.
However, there is a mechanism by which you can apply this idea, and it uses

arrays. An array is a set of variables, its elements, all with the same name, and
distinguished only by a number (the subscript) written in brackets after the name. In
our example the name could be b (like control variables of FOR - NEXT loops, the
name of an array must be a single letter), and the ten variables would then be b(l),
b(2). and so on up to b(lO).

The elements of an array are called subscriptedvariables, as opposed to the simple
variables that you are already familiar with.

Before you can use an array, you must reserve some space for it inside the
computer, and you do this using a DIM (for dimension) statement,

DIM b(l0)

sets up an array called b with dimension 10 (i.e. there are 10 subscripted variables
b(l),..., b(l0)). and initializes the 10 values to 0. It also deletes any array called b that
existed previously. (But not a simple variable. An array and a simple numerical
variable with the same name can coexist, and there shouldn’t be any confusion
between them because the array variable always has a subscript.)

The subscript can be an arbitrary numerical expression, so now you can write

10 FOR n=l TO 10
20 READ b(n)
30 NEXT n
40 DATA 10,2,5,19,16,3,11,1,0,6

79

Chapter 12

You can also set up arrays with more than one dimension. In a two dimensional
array you need two numbers to specify one of the elements - rather like the line and
column numbers to specify a character position on the television screen - so it has
the form of a table. Alternatively, if you imagine the line and column numbers (two
dimensions) as referring to a printed page, you could have an extra dimension for the
page numbers.,Of course, we are talking about numeric arrays; so the elements
would not be printed characters as in a book, but numbers. Think of the elements of a
three-dimensional array vas being specified by v(page number, line number, column
number).

For example, to set up a two-dimensional array c with dimensions 3 and 6, you use
a DIM statement

DIM ~(3.6)

This then gives you 3*6= 18 subscripted variables

c(l.l).c(l.2) I..., c(1,6)
c(2,l),cW’L...,cG’,6)
c(3.l).c(3.2) I..., 43.6)

The same principle works for any number of dimensions.
Although you can have a number and an array with the same name, you cannot

have two arrays with the same name, even if they have different numbers of
dimensions.

There are also string arrays. The strings in an array differ from simple strings in that
they are of fixed length and assignment to them is always Procrustean - chopped off
or padded with spaces. Another way of thinking of them is as arrays (with one extra
dimension) of single characters. The name of a string array is a single letter followed
by $, and a string array and a simple string variable cannot have the same name
(unlike the case for numbers).

Suppose then, that you want an array a$ of five strings. You must decide how long
these strings are to be - let us suppose that 10 characters each is long enough. You
then say

DIM a$(5,101 (type this in)

This sets up a 5*10 array of characters, but you can also think of each row as being
a string:

a$(l)=a$(l,l) aS(1.2) ... aS(l.10)
a$(2)=a$(2.1) as(2.2) ... aS(2.10)

a$(5)=a$(5.1) aW5.2) ... a$(5,;0)

If you give the same number of subscripts (two in this case) as there were

80

Chapter 12

dimensions in the DIM statement, then you get a single character; but if you miss the
last one out, then you get a fixed length string. So, for instance, A$(2,7) is the 7th
character in the string A$(Z); using the slicing notation, we could also write this as
A$(2)(7). Now type

LET a$(2)=“1234567690”
and

PRINT a$(2),a$(2,7)

You get

1234567690 7

For the last subscript (the one you can miss out), you can also have a slicer, so that
for instance

a$(2,4 TO 8)=a$(2)(4 TO 8)=“45678”
Remember:

In a string array, all the strings have the same, fixed length.
The DIM statement has an extra number (the last one) to specify this length.
When you write down a subscripted variable for a string array, you can put in an extra
number, or a slicer, to correspond with the extra number in the DIM statement.

You can have string arrays with no dimensions. Type

DIM aS(10)

and you will find that a$ behaves just like a string variable, except that it always has
length 10, and assignment to it is always procrustean.

Exercises
I, Use READ and DATA statements to set up an array m$ of twelve strings in which
m$(n) is the name of the nth month. (Hint: the DIM statement will be DIM mS(12,S).
Test it by printing out all the m$(n) (use a loop)).

Type

PRINT “now is the month of “;m$(5);“ing”;” when merry lads
are playing”

What can you do about all those spaces?

81

CHAPTER

Chapter 13

Conditions
Summary
AND, OR
NOT

We saw in Chapter 3 how an IF statement takes the form
IF condition THEN

The conditions there were the relations (=, <, >, <=, >= and <>), which
compare two numbers or two strings. You can also combine several of these, using
the logical operations, AND, OR and NOT.

One relation AND another relation is true whenever both relations are true, so you
could have a line like:

IF a$=“yes” AND x>0 THEN PRINT x

in which x only gets printed if a$=“yes” and x>0. The BASIC here is so close to
English that it hardly seems worth spelling out the details. As in English, you can join
lots of relations together with AND, and then the whole lot is true if all the individual
relations are.

One relation OR another is true whenever at least one of the two relations is true.
(Remember that it is still true if both the relations are true; this is something that
English doesn’t always imply.)

The NOT relationship turns things upside down. The NOT relation is true
whenever the relation is false, and false whenever it is true!

Logical expressions can be made with relations and AND, OR and NOT, just as
numerical expressions can be made with numbers and +, - and so on; you can even
put them in brackets if necessary. They have priorities in the same way as the usual
operations +, -, *, / and t, do: OR has the lowest priority, then AND, then NOT,
then the relations, and the usual operations.

NOT is really a function, with an argument and a result, but its priority is much
lower than that of other functions. Therefore its argument does not need brackets
unless it contains AND or OR (or both). NOT a=b means the same as NOT (a=b)
(and the same as aob, of course).

<> is the negation of = in the sense that it is true if, and only if, = is false. In other
words,

sob is the same as NOT a=b
and also

NOT aob is the same as a=b
Persuade yourself that >= and <= are the negations of c and > respectively:

thus you can always get rid of NOT from in front of a relation by changing the relation.
Also,

NOT (a first logical expression AND a second)
is the same as

NOT (the first) OR NOT (the second)

85

ChaDter 13

and
NOT (a first logical expression OR a second)

is the same as
NOT (the first) AND NOT (the second).

Using this you can work NOTs through brackets until eventually they are all applied
to relations, and then you can get rid of them. Logically speaking, NOT is

unnecessary, although you might still find that using it makes a program clearer.
The following section is quite complicated, and can be skipped by the faint-

hearted!

TW
PRINT 1=2,102

which you might expect to give a syntax error. In fact, as far as the computer is
concerned, there is no such thing as a logical value: instead it uses ordinary numbers,
subject to a few rules.
(i) =, <, >, <=, >= and <> all give numeric results: 1 for true, and 0 for false. Thus
the PRINT command above printed 0 for ‘1=2’, which is false, and 1 for ‘102’.
which is true.
(ii) In

IF condition THEN
the condition can be actually any numeric expression. If its value is 0, then it counts
as false, and any other value (including the value of 1 that a true relation gives) counts
as true. Thus the IF statement means exactly the same as

IF condition 00 THEN.
(iii) AND, OR and NOT are also number-valued operations.

x AND y has the value x, if y is true (non-zero)
0 (false), if y is false (zero)

x OR y has the value
{

1 (true), if y is true (non zero)
x, if y is false (zero)

NOT x has the value 0 (false), if x is true (non-zero)
1 (true), if x is false (zero)

(Notice that ‘true’ means ‘non-zero’ when we’re checking a given value, but it means
‘1’ when we’re producing a new one.)

Read through the chapter again in the light of this revelation, making sure that it all
works.

In the expressions x AND y, x OR y and NOT x, x and y will usually take the values
0 and 1 for false and true. Work out the ten different combinations (four for AND, four
for OR and two for NOT) and check that they do what the chapter leads you to expect
them to do.

Try this program:

10 INPUT a
2@ INPUT b
30 PRINT (a AND a>=bI+(b AND acb)
49 GO TO 10

86

Chapter 13

Each time it prints the larger of the two numbers a and b.
Convince yourself that you can think of

xANDy
as meaning

x if y (else the result is 0)
and of

x OR y
as meaning

x unless y (in which case the result is 1)
An expression using AND or OR like this is called a conditional expression. An

example using OR could be

LET total price=price less tax*(1.15 OR v$=“zero rated”)

Notice how AND tends to go with addition (because its default value is 0). and OR
tends to go with multiplication (because its default value is 1).

You can also make string valued conditional expressions, but only using AND.

x$ AND y has the value
C

x$ if y is non-zero
‘I” if y is zero

so it means x$ if y (else the empty string).
Try this program, which inputs two strings and puts them in alphabetical order.

10 INPUT “type in two strings”‘a$,b$
20 IF a$>b$ THEN LET c$=a$: LET aS=b$: LET b$=c$
30 PRINT a$;” “; (“c” AND a$<b$)+(“=” AND a$=b$I;” “;b$
40 GO TO 10

Exercise
1. BASIC can sometimes work along different lines from English. Consider, for
instance, the English clause ‘If a doesn’t equal b or c’. How would you write this in
BASIC? The answer is not
IF AoB OR C
nor is it
IF A<>0 OR AoC

a7

CHAPTER

Chapter 14

The Character Set

Summary
CODE, CHRS
POKE, PEEK
USR
BIN

The letters, digits, punctuation marks and so on that can appear in strings are called
characters, and they make up the alphabet, or character set that the ZX Spectrum
uses. Most of these characters are single symbols, but there are some more, called
tokens, that represent whole words, such as PRINT, STOP, <> and so on.

There are 256 characters, and each one has a code between 0 and 255. There is a
complete list of them in Appendix A. To convert between codes and characters, there
are two functions, CODE and CHR$.

CODE is applied to a string, and gives the code of the first character in the string (or
0 if the string is empty).

CHR$ is applied to a number, and gives the single character string whose code is
that number.

This program prints out the entire character set

10 FOR a=32 TO 255: PRINT CHRS a;: NEXT a

At the top you can see a space, 15 symbols and punctuation marks, the ten digits,
seven more symbols, the capital letters, six more symbols, the lower case letters and
five more symbols. These are ail (except f and 0) taken from a widely-used set of
characters known as ASCII (standing for American Standard Codes for Information
Interchange); ASCII also assigns numeric codes to these characters, and these are
the codes that the ZX Spectrum uses.

The rest of the characters are not part of ASCII, and are peculiar to the ZX
Spectrum. First amongst them are a space and 15 patterns of black and white blobs.
These are called the graphics symbols and can be used for drawing pictures. You can
enter these from the keyboard, using what is called graphics mode. If you press
GRAPHICS (CAPS SHIFT with 9) then the cursor will change to q . Now the keys for
the digits 1 to 8 will give the graphics symbols: on their own they give the symbols
drawn on the keys; and with either shift pressed they give the same symbol but
inverted, i.e. black becomes white, and vice versa.

Regardless of shifts, digit 9 takes you back to normal (L) mode and digit 0 is
DELETE.

91

Chapter 14

Here are the sixteen graphics symbols:

Code

128

129

130

131

132

133

134

135

How obtalned

El
8

m
1

B
2

El
3

El
4

El
5

q
6

ta
7

SymboY Code

143

w

Ia

Id

a

q
m
cl

142

141

140

139

138

137

136

How obtalned

m
shifted 8

El
shafted 1

m
shifted 2

q
shifted 3

El
shifted 4

q
shifted 5

ccl
shifted 6

El
shifted 7

After the graphics symbols, You will see what appears to be another copy of the
alphabet from A to U. These are characters that you can redefine yourself, although
when the machine is first switched on they are set as letters - they are called
user-defined graphics. You can type these in from the keyboard by going into
graphics mode, and then using the letters keys from A to U.

To define a new character for yourself, follow this recipe - it defines a character to
show n:

(i) Work out‘what the character looks like. Each character has an 8x8 square of
dots, each of which can show either the paper colour or the ink colour (see the
introductory booklet). You’d draw a diagram something like this, with black squares
for the ink colour:

92

Chapter 14

We’ve left a 1 square margin round the edge because the other letters all have one
(except for lower case letters with tails, where the tail goes right down to the
bottom).
(ii) Work out which user-defined graphic is to show rr - let’s say the one

corresponding to P, so that if you press P in graphics mode you get IT.
(iii) Store the new pattern. Each user-defined graphic has its pattern stored as eight
numbers, one for each row. You can write each of these numbers as BIN followed by
eight 0’s or l’s - 0 for paper, 1 for ink- so that the eight numbers for our ncharacter
are

BIN 00000000
BIN 00000000
BIN 00000010
BIN 00111100
BIN 01010100
BIN 00010100
BIN 00010100
BIN 00000000

(If you know about binary numbers, then it should help you to know that BIN is used
to write a number in binary instead of the usual decimal.)

These eight numbers are stored in memory, in eight places, each of which has an
address. The address of the first byte, or group of eight digits, is USR “P” (P because
that is what we chose in (ii)), that of the second is USR “P”+l, and so on up to the
eighth, which has address USR “P”+7.

USR here is a function to convert a string argument into the address of the first
byte in memory for the corresponding user-defined graphic. The string argument
must be a single character which can be either the userdefined graphic itself or the
corresponding letter (in upper or lower case). There is another use for USR, when its
argument is a number, which will be dealt with.

93

Chapter 14

Even if you don’t understand this, the following program will do it for you:

10 FOR n=0 TO 7
20 INPUT row: POKE USR “P”+n,row
30 NEXT n

It will stop for INPUT data eight times to allow you to type in the eight BIN
numbers above - type them in the right order, starting with the top row.

The POKE statement stores a number directly in memory location, bypassing the
mechanisms normally used by the BASIC. The opposite of POKE is PEEK, and this
allows us to look at the contents of a memory location although it does not actually
alter the contents of that location. They will be dealt with properly in Chapter 24.

After the user-defined graphics come the tokens.
You will have noticed that we have not printed out the first 32 characters, with

codes 0 to 31. These are control characters. They don’t produce anything printable,
but have some less tangible effect on the television, or they are used for controlling
something other than the television, and the television prints 7 to show that it doesn’t
understand them. They are described more fully in Appendix A.

Three that the television uses are those with codes 6, 8 and 13; on the whole,
CHR$ 8 is the only one you are likely to find useful.

CHRC 6 prints spaces in exactly the same way as a comma does in a PRINT
statement for instance

PRINT 1; CHR$6;2

does the same as

PRINT 1,2

Obviously this is not a very clear way of using it. A more subtle way is to say

LET a$=“l”+CHR$6+“2”
PRINT a$

CHR$8 is ‘backspace’: it moves the print position back one place - try

PRINT “1234”; CHR$ 8;“6”

which prints up 1235

CHRS 13 is ‘newline’: it moves the print position on to the beginning of the next
line.

The television also uses those with codes 16 to 23; these are explained in
Chapters 15 and 16. All the control characters are listed in Appendix A.

94

Chapter 14

Using the codes for the characters we can extend the concept of ‘alphabetical
ordering’ to cover strings containing any characters, not just letters, I f instead of
thinking in terms of the usual alphabet of 26 letters we use the extended alphabet of
256 characters, in the same order as their codes, then the principle is exactly the
same. For instance, these strings are in their ZX Spectrum alphabetical order. (Notice
the rather odd feature that lower case letters come after all the capitals: so “a”
comes after “Z”; also, spaces matter.)

CHR$3+“ZOOLOGICAL GARDENS”
CHR$8+“AARDVARK HUNTING”
“ AAAARGH!”
“(Parenthetical remark)”
“108”
“129.95 inc. VAT”
“AASVOGEL”
“Aardvark”
“PRINT”
“ZOO”
“[interpolation]”
“aardvark”
“aasvogel”
“Zoo”
“zoology

Here is the rule for finding out which order two strings come in. First, compare the
first characters. If they are different, then one of them has its code less than the
other, and the string it came from is the earlier (lesser) of the two strings. If they are
the same, then go on to compare the next characters. If in this process one of the
strings runs out before the other, then that string is the earlier; otherwise they must
be equal.

The relations =, <, >, <=, >= and c> are used for strings as well as for
numbers: < means ‘comes before’ and > means ‘comes after’, so that

“AA man”<“AARDVARK”
“AARDVARK”>“AA man”

are both true.

<= and >= work the same way as they do for numbers, so that

“The same string”<=“The same string”

is true, but

95

Chapter 14

“The same string”<“The same string”

is false. \

Experiment on all this using the program here, which inputs two strings and puts
them in order.

10 INPUT “Type in two strings:“,a$,b$
20 IF a$>b$ THEN LET c$=a$: LET a$=b$: LET b$=c$
30 PRINT a$;” “;
40 IF a$<b$ THEN PRINT “C;: GO TO 60
50 PRINT “=”
60 PRINT ” “;b$
70 GO TO 10

Note how we have to introduce c$ in line 20 when we swap over a$ and b$,

LET a$=b$: LET b$=a$

would not have the desired effect.
This program sets up user-defined graphics to show chess pieces:

P for pawn
R for rook
N for knight
B for bishop
K for king
Q for queen

Chess pieces

5 LET b=BIN 01111100: LET c=BIN
00111000: LET d=BIN 00010060

10 FOR n=l TO 6: READ pS: REM 6 pieces
20 FOR f=0 TO 7: REM read piece into 6 bytes
30 READ a: POKE USR p$+f,a
40 NEXT f
50 NEXT n

100 REM bishop
110 DATA “b”,0,d, BIN 00101000, BIN 01000100
120 DATA BIN 01101100,c,b,0
130 REM king
140 DATA “k”,0,d,c,d
150 DATA c, BIN 01000100,c,0
160 REM rook
170 DATA “r”,0, BIN 01010100,b.c

96

Chapter 14

180 DATA c,b,b,0
190 REM queen
200 DATA “q”,0, BIN 01010100, BIN 00101800,d
210 DATA BIN 01101100,b,b,0
220 REM pawn
230 DATA “p”,0,0,d,c
240 DATA c,d,b,0
250 REM knight
280DATA”n”edc BIN01111000 , , I I
270 DATA BIN 00011000,c,b,0

Note that 0 can be used instead of BIN 00000000.
When you have run the program, look at the pieces by going into graphics mode.

Exercises
I. Imagine the space for one symbol divided up into four quarters like a Battenburg
cake: Then if each quarter can be either black or white, there are 2x2x2x2=16
possibilities. Find them all in the character set.

2. Run this program:

10 INPUT a
20 PRINT CHR$ a;
30 GO TO 10

If you experiment with it, you’ll find that CHRS a is rounded to the nearest whole
number; and if a is not in the range 0 to 255 then the program stops with error report
B integer out of range.

3. Which of these two is the lesser?

“EVIL“
“evil”

4. Work out how to modify the program to set up user-defined graphics so that it
uses READ and DATA statements instead of the INPUT statement.

97

CHAPTER

Chapter 15

More about PRINT and INPUT
Summary
CLS
PRINT items: nothing at all
Expressions (numeric or string type): TAB numeric expression, AT numeric
expression, numeric expression
PRINT separators: , ; ’
INPUT items: variables (numeric or string type)
LINE string variable
Any PRINT item not beginning with a letter. (Tokens are not considered as beginning
with a letter.)
Scrolling.
SCREENS
You have already seen PRINT used quite a lot, so you will have a rough idea of how it
is used. Expressions whose values are printed are called PRINT items, and they are
separated by commas or semicolons, which are called PRINT separators. A PRINT
item can also be nothing at all, which is a way of explaining what happens when you
use two commas in a row.

There are two more kinds of PRINT items, which are used to tell the computer not
what, but where to print. For example PRINT AT 11,16;“*” prints a star in the middle
of the screen.

AT line, column -; I ‘,‘.

moves the PRINT position (the place where the next item is to be printed) to the line
and column specified. Lines are numbered from 0 (at the top) to 2l,.and columns
from 0 (on the left) to 31.

SCREENC is the reverse function to PRINT AT, and will tell you (within limits) what
character is at a particular position on the screen. It uses line and column numbers in
the same way as PRINT AT, but enclosed in brackets: for instance

PRINT SCREENE (11,161

will retrieve the star you printed in the paragraph above.
Characters taken from tokens print normally, as single characters, and spaces

return as spaces. Lines drawn by PLOT, DRAW or CIRCLE, user-defined characters
and graphics characters return as a null (empty) string, however. The same applies if
OVER has been used to create-a composite character.

101

Chapter 15

You cannot normally PRINT or PLOT
on the bottom two lines

Pixel y coordinates -W

102

Chapter 15

TAB column

prints enough spaces to move the PRINT position to the column specified. It stays on
the same line, or, if this would involve backspacing, moves on to the next one. Note
that the computer reduces the column number ‘modulo 32’ (it divides by 32 and
takes the remainder); so TAB 33 means the same as TAB 1.

As an example,

PRINT TAB 38;l;TAB 12;“Contents”; AT 3,l;“CHAPTER”;TAB
24;“page”

is how you might print out the heading of a contents page on page 1 of a book.
Try running this:

10 FOR n=0 TO 20
20 PRINT TAB 8*n;n;
39 NEXT n

This shows what is meant by the TAB numbers being reduced modulo 32.
For a more elegant example, change the 8 in line 20 to a 6.
Some small points:

(i) These new items are best terminated with semicolons, as we have done above.
You can use commas (or nothing, at the end of the statement), but this means that
after having carefully set up the PRINT position you immediately move it on again -
not usually terribly useful.
(ii) You cannot print on the bottom two lines (22 and 23) on the screen because they

are reserved for commands, INPUT data, reports and so on. References to ‘the
bottom line’ usually mean line 21.
(iii) You can use AT to put the PRINT position even where there is already something
printed; the old stuff will be obliterated when you print more.

Another statement connected with PRINT is CLS. This clears the whole screen,
something that is also done by CLEAR and RUN.

When the printing reaches the bottom of the screen, it starts to scroll upwards
rather like a typewriter. You can see this if you do

CLS: FOR n=l TO 22: PRINT n: NEXT n

and then do

PRINT 99

a few times.
If the computer is printing out reams and reams of stuff, then it takes great care to

make sure that nothing is scrolled off the top of the screen until you have had a
.~-, chance to look at it properly. You can see this happening if you type . .

103

Chapter 15

CLS: FOR n=l TO 100: PRINT n: NEXT n

When it has printed a screen full, it will stop, writing scroll? at the bottom of the
screen. You can now inspect the first 22 numbers at your leisure. When you have
finished with them, press y (for ‘yes’) and the computer will give you another screen
full of numbers. Actually, any key will make the computer carry on except n (for ‘no’),
STOP (SYMBOL SHIFT and a), or SPACE (the BREAK key). These will make the
computer stop running the program with a report D BREAK - CONT repeats.

The INPUT statement can do much more than we have told you so far. You have
already seen INPUT statements like

INPUT “How old are you?“, age

in which the computer prints the caption How old are you? at the bottom of the
screen, and then you have to type in your age.

In fact, an INPUT statement is made up of items and separators in exactly the
same way as a PRINT statement is, so How old are you? and age are both INPUT
items. INPUT items are generally the same as PRINT items, but there are some very
important differences.

First, an obvious extra INPUT item is the variable whose value you are to type in -
age in our example above. The rule is that if an INPUT item begins with a letter, it
must be a variable whose value is to be input.

Second, this would seem to mean that you can’t print out the values of variables as
part of a caption; however, you can get round this by putting brackets round the
variable. Any expression that starts with a letter must be enclosed in brackets if it is
to be printed as part of a caption.

Any kind of PRINT item that is not affected by these rules is also an INPUT item.
Here is an example to illustrate what’s going on:

LET my age = INT (RND * 1801: INPUT (“I am “;my age; “. “);“How
old are you?“, your age

my age is contained in brackets, so its value gets printed out. your age is not
contained in brackets, so you have to type its value in.

Everything that an INPUT statement writes goes to the bottom part of the screen,
which acts somewhat independently of the top half. In particular, its lines are
numbered relative to the top line of the bottom half, even if this has moved up the
actual television screen (which it does if you type lots and lots of INPUT data).

To see how AT works in INPUT statements, try running this:

19 INPUT “This is line l.“,a$; AT 8,0;“This is line 8.“.a$; AT 2.0;
“This is line 2.“,a$; AT 1,0;“This is still line l.“,a$

(just press ENTER each time it stops.) When This is line 2. is printed, the lower part
of the screen moves up to make room for it; but the numbering moves up as well, so

-104

Chapter 15

that the lines of text keep their same numbers.
Now try this:

IO FOR n=0 TO 19: PRINT AT n.0;n;: NEXT n
20 INPUT AT 9,O;aS; AT 1,0;a$; AT 2,0;a$; AT 3,9;aS; AT 4.9;aS;

AT 5,9;aS;

As the lower part of the screen goes up and up, the upper part is undisturbed until
the lower part threatens to write on the same line as the PRINT position. Then the
upper part starts scrolling up to avoid this.

Another refinement to the INPUT statement that we haven’t seen yet is called
LINE input and is a different way of inputting string variables.,lf you write LINE before
the name of a string variable to be input, as in

INPUT LINE a$

then the computer will not give you the string quotes that it normally does for a string
variable, although it will pretend to itself that they are there. So if you type in

cat

as the INPUT data, a$ will be given the value cat. Because the string quotes do not
appear on the string, you cannot delete them and type in a different sort of string
expression for the INPUT data. Remember that you cannot use LINE for numeric
variables.

The control characters CHRS 22 and CHRS 23 have effects rather like AT and TAB.
They are rather odd as control characters, because whenever one is sent to the
television to be printed, it must be followed by two more characters that do not have
their usual effect: they are treated as numbers (their codes) to specify the line and
column (for AT) or the tab position (for TAB). You will almost always find it easier to
use AT and TAB in the usual way rather than the control characters, but they might
be useful in some circumstances. The AT control character is CHR$ 22. The first
character after it specifies the line number and the second the column number, so ’
that

PRINT CHR$22+CHR$l +CHR$ c;

has exactly the same effect as

PRINT AT 1,~;

This is so even if CHRS 1 or CHRS c would normally have a different meaning (for
instance if c=13); the CHRS 22 before them overrides that.

The TAB control character is CHRS 23 and the two characters after it are used to

105

Chapter 15

give a number between 0 and 65535 specifying the number you would have in a TAR
item:

PRINT CHRS 23+CHR$ a+CHR$ b;

has the same effect as

PRINT TAB a+256*b;

You can use POKE to stop the computer asking you scroll? by doing

POKE 23692,255

every so often. After this it will scroll up 255 times before stopping with scroll?. As
an example, try

10 FOR n=0 TO 10000
29 PRINT n: POKE 23692,255
30 NEXT n

and watch everything whiz off the screen!

Exercises
1, Try this program on some children, to test their multiplication tables.

lg LET m$=“”
20 LET a=INT (RND*l2)+1: LET b=INT (RND*12)+1
30 INPUT (mS1 ’ ’ “what is “;(a);” l “;(b);“?“;ie

100 IF c=a*b THEN LET k$=“Right.“: GO TO 20
110 LET m$=“Wrong. Try again.“: GO TO 30

If they are perceptive, they might manage to work out that they do not have to do
the caiculation themselves. For instance, if the computer asks them to type the
answer to 2*3, all they have to type in is 2*3.

One way of getting round this is to make them input strings instead of numbers.
Replace c in line 30 by c$, and in line 100 by VAL c$. and insert a line

40 IF c$<> STR$ VAL c$ THEN LET m$=“Type it properly, as
a number.“: GO Td

That will fool them. After a few more days, however, one of them may discover
that they can get round this by rubbing out the string quotes and typing in STR$
(2*3). To stop up this loophole, you can replace c$ in line 30 by LINE c$.

106

CHAPTER I: .,. :
6 0

Chapter 16

Colours
Summary
INK, PAPER, FLASH, BRIGHT, INVERSE, OVER
BORDER

Run this program:

16 FOR m=0 TO 1: BRIGHT m
20 FOR n=l TO 10
30 FOR c=0 TO 7
40 PAPER c: PRINT ” “;: REM 4 coloured spaces
50 NEXT c: NEXT n: NEXT m
60 FOR m=0 TO 1: BRIGHT m: PAPER 7
70 FOR c=0 TO 3
80 INK c: PRINT c;” “;
96 NEXT c: PAPER 0

10@ FOR c=4 TO 7
110 INK c: PRINT c;” “;
120 NEXT c: NEXT m
130 PAPER 7: INK 0: BRIGHT 0

This shows the eight colours (including white and black) and the two levels of
brightness that the ZX Spectrum can produce on a colour television. (If your television
is black and white, then you will just see various shades of grey.) Here is a list of them
for reference; they are also written over the appropriate number keys.

. 0 - black
1 - blue
2 - red
3 - purple, or magenta
4 - green
5 - pale blue, technically called cyan
6 - yellow
7 - white

On a black and white television, these numbers are in order of brightness.
To use these colours properly, you need to understand a bit about how the picture

is arranged.
The picture is divided up into 768 (24 lines of 32) positions where characters can be

109

Chapter 16

printed, and each character is printed as an 8x8 square of dots like that above for a.
This should remind you of the user-defined graphics in Chapter 14, where we had 0s
for the white dots and 1 s for the black dots.

The character position also has associated with it two colours: the ink, or
foreground colour, which is the colour for the black dots in our square, and the paper,
or background colour, which is used for the white dots, To start off with, every
position has black ink and white paper so writing appears as black on white.

The character position also has a brightness (normal or extra bright) and something
to say whether it flashes or not - flashing is done by swapping the ink and paper
colours. This can all be coded into numbers, so a character position then has

(iI an 8x8 square of 0s and 1s to define the shape of the character, with 0 for paper
and 1 for ink,
(ii) ink and paper colours, each coded into a number between 0 and 7,

(iii) a brightness - 0 for normal, 1 for extra bright and
(iv) a flash number - 0 for steady, 1 for flashing.

Note that since the ink and paper colours cover a whole character position, you
cannot possibly have more than two colours in a given block of 64 dots. The same
goes for the brightness and flash number: they refer to the whole character position,
not individual dots. The colours, brightness and flash number at a given position are
called attributes.

When you print something on the screen, you change the dot pattern at that
position; it is less obvious, but still true, that you also change the attributes at that
position. To start off with you do not notice this because everything is printed with
black ink on white paper (and normal brightness and no flashing), but you can vary
this with the INK, PAPER, BRIGHT and FLASH statements. Try

PAPER 5

and then print a few things: they will all appear on cyan paper, because as they are
printed the paper colours at the positions they occupy are set to cyan (which has
code 5).

The others work the same way, so after

110

Chapter 16

PAPER number between 0 and 7
INK number between 0 and 7

BRIGHT 0 or 1 1

Think of 0 as off
or

FLASH 0 or 1 and 1 as on

any printing will set the corresponding attribute at all the character positions it uses.
Try some of these out. You should now be able to see how the program at the
beginning worked (remember that a space is a character that has INK and PAPER the
same colour).

There are some more numbers you can use in these statements that have less
direct effects.

8 can be used in all four statements, and means ‘transparent’ in the sense that the
old attribute shows through. Suppose, for instance, that you do

PAPER 8

No character position will ever have its paper colour set to 8 because there is no
such colour; what happens is that when a position is printed on, its paper colour is
left the same as it was before. INK 8, BRIGHT 8 and FLASH 8 work the same way for
the other attributes.

9 can be used only with PAPER and INK, and means ‘contrast’. The colour (ink or
paper) that you use it with is made to contrast with the other by being made white if
the other is a dark colour (black, blue, red or magenta), and black if the other is a light
colour (green, cyan, yellow or white).

Try this by doing

INK 9: FOR c=0 TO 7: PAPER c: PRINT c: NEXT o

A more impressive display of its power is to run the program at the beginning to
make coloured stripes, and then doing ,

INK 9: PAPER 8: PfIlNT AT 0,9;: FOR n=l TO 1900: PRINT n;:
NEXT n

The ink colour here is always made to contrast with the old paper colour at each
position.

Colour television relies on the ratt~@r curious fact that the human eye can only really
see three colours - the primary colours, blue, red and green. The other colours are
mixtures of these. For instance, magenta is made by mixing blue with red-which is
why its code, 3, is the sum of the codes for blue and red.

To see how all eight colours fit together, imagine three rectangular spotlights,
coloured blue, red and green, shining at not quite the same place on a piece of white
paper in the dark. Where they overlap you will see mixtures of colours, as shown by
this program (note that ink spaces are obtained by using either SHIFT with 8 when in
G mode):

111

Chapter 16

10 BORDER 0: PAPER 0: INK 7: CLS
26 FOR a=1 TO 6
3@ PRINT TAB 6; INK 1; “B“: REM 16 ink

squares
40 NEXT a
50 LET dataline=
60 GO SUB 1660
70 LET dataline=
60 GO SUB 1006
90 STOP

206 DATA 2.3,7,5,4
210DATA22644 , , , ,

1000 FOR a=1 TO 6
1010 RESTORE dataline
1020 FOR b=l TO 5
1030 READ c: PRINT INK c;“;: REM 6 ink squares
1640 NEXT b: PRINT : NEXT a
1650 RETURN

There is a function called ATTR that finds out what the attributes are at a given
position on the screen. It is a fairly complicated function, so it has been relegated to
the end of this chapter.

There are two more statements, INVERSE and OVER, which control not the
attributes, but the dot pattern that is printed on the screen. They use the numbers 0
for off and 1 for on in the same way as FLASH and BRIGHT do, but those are the only
possibilities. If you do INVERSE 1, then the dot patterns printed will be the inverse of
their usual form: paper dots will be replaced by ink dots and vice versa. Thus a would
be printed as

112

Chapter 16

I f (as at switch-on) we have black ink and white paper, then this a will appear as
white on black - but we still have black ink and white paper at that character position.
It is the dots that have changed.

The statement

OVER 1 . ‘i

sets into action a particular sort of overprinting. Normally when something is written
into a character position it completely obliterates what was there before; but now the
new character will simply be added in on top of the old one (but see Exercise 1). This
can be particularly useful for writing composite characters, like letters with accents
on them, as in this program to print out German letters-an ‘0’ with an umlaut above
it. (Do NEW first.)

10 OVER 1
20 FOR n=l TO 32
30 PRINT “0”; CHR$ 8;““““;
40 NEXT n

(notice the control character CHR$ 8 which backs up one space.)
There is another way of using INK, PAPER and so on which you will probably find

more useful than having them as statements. You can put them as items in a PRINT
statement (followed by ;), and they then do exactly the same as they would have
done if they had been used as statements on their own, except that their effect is
only temporan/: it lasts as far as the end of the. PRINT statement that contains them.
Thus if you type .:

PRINT PAPER 6;“~“; : PRINT “f’

then only the x will be on yellow.
INK and the rest when used as statements do not affect the colours of the lower

part of the screen, where commands and INPUT data are typed in. The lower part of
the screen uses the colour of the border for its paper colour and code 9 for contrast
for its INK colour, has flash,@ off, and everything at normal brightness. You can
change the border colour ,tiahy of the eight normal colours (not 8 or 9) using
statement

BORDER colour

When you type in INPUT data, it follows this rule of using contrasting ink on border
coloured paper; but you can change the colour of the captions written by the
computer by using INK and PAPER (and so on) items in the INPUT statement, just as
you would in a PRINT statement. Their effect lasts either to the end of the statement,
or until some INPUT data is typed in, whichever comes first. Try

INPUT FLASH 1; INK 1;“What is your number?“;n

113

Chapter 16

There is one more way of changing the colours by using control characters - rather
like the control characters for AT and TAB in Chapter 15.

CHRS 16 corresponds to INK
CHRS 37 corresponds to PAPER
CHRS 18 corresponds to FLASH
CHRS 19 corresponds to BRIGHT
CHRS 20 corresponds to INVERSE
CHRS 21 corresponds to OVER

These are each followed by one character that shows a colour by its code: so (for
instance)

PRINT CHR$ lG+CHRS 9;

has the same effect as

PRINT INK 9;

On the whole, you would not bother to use these control characters because you
might just as well use the colour items. However, one very useful thing you can do
with them is put them in programs: this results in different parts being listed in
different colours, to set them apart from each other or even just to look pretty. You
must put them in after the line number, or they will just get lost.

To get these into the program, you have to enter them from the keyboard, mostly
using extended mode with the digits.

The digits 0 to 7 set the corresponding colour - ink if CAPS SHIFT is also pressed,
paper if it is not. More precisely, if you are in E mode and you press a digit (let us say
6 for yellow; at any rate it has to be between 0 and 7 - not 9 or 9) then two characters
are inserted: first CHRS 17 for PAPER, and CHR$6 meaning ‘set it to yellow’. I f you
had been pressing CAPS SHIFT when you pressed the digit, you would have got
CHR$ 16 meaning ‘set ink colour’ instead of CHR$17.

Since these are two characters you can get some odd effects when you rub them
out - you must press DELETE twice, and after the first time you will often get a
question mark or even odder things appearing. DO not worry; just press DELETE
again.

4 and 6 can also behave strangely while the cursor is moving past the control
characters.

Still in extended mode,

8 gives CHR9 19 and CHRS 0 for normal brightness
9 gives CHR$ 19 and CHRS 1 for extra brightness
CAPS SHIFT with 8 gives CHR$18 and CNR$ 6 for no flashing
CAPS SHIFT with 9 gives CHR9 18 and CHRS 1 for flashing

There are a couple more in ordinan/ (L) mode:

114

MODE

E

G

KL
or c

SHIFT

SYMBOL 1 DEF FN 1 FN 1 LINE 1 OPEN # ICLOSE #

NONE
Paper
blue

Paper
red

Paper
magenta

Paper
green

Paper
cyan

EITHER

CAPS EDIT
CAPS TRUE INVERSE
LOCK VIDEO VIDEO

,a

SYMBOL) j) @) # 1 $) %

NONE 1 2 3 4 5

MOVE ERASE POINT CAT FORMA1
-4

Ink Ink Flash Flash Ink
yellow white off on black

Paper Paper Normal Extra caper
yell0.w white brightness bright black

ChaDter 16

The AlTR function has the form

ATTR (line column)

Its two arguments are the line and column numbers that you would use in an AT
item, and its result is a number that shows the colours and so on at the
corresponding character position on the television screen. You can use this as freely
in expressions as you can any other function.

The number that is the result is the sum of four other numbers as follows:
128 if the character position is flashing, 0 if it is steady
64 if the character position is bright, 0 if it is normal
8* the code for the paper colour
the code for the ink colour

For instance, if the character position is flashing and normal with yellow paper and
blue ink then the four numbers that we have to add together are 128,0,8*6=48 and
1, making 177 altogether. Test this with

PRINT AT 0.6; FLASH 1; PAPER 6; INK 1;” “; A-I-I-R (0,0)

Exercises
1. Try

PRINT ‘3”; CHR$8; OVER 1;‘T’;

Where the I has cut through the B, it has left a white dot. This is the way
overprinting works on the ZX Spectrum: two papers or two inks give a paper, one of
each gives an ink. This has the interesting property that if you overprint with the same
thing twice you get back what you started off with. I f you now type J

PRINT CHR$8; OVER 1;‘T

why do you recover an unblemished B?

2. Type

PAPER 0: INK 0

- isn’t it just as well that these don’t affect the lower part of the screen?
Now type

BORDER 0

and see how well the computer looks after you!

116

Chapter 16

3. Run this program:

10 POKE 22527+RND*784, RND*l27
20 GO TO 10

Never mind how this works; it is changing the colours of squares on the television
screen and the RNDs should ensure that this happens randomly. The diagonal stripes
that you eventually see are a manifestation of the hidden pattern in RND - the pattern

’ that makes it pseudorandom instead of truly random.

4. Type or LOAD in the chess piece characters in Chapter 14, and then type in this
program which draws a diagram of a chess position using them.

5 REM draw blank board
10 LET bb=l: LET bw=2: REM red and ‘blue for board
15 PAPER bw: INK bb: CLS
20 PLOT 79,128: REM border
30 DRAW 85.8: DRAW 8-85
40 DRAW -85.8: DRAW 085
50 PAPER bb
80 REM board
70 FOR n=0 TO 3: FOR m=0 TO 3
88 PRINT AT 8+2*n, 11+2*m;” ‘*
90 PRINT AT 7+2*n, 10+2*m;” ”

100 NEXT m: NEXT n
110 PAPER 8
128 LET pw=8: LET pb=5: REM colours of white and black pieces
200 DIM b$(8,8): REM positions of pieces
285 REM set up initial positions
218 LET b$(l)=“rnbqkbnr”
228 LET b$g)=“pppppppp”
230 LET b$(7)=“PPPPPPPP”
248 LET b$(8)=“RNBQKBNR”
300 REM display board
310 FOR n=l TO 8: FOR m=l TG 8
320 LET bc=CODE b$(n,mI: INK pw
325 IF bc=CODE” “ THEN GO TO 350: REM space
338 IF bc>CODE “2” THEN INK pb: LET bc=bc-32: REM lower
case for black
340 LET bc=bc+79: REM convert to graphics
350 PRINT AT 5+n, 9+m; CHRS bc
388 NEXT m: NEXT n
480 PAPER 7: INK 0

117

CHAPTER

Chapter 17

Graphics
Summary
PLOT, DRAW, CIRCLE
POINT
pixels

In this chapter we shall see how to draw pictures on the ZX Spectrum. The part of the
screen you can use has 22 lines and 32 columns, making 22*32=704 character
positions. As you may remember from Chapter 16, each of these character positions
is made of an 8 by 8 square of dots, and these are called pixels (picture elements).

A pixel is specified by two numbers, its coordinates. The first, its x coordinate, says
how far it is across from the extreme left-hand column. (Remember, x is a cross), the
second, its y coordinate, says how far it is up from the bottom (wise up). These
coordinates are usually written as a pair in brackets, so (0,0), (255,0), (0,175) and
(255,175) are the bottom left-, bottom right-, top left- and top right-corners.

The statement

PLOT x coordinate, y coordinate

inks in the pixel with these coordinates, so this measles program

18 PLOT INT (RND*2561, INT (RND*1761: INPUT a$: GO TO 10

plots a random point each time you press ENTER.
Here is a rather more interesting program. It plots a graph of the function SJN (a

sine wave) for values between 0 and 217.

10 FOR n=6 TO 255
26 PLOT n,66+80*SIN (n/l28*PII
30 NEXT n

This next program plots a graph of SQR (part of a parabola) between 0 and 4:

10 FOR n=O TO 255
26 PLOT n,86*SQR b1B41
30 NEXT n

Notice that pixel coordinates are rather different from the line and column in an AT
item. You may find the diagram in Chapter 15 useful when working out pixel
coordinates and line and column numbers.

To help you with your pictures, the computer will draw straight lines, circles and
parts of circles for you, using the DRAW and CIRCLE statements.

The statement DRAW to draw a straight line takes the form

DRAW x,y

121

Chapter 17

The starting place of the line is the pixel where the last PLOT, DRAW or CIRCLE
statement left off (this is called the PLOT position; RUN, CLEAR, CLS and NEW
reset it to the bottom left hand corner, at (0.0)). and the finishing place is x pixels to
the right of that and y pixels up. The DRAW statement on its own determines the
length and direction of the line, but not its starting point.

Experiment with a few PLOT and DRAW commands, for instance

PLOT 0,106: DRAW 86-35
PLOT 90,150: DRAW 86-35

Notice that the numbers in a DRAW statement can be negative, although those in
a PLOT statement can’t.

You can also plot and draw in colour, although you have to bear in mind that colours
always cover the whole of a character position and cannot be specified for individual
pixels. When a pixel is plotted, it is set to show the full ink colour, and the whole of
the character position containing it is given the current ink colour. This program
demonstrates this:

10 BORDER 0: PAPER 0: INK 7: CLS : REM black out screen
20 LET x1=0: LET yl=0: REM start of line
30 LET c=l : REM for ink colour, starting blue
40 LET x2=INT (RND*258): LET y2=INT (RND*l76): REM

random finish of line
50 DRAW INK c;x2-~1.~2~yl
66 LET x1=x2: LET yl=y2: REM next line starts where last one

finished
76 LET c=c+l : IF c=8 THEN LET c=l : REM new colour
80 GO TO 46

The lines seem to get broader as the program goes on, and this is because a line
changes the colours of all the inked in pixels of all the character positions that it
passes through. Note that you can embed PAPER, INK, FLASH, BRlGHT, INVERSE
and OVER items in a PLOT or DRAW statement just as You could with PRINT and
INPUT. They go between the key word and the coordinates, and are terminated by
either semicolons or commas.

An extra frill with DRAW is that you can use it to draw parts of circles instead of
straight lines, by using an extra number to specify an angle to be turned through: the
form is

DRAW x,y,a

x and y are used to specify the finishing point of the line just as before and a is the
number of radians that it must turn through as it goes - if a is a positive it turns to the
left, while if a is a negative it turns to the right. Another way of seeing a is as showing
the fraction of a complete circle that will be drawn: a complete circle is 2nradians. so

122

.

Chapter 17

if a=rr it will draw a semicircle, if a=0.5”n a quarter of a circle, and so on.
For instance suppose a=m Then whatever values x and y take, a semicir6le will be

drawn. Run

10 PLOT 100,100: DRAW 50.58, PI

which will draw this:

)
finish at (150,150)

start at (100,100)

The drawing starts off in a south-easterly direction, but by the time it stops it is
going north-west: in between it has turned round through 180 degrees, or n radians
(the value of a).

Run the program several times, with PI replaced by various other expressions -
e.g. -PI, Pll2, 3*PU2, PU4, 1.0.

The last statement in this chapter is the CIRCLE statement, which draws an entire
circle. You specify the coordinates of the centre and the radius of the circle using

CIRCLE x coordinate, y coordinate, radius

Just as with PLOT and DRAW, you can put the various sorts of colour items in at
,the beginning of a CIRCLE statement.

The POINT function tells you whether a pixel is ink or paper colour., It has two
arguments, the coordinates of the pixel (and they must be enclosed in brackets); and
its result is0 if the pixel is paper colour, 1 if it is ink colour. Try

CLS : PRINT POINT (0.0): PLOT 0.0: PRINT POINT (@,@I

PAPER 7: INK 0

and let us investigate how INVERSE and OVER work inside a PLOT statement.
These two affect just the relevant pixel, and not the rest of the character positions.
They are normally off (0) in a PLOT statement, so you only need to mention them to
turn them on (1).

Here is a list of the possibilities for reference:
PLOT; -this is the usual form. It plots an ink dot, i.e. sets the pixel to show the ink

colour.

123

Chapter 17

PLOT INVERSE 1; -this plots a dot of ink eradicator, i.e. it sets the pixel to show the
paper colour.

PLOT OVER 1; -this changes the pixel over from whatever it was before: so if it was
ink colour it becomes paper colour, and vice versa.

PLOT INVERSE 1; OVER 1; - this leaves the pixel exactly as it was before; but note
that it also changes the PLOT position, so you might use it simply to do that.

As another example of using the OVER statement fill the screen up with writing
using black on white, and then type

PLOT 6,0: DRAW OVER 1;255,175

This will draw a fairly decent line, even though it has gaps in it wherever it hits some
writing. Now do exactly the same command again. The line will vanish without
leaving any traces whatsoever. This is the great advantage of OVER 1. If you had
drawn the line using

PLOT 0.0: DRAW 255,175

and erased it using

PLOT 0,6: DRAW INVERSE 1;255,175

then you would also have erased some of the writing.
Now try

PLOT 0.0: DRAW OVER 1;250,175

and try to undraw it by

DRAW OVER l;-250,-175

This doesn’t quite work, because the pixels the line uses on the way back are not
quite the same as the ones that it used on the way down. You must undraw a line in
exactly the same direction as you drew it.

One way to get unusual colours is to speckle two normal ones together in a single
square, using a user-defined graphic. Run this program:

1066 FOR n=0 TO 6 STEP 2
1010 POKE USR “a”+,, BIN 01010101: POKE USR “a”+n+l,

BIN 16101610
1020 NEXT n

which gives the user-defined graphic corresponding to a chessboard pattern. If you
print this character (graphics mode, then a) in red ink on yellow paper, you will find it

124

Chapter 17

gives a reasonably acceptable orange.

Exercises
1. Play about with PAPER, INK, FLASH and BRIGHT items in a PLOT statement.
These are the parts that affect the whole of the character position containing the
pixel. Normally it is as though the PLOT statement had started off

PLOT PAPER 8; FLASH 8; BRIGHT 8;

and only the ink colour of a character position is altered when something is plotted
there, but you can change this if you want.

Be especially careful when using colours with INVERSE 1. because this sets the
pixel to show the paper colour, but changes the ink colour and this might not be what
you expect.

2. Try to draw circles using SIN and COS (if you have read Chapter 10, try to work
out how). Run this:

10 FOR n=@ TO 2*PI STEP PI 1180
2@ PLOT 100+8O*COS n,87+88*SIN n
39 NEXT n
40 CIRCLE 150,87,80

You can see that the CIRCLE statement is much quicker, even if less accurate.

3. Try

CIRCLE l&9,87,80: DRAW 50,50

You can see from this that the CIRCLE statement leaves the PLOT position at a
rather indeterminate place-it is always somewhere about half way up the right hand
side of the circle. You will usually need to follow the CIRCLE statement with a PLOT
statement before you do any more drawing.

4. Here is a program to draw the graph of almost any function. It first asks you for a
number n; it will plot the graph for values from -n to +n. It then asks you for the
function itself, input as a string. The string should be an expression using x as the
argument of the function.

125

Chapter 17

10 PLOT 0,87: DRAW 255,0
20 PLOT 127,0: DRAW 0,175
30 INPUT s,e$
35 LET t=0
40 FOR f=0 TO 255
50 LET x=(f-128)%/128: LET y=VAL e$
80 IF ABS y>87 THEN LET t=0: GO TO 100
70 IF NOT t THEN PLOT f,y+88: LET t=l: GO TO 100
80 DRAW l,y-old y

100 LET old y=INT (y+.5)
110 NEXT f

Run it, and, as an example, type in 10 for the number n and 10*TAN x for the
function. It will plot a graph of tan x as x ranges from -10 to +10.

126

CHAFTER

Chapter 18

Motion
Summary
PAUSE, INKEY$. PEEK

Quite often you will want to make the program take a specified length of time, and for
this you will find the PAUSE statement useful.

PAUSE n

stops computing and displays the picture for n frames of the television (at 50 frames
per second in Europe or 60 in America). n can be up to 65535, which gives you just
under 22 minutes; if n=0 then it means ‘PAUSE for ever’.

A pause can always be cut short by pressing a key (note that a CAPS SHIFTed
space will cause a break as well). You have to press the key down after the pause has
started.

This program works the second hand of a clock:

16 REM First we draw the clock face
20 FOR n=l TO 12
36 PRINT AT 10-10*COS (11/6*Pl),16+10*SIN (n/G*Pl);n
46NEXTn
60 REM Now we start the clock
66 FOR t=6 TO 266666: REM t is the time in seconds
70 LET a=t/3O*PI : REM a is the angle of the second hand in

radians
60 LET sx=60*SIN a: LET sy=66*COS a

260 PLOT 126,66: DRAW OVER l;sx,sy: REM draw second hand
210 PAUSE 42
220 PLOT 126,66: DRAW OVER l;sx,sy: REM erase second hand
466 NEXT t

This clock will run down after about 55.5 hours because of line 60, but you can
easily make it run longer. Note how the timing is controlled by line 210. You might
expect PAUSE 50 to make it tick one a second, but the computing takes a bit of time
as well and has to be allowed for. This is best done by trial and error, timing the
computer clock against a real one, and adjusting line 210 until they agree. (You can’t
do this very accurately; an adjustment of one frame in one second is 2% or half an
hour in a day.)

There is a much more accurate way of measuring time. This uses the contents of
certain memory locations. The data stored is retrieved by using PEEK. Chapter 25
explains what we’re looking at in detail. The expression used is

(66636*PEEK 23674+256*PEEK 23673+PEEK 23672)/50

129

Chapter 18

This gives the number of seconds since the computer was turned on (up to about 3
days and 21 hours, when it goes back to 0).

Here is a revised clock program to make use of this:

10 REM First we draw the clock face
20 FOR n=l TO 12
30 PRINT AT Ifi-10*COS (nI6*Pl~,l6+10*SIN (n/G*Pll;n
40 NEXT n
50 DEF FN t()=INT ((65536*PEEK 23674+256*PEEK 23673+

PEEK 2367211501: REM number of seconds since start
100 REM Now we start the clock
116 LET tl=FN t()
120 LET a=tl/30*PI : REM a is the angle of the second hand in

radians
130 LET sx=72*SIN a: LET sy=72*COS a
140 PLOT 131.91: DRAW OVER l;sx,sy: REM draw hand
200 LET t=FN t()
210 IF t<=tl THEN GO TO 200: REM wait until time for next

hand
220 PLOT 131.91: DRAW OVER l;sx,sy: REM rub out old hand
230 LET tl=t: GO TO 120

The internal clock that this method uses should be accurate to about .01% as long
as the computer is just running its program, or 10 seconds per day; but it stops
temporarily whenever you do BEEP, or a cassette tape operation, or use the printer or
any of the other extra pieces of equipment you can use with the computer. All these
will make it lose time.

The numbers PEEK 23674, PEEK 23673 and PEEK 23672 are held inside the
computer and used for counting in 50ths of a second. Each is between 0 and 255,
and they gradually increase through all the numbers from 0 to 255; after 255 they
drop straight back to 0.

The one that increases most often is PEEK 23672. Every l/50 second it increases
by 1. When it is at 255, the next increase takes it to 0, and at the same time it nudges
PEEK 23673 by up to 1. When (every 256150 seconds) PEEK 23673 is nudged from
255 to 0, it in turn nudges PEEK 23674 up by 1. This should be enough to explain why
the expression above works.

Now, consider carefully: suppose our three numbers are 0 (for PEEK 23674). 255
(for PEEK 23673) and 255 (for PEEK 23672). This means that it is about 21 minutes
after switch-on - our expression ought to yield

(65536*0+256*255+255)/50= 1310.7

But there is a hidden danger. The next time there is a l/50 second count, the three
numbers will change to 1,0 and 0. Every so often, this will happen when you are half
way through evaluating the expression: the computer wouldevaluate PEEK 23674 as

130

Chapter 18

0, but then change the other two to 0 before it can peek them. The answer would
then be

(65536*0+256*0+0)/50=0

which is hopelessly wrong.
A simple rule to avoid this problem is evaluate the expression twice in succession

and take the larger answer.
If you look carefully at the program above you can see that it does this implicitly.
Here is a trick to apply the rule. Define functions

10 DEF FN m(x,y)=(x+y+ABS (x--yI)/2: REM the larger of x and y
29 DEF FN u()=(65536*PEEK 23674+256*PEEK 23673+PEEK

236721150: REM time, may be wrong
30 DEF FN t()=FN m(FN ~(1, FN u(1): REM time, right

You can change the three counter numbers so that they give the real time instead
of the time since the computer was switched on. For instance, to set the time at
10.00am. you work out that this is 10*60*60*50= 1800000 fiftieths of a second, and
that

1800000=65536*27+256*119+64

To set the three numbers to 27, 119 and 64, you do

POKE 23674.27: POKE 23673,119: POKE 23672.64

In countries with mains frequencies of 60 Hertz these programs must replace ‘50’
by ‘60’ where appropriate.

The function INKEY$ (which has no argument) reads the keyboard. If you are
pressing exactly one key (or a SHIFT key and just one other key) then the result is the
character that that key gives in L mode; otherwise the result is the empty string.

Try this program, which works like a typewriter.

19 IF INKEY$ <>“” THEN GO TO 19
20 IF INKEYS =“” THEN GO TO 29
39 PRINT INKEYS;
49GOT0 10

Here line 10 waits for you to lift your finger off the keyboard and line 20 waits for
you to press a new key.

Remember that unlike INPUT, INKEYS doesn’t wait for you. So you don’t type
ENTER, but on the other hand if you don’t type anything at all then you’ve missed
your chance.

131

Chapter 18

Exercises
1. What happens if you miss out line 10 in the typewriter program?

2. Another way of using INKEY$ is in conjunction with PAUSE, as in this alternative
typewriter program.

10 PAUSE 0
20 PRINT INKEYS;
30GOTO 10

To make this work, why is it essential that a pause should not finish if it finds you
already pressing a key when it starts?

3. Adapt the second hand program so that it also shows minute and hour hands,
drawing them every minute. If you’re feeling ambitious, arrange so that every quarter
of an hour it puts on some kind of show-you could produce the Big Ben chimes with
BEEP. (See next chapter.)

4. (For sadists.) Try this:

10 IF INKEY$ =“” THEN GO TO 10
20 PRINT AT 11,14;“0UCH!”
30 IF INKEY$ <>“” THEN GO TO 30
40 PRINT AT 11,14;” ”
5OGOTO 10

132

CHAPTER

Chapter 19

Summary
BEEP

If you haven’t already discovered that the ZX Spectrum has a loudspeaker built into it,
read the Introductory booklet before carrying on.

The loudspeaker is sounded by using the BEEP statement,

BEEP duration, pitch

where, as usual, ‘duration’ and ‘pitch’ represent any numerical expressions. The
duration is given in seconds, and the pitch is given in semitones above middle C -
using negative numbers for notes below middle C.

Here is a diagram to show the pitch values of all the notes in one octave on the
piano:

C D E F G A B

To get higher orTower-notes, you nave to aaa or suotract 12 for each octave that
you go up or down.

If you have a piano in front of you when you are programming a tune, this diagram
will probably be all that ybu need to work out the pitch values. If, however, you are
transcribing.straight ,from some written m.usic, then we suggest that you draw a
diagram of the stave with th6 pitch $ue written against each line and space, taking
the key into account.

For example, type:

10 PRINT “Frere Gustav”

’
20 BEEP

I,@:
BEEP 1,2: BEEP .5,3: BEEP .5,2: BEEP 1,0

30 BEEP 1.0: BEEP 1.2: BEEP .5,3: BEEP .5,2: BEEP 1.0
40 BEEP 1.3: BEEP 1,5: BEEP 2.7
50 BEEP 1.3: BEEP 1,5: BEEP 2,7
50 BEEP .75,7: BEEP .25,8: BEEP .5,7: BEEP’.5,5: BEEP .5,3:

BEEP .5,2: BEEP 1.0
70 BEEP .75,7: BEEP .25,8: BEEP .5,7: BEEP .5,5: BEEP .5,3:

BEEP .5,2: BEEP I,0
80 BEEP I,& BEEP I,-5: BEEP 2,0
SO BEEP I,@: BEEP I,-5: BEEP 2.0

135

- -

Chapter 19

When you run this, you should get the funeral march from Mahler’s first
symphony, the bit where the goblins bury the US Cavalry man.

Suppose for example that your tune is written in the key of C minor, like the Mahler
above. The beginning looks like this:

and you can write in the pitch values of the notes like this:

0 2 320 0 2 3 2 e 3 5 7 3 5 7

We have put in two ledger lines, just for good measure. Note how the E flat in the
key signature affects not only the E in the top space, flattening it from 16 to 15, but
also the E on the bottom line, flattening it from 4 to 3. It should now be quite easy to
find the pitch value of any note on the stave.

If you want to change the key of the piece, the best thing is to set up a variable key
and insert tiev+ before each pitch value: thus the second line becomes

20 BEEP l,key+O: BEEP l,key+2: BEEP .5,key+3: BEEP .5,key+2:
BEEP l,key+O

Before you run a program you must give key the appropriate value - 0 for C minor,
2 for D minor, 12 for C minor an octave up, and so on. You can get the computer in
tune with another instrument by adjusting key. using fractional values.

You also have to work out the durations of all the notes. Since this is a fairly slow
piece, we have allowed one second for a crotchet and based the rest on that, half a
second for a quaver and so on.

More flexible is to set up a variable crotchet to store the length of a crotchet and
specify the durations in terms of this. Then line 20 would become

20 BEEP crotchet,key+O: BEEP crotchet,key+2: BEEP crotchetl
2,key+3: BEEP crotchet/2,key+2: BEEP crotchet,key+O

136

Chapter 19

(You will probably want to give crotchet and key shorter names.)
By giving crotchet appropriate values, you can easily vary the speed of the piece.
Remember that because there is only one loudspeaker in the computer you can

only play one note at a time, so you are restricted to unharmonized tunes. If you want
any more you must sing it yourself.

Try programming tunes in for yourself - start off with fairly simple ones like ‘Three
Blind Mice’. I f you have neither piano nor written music, get hold of a very simple
instrument like a tin whistle or a recorder, and work the tunes out on that. You could
make a chart showing the pitch value for each note that you can play on this
instrument.

Type :

FOR n=0 TO 1000: BEEP .5,n: NEXT n

This will play notes as high as it can. and then stop with error report B integer out
of range. You can print out n to find out how high it did actually get.

Try the same thing, but going down into the low notes. The very lowest notes will
just sound like clicks; in fact the higher notes are also made of clicks in the same
way, but faster, so that the ear cannot distinguish them.

Only the middle range of notes are really any good for music; the low notes sound
too much like clicks, and the high notes are thin and tend to warble a bit.

Type in this program line:
*

10 BEEP .5,0: BEEP .5,2: BEEP .5,4: BEEP.5,5: BEEP .5,7:
BEEP .5,9: BEEP .5,11: BEEP .5,12: STOP

This plays the scale of C major, which uses all the white notes on the piano from
middle C to the next C up. The way this scale is tuned is exactly the same as on a
piano, and is called even-tempered tuning because the pitch interval of a semitone is
the same all the way up the scale. A violinist, however, would play the scale very
slightly differently, adjusting all the notes to make them sound more pleasing to the
ear. He can do this just by moving his fingers very slightly up or down the string in a
way that a pianist can’t.

The natural scale, which is what the violinist plays, comes out like this:

29 BEEP .5,#: BEEP .5,2.939: BEEP .5,3.99: BEEP .5,4.99:
BEEP .5,7.92: BEEP .5,9.94: BEEP .5,10.99: BEEP .5,12: STOP

You may or may not be able to detect any difference between these two; some
people can. The first noticeable difference is that the third note is slightly flatter in the
naturally tempered scale.lf you are a real perfectionist, you might like to program your
tunes to use this natural scale instead of the.even-tempered one. The disadvantage is
that although it works perfectly in the key of C, in other keys it works less well-they
all have their own natural scales - and in some keys it works very badly indeed. The
even-tempered scale is only slightly off, and works equally well in all keys.

137

Chapter 19

This is less of a problem on the computer, of course, because you can use the trick
of adding on a variable key,

Some music - notably Indian music - uses intervals of pitch smaller than a
semitone. You can program these into the BEEP statement without any trouble; for
instance the quartertone above middle C has a pitch value of .5.

You can make the keyboard beep instead of clicking by

POKE 23609,255

The second number in this determines the length of the beep (try various values
between 0 and 255). When it is 0, the beep is so short that it sounds like a soft click.

I f you are interested in doing more with sound from the Spectrum, like hearing the
sound that BEEP makes on something other the internal speaker, you will find that
the signal is present on both the ‘MIC’ and the ‘EAR’ sockets. It will be at a higher
level on the ‘EAR’ socket, but otherwise they are the same. You may use this to
connect an earphone or a pair of headphones to your Spectrum. This will not cut out
the internal loudspeaker. I f you are,really keen to make a lot of noise you could
connect it up to an amplifier - the ‘MIC’ socket will probably give about the right level
- or you could record the sound onto tape and get the Spectrum to play along with
itself.

You will not damage the Spectrum even if you short-circuit the ‘MIC’ or ‘EAR’
sockets, so experiment to find which gives the best output for what you want to do.

Exercise
1. Rewrite the Mahler program so that it uses FOR loops to repeat the bars.

Program the computer so that it plays not only the funeral march, but also the rest
of Mahler’s first symphony.

138

CHAPTER

Chapter 20

Tape storage
Summary
LOAD, SAVE, VERIFY, MERGE

The basic methods for using the cassette recorder to SAVE, LOAD and VERIFY
programs are given in the introductory booklet. This section should be read, and the
procedures tried out before reading any further here.

We have seen that LOAD deletes the old program and variables in the computer
before loading in the new ones from tape; there is another statement, MERGE, that
does not. MERGE only deletes an old program line or variable if it has to because
there is a new one with the same line number or name. Type in the ‘dice’ program in
Chapter 11 and save it on tape, as “dice”. Now enter and run the following:

1 PRINT 1
2 PRINT 2

10 PRINT l@
20 LET x=20

and then proceed as for the verification, but replacing VERIFY “dice” with

MERGE “dice”

If you list the program you can see that lines 1 and 2 have survived, but lines 10 and
20 have been replaced by those from the dice program. x has also survived (try
PRjNT x).

You have now seen simple forms of the four statements used with the cassette
tape:
SAVE records the program and variables on to cassette.
VERIFY checks the program and variables on cassette against those already in the
computer.
LOAD clears the computer of all its program and variables, and replaces them with
new ones read in from cassette.
MERGE is like LOAD except that it does not clear out an old program line or variable
unless itshas to because its line number or name is the same as that of a new one
from cassette.

In each of these, the keyword is followed by a string: for SAVE this provides a
name for the program on tape, while for the other three it tells the computer which
program to search for. While it is searching, it prints up the name of each program it
comes across. There are a couple of twists to all this.

For VERIFY, LOAD and MERGE you can provide the empty string as the name to
search for: then the computer does not care about the name, but takes the first
program it comes across.

141

Chapter 20

A variant on SAVE takes the form

SAVE string LINE number

A program saved using this is recorded in such a way that when it is read back by
LOAD (but not MERGE) it automatically jumps to the line with the given number,
thus running itself.

So far, the only kinds of information we have stored on cassette have been
programs together with their variables. There are two other kinds as well, called
arrays and bytes.

Arrays are dealt with slightly differently:
You can save arrays on tape using DATA in a SAVE statement by

SAVE string DATA array name0

String is the name that the information will have on tape and works in exactly the
same way as when you save a program or plain bytes.

The array name specifies the array you want to save, so it is just a letter or a letter
followed by $. Remember the brackets afterwards; you might think they are logically
unnecessary but you still have to put them in to make it easier for the computer.

Be clear about the separate roles of string and array name. If you say (for instance)

SAVE “Bloggs” DATA b0

then SAVE takes the array bfrom the computer and stores it on tape under the name
“Bloggs”. When you type

VERIFY “Bloggs” DATA b()

the computer will look for a number array stored on tape under the name “Bloggs”
(when it finds it it will write up ‘Number array: Bloggs’) and check it against the array
b in the computer.

/
LOAD “Bloggs” DATA b0

finds the array on tape, and then - if there is room for it in the computer - delete any
array already existing called b and loads in the new array from tape, calling it b.

You cannot use MERGE with saved arrays.
You can save character (string) arrays in exactly the same way. When the computer

is searching the tape and finds one of these it writes up ‘Character array:’ followed by
the name. When you load in a character array, it will delete not only any previous
character array with the same name, but also any string with the same name.

Byte storage is used for pieces of information without any reference to what the
information is used for - it could be television picture, or userdefined graphics, or

142

Chapter 20

something you have made up for yourself. It is shown using the word CODE, as in

SAVE “picture” CODE 16364,6912

The unit of storage in memory is the byte (a number between 0 and 255). and each
byte has an address (which is a number between 0 and 65535). The first number after
CODE is the address of the first byte to be stored on tape, and the second is the
number of bytes to be stored. In our case, 16384 is the address of the first byte in the
display file (which contains the television picture) and 6912 is the number of bytes in
it, so we are saving a copy of the television screen -try it. The name “picture” works
just like the names for programs.

To load it back, use

LOAD “picture” CODE

You can put numbers after CODE in the form

LOAD name CODE start, length

Here length is just a safety measure; when the computer has found the bytes on
tape with the right name, it will still refuse to load them in if there are more than
length of them - since there is obviously more data than you expected it could
otherwise overwrite something you had not intended to be overwritten. It gives the
error report R Tape loading error. You can miss out length, and then the computer
will read in the bytes however many there are.

Start shows the address where the first byte is to be loaded back to - this can be
different from the address it was saved from, although if they are the same you can
miss out start in the LOAD statement.

CODE 16394,6912 is so useful for saving and loading the picture that you can
replace it with SCREENS - for instance,

SAVE “picture” SCREENS
LOAD “picture” SCREENS

This is a rare case for which VERIFY will not work - VERIFY writes up the names
of what it finds on tape, so that by the time it gets round to the verification the display
file has been changed and the verification fails. In all other cases you should use
VERIFY whenever you use SAVE.

Below, is a complete summary of the four statements used in this chapter.
Name stands for any string expression, and refers to the name under which the

information is stored on cassette. It should consist of ASCII printing characters, of
which only the first 10 are used.

There are four sorts of information that can be stored on tape: program and
variables (together), number arrays, character arrays, and straight bytes.

143

Chapter 20

When VERIFY, LOAD and MERGE are searching the tape for information with a
given name and of a given sort, they print up on the screen the sort and name of all
the information they find. The sort is shown by ‘Program:‘, ‘Number array:‘,
‘Character array:’ or ‘Bytes:‘. I f name was the empty string, they take the first lot of
information of the right sort, regardless of its name.

SAVE
Saves information on tape under the given name. Error F occurs when name is empty
or has 11 or more characters.

SAVE always puts up a message Start tape, then press any key, and waits for a
key to be pressed before saving anything.

1. Program and variables:

SAVE name LINE line number

saves the program and variables in such a way that LOAD automatically follows with

GO TO line number

2. Bytes:

SAVE name CODE start, length

saves length bytes starting at address start

SAVE name SCREENS

is equivalent to

SAVE name CODE 16364,6912

and saves the television picture.

144

Chapter 20

3. Arrays:

SAVE name DATA letter 0
or

SAVE name DATA letter $ 0

saves the array whose name is letter or letter $ (this need bear no relation to name).

VERIFY
Checks the information on tape against the information already in memory. Failure to
verify gives error R Tape loading error.

1. Program and variables:

VERIFY name

2. Bytes:

VERIFY name CODE start, length .

I f the bytes name on tape are more than length in number, then gives error R.
Otherwise, checks them against the bytes in memory starting at address start.

VERIFY name CODE start

checks the bytes name on tape against those in memory starting at address start.

VERIFY name CODE

checks the bytes name on tape against those in memory starting at the address from
which the first cassette byte was saved.

VERIFY name SCREENS

is equivalent to

VERIFY name CODE 16364,6912

but will almost certainly fail to verify.

145

Chapter 20

3. Arrays:

VERIFY name DATA letter 0
or

VERIFY name DATA letter $ 0

checks the array name on tape against the array letter or letter $ in memory.

LOAD
Loads new information from tape, deleting the old information from memory.

1. Program and variables:

LOAD name

deletes the old program and variables and loads in program and variables name from
cassette; if the program was saved using SAVE name LINE it performs an automatic
jump.

Error 4 Out of memory occurs if there is no room for the new program and
variables. In this case the old program and variables are not deleted.

2. Bytes:

LOAD name CODE start, length

If the bytes name from tape are more than length in number then gives error R.
Otherwise, loads them into memory starting at address start, and overwriting
whatever was there previously.

LOAD name CODE start

loads the bytes name from tape into memory, starting at address start and
overwriting whatever was there previously.

LOAD name CODE

loads the bytes name from tape into memory starting at the address from which the
first tape byte was saved and overwriting the bytes that were there in memory
before.

3. Arrays:

LOAD name DATA letter 0
or

LOAD name DATA letter $ 0

146

Chapter 20

deletes any array already called letter or letter $ (as appropriate) and forms a new one
from the array stored on cassette.

Error 4 Out of memory occurs if no room for new arrays. Old arrays are not
deleted.

MERGE
Loads new information from cassette without deleting old information from memory.

1. Program and variables:

MERGE name

merges the program name in with the one already in memory, overwriting any
program lines or variables in the old program whose line numbers or names conflict
with ones on the new program.

Error 4 Out of memory occurs unless there is enough room in memory for all of
the old program and variables and all of the new program and variables being loaded
from tape.

2. Bytes:

Not possible

3. Arrays:

Not possible

Exercises
I, Make a cassette on which the first program, when loaded, prints a menu (a list of
the other programs on the cassette), asks you to choose a program, and then loads it.

2. Get the chess piece graphics from Chapter 14, and then type NEW: they will
survive this. However, they will not survive having the computer turned off: if you
want to keep them, you must save them on tape, using SAVE with CODE. The
easiest way is to save all twenty-one user-defined graphics by

SAVE “chess” CODE USR “a”,21 *8

followed by

VERIFY “chess“ CODE

This is the system of bytes saving that was used for saving the picture. The
address of the first byte to be saved is USR “a”, the address of the first of the eight

147

Chapter 20

bytes that determine the pattern of the first userdefined graphic, and the number of
bytes to be saved is 21*8 - eight bytes for each of 21 graphics.

To load back you would normally use

LOAD “chess” CODE

However, if you are loading back into a Spectrum with a different amount of
memory, or if you have moved the user-defined graphics to a different address (you
have to do this deliberately using more advanced techniques), you have to be more
careful and use

LOAD “chess” CODE USR “a”

USR allows for the fact that the graphics must be loaded back to a different
address.

148

CHAPTER

Chapter 21

The 2X printer
Summary
LPRINT, LLIST, COPY

Note: None of these statements is standard BASIC, although LPRINT is used by
some other computers.

If you have a ZX printer, you will have some operating instructions with it. This
chapter covers the BASIC statements needed to make it work.

The first two, LPRINT and LLIST, are just like PRINT and LIST, except that they
use the printer instead of the television. (The L is an historical accident. When BASIC
was invented it usually used an electric typewriter instead of a television, so PRINT
really did mean print. I f you wanted masses of output you would use a very fast line
printer attached to the computer, and an LPRINT statement meaning ‘Line printer
PRINT’.)

Try this program for example.

10 LPRINT “This program”.’
20 LLIST
30 LPRINT “‘prints out the character set.“’
40 FOR n=32 TO 255
50 LPRINT CHR$ n;
60 NEXT n

The third statement, COPY, prints out a copy of the television screen. For instance,
type LIST to get a listing on the screen of the program above, and type

COPY

Note that COPY doesn’t work with one of the listings that the computer puts up
automatically, because that is cleared whenever a command is obeyed. You must
either use LIST first, or use LLIST and forget about COPY.

You can always stop the printer when it is running by pressing the BREAK key
(CAPS SHIFT and SPACE).

If you execute these statements without the printer attached, it should lose all the
output and carry on with the next statement.

Try this:

10 FOR n=31 TO 0 STEP -1
20 PRINT AT’31 -n,n; CHR$ (CODE “Y’+n);
30 NEXT n

You will see a pattern of characters working down diagonally from the top
right-hand corner until it reaches the bottom of the screen, when the program asks if

151

Chapter 21

you want to scroll.
Now change AT 31-n,n in line 20 to TAB n. The program will have exactly the

same effect as before.
Now change PRINT in line 20 to LPRINT. This time there will be no scroll?, which

should not occur with the printer, and the pattern will carry straight on with the letters
FtoO.

Now change TAB n to AT 31-n,n still using LPRINT. This time you will get just a
single line of symbols. The reason for the difference is that the output from LPRINT is
not printed straight away, but arranges in a buffer store a picture one line long of what
the computer will send to the printer when it gets round to it. The printing takes place

(i) when the buffer is full,
(ii) after an LPRINT statement that does not end in a comma or semicolon,
(iii) when a comma, apostrophe or TAB item requires a new line, or
(iv) at the end of a program, if there is anything left unprinted.

(iii) explains why our program with TAB works the way it does. As for AT, the line
number is ignored and the LPRINT position (like the PRINT position, but for the
printer instead of the television) is changed to the column number. An AT item can
never cause a line to be sent to the printer.

Exercise .
1. Make a printed graph of SIN by running the program in Chapter 17 and then using
COPY.

152

CHAPTER

Chapter 22

Other Equipment

There is other equipment that you will be able to attach to the Spectrum.
The ZX Microdrive is a high speed mass storage device, and is much more flexible

in the way it can be used than a cassette recorder. It will operate not only with SAVE,
VERIFY, LOAD and MERGE, but also with PRINT, LIST, INPUT and INKEYS.

The network is used for connecting several Spectrums so that they can talk to each
other - one of the uses of this is that you then need only one Microdrive to serve
several computers.

The Ft.932 interface is a standard connection that allows you to link a Spectrum
with keyboards, printers, computers and various other machines even if they were
not designed specifically for the Spectrum.

These will use some extra keywords that are on the keyboard, but cannot be used
without the extra attachments: they are OPEN#, CLOSE#. MOVE, ERASE, CAT
and FORMAT.

155

Chapter 23

IN and OUT
Summary
OUT
IN

The processor can read from and (at least with RAM) write to memory by using PEEK
and POKE. The processor itself does not really care whether memory is ROM, RAM
or even nothing at all; it just knows that there are 65536 memory addresses, and it
can read a byte from each one (even if it’s nonsense), and write a byte to each one
(even if it gets lost). In a completely analogous way there are 65536 of what are called
I/O ports (standing for Input/Output ports). These are used by the processor for
communicating with things like the keyboard or the printer, and they can be
controlled from the BASIC by using the IN function and the OUT statement.

IN is a function like PEEK.

IN address

It has one argument, the port address, and its result is a byte read from that port.
OUT is a statement like POKE.

OUT address, value

writes the given value to the port with the given address. How the address is
interpreted depends very much on the rest of the computer; quite often, many
different addresses will mean the same. On the Spectrum it is most sensible to
imagine the address being written in binary, because the individual bits tend to work
independently. There are 16 bits, which we shall call (using A for address)

Al5, Al4. Al3. Al2 ,......I A2, Al, A0

Here A0 is the 1 s bit, Al the 2s bit, A2 the 4s bit and so on. Bits A0. Al, A2. A3 and
A4 are the important ones. They are normally 1, but if any one of them is 0 this tells
the comouter to do somethino soecific. The computer cannot cope with more than

-I

A15A13 D7 SLOTDO Dl D2 D6 D5 D3 D4
INT NMyLT IORO

MREO RD WR-W
WA:IZy12VM,RF& ^ “‘. ‘c

ABA10 ,i

A14A12 5V 9VSLOTOV 0V CK At :’ 42 A3 Y v u
IOROG?“IDEO

RESETA A6 A5 $oM;iSACKM Al 1
BUSRO

Unterseite

160

- -

- -

Chapter 23

The keyboard is divided up into 8 half rows of 5 keys each

IN 88278 reads the half row CAPS SHIFT to V
IN 88822 reads the half row A to G
IN 64510 reads the half row 0 to T
IN 88488 reads the half row 1 to 5
IN 81438 reads the half row 0 to 8
IN 57842 reads the half row P to 7
IN 48158 reads the half row ENTER to H
IN 32788 reads the half row SPACE to B

(These addresses are 254+256+(255-2 t n) as n goes from 0 to 7.)
In the byte read in, bits DO to D4 stand for the five keys in the given half row - DO

for the outside key, D4 for the one nearest the middle. The bit is 0 if the key is
pressed, 1 if it is not. D6 is the value at the EAR socket.

Port address 254 in output drives the loudspeaker (04) and the MIC socket (D3).
and also sets the border colour (D2, Dl and D0).

Port address 251 runs the printer, both in reading and writing: reading finds out
whether the printer is ready for more, and writing sends out dots to be printed.

Port addresses 254, 247 and 239 are used for the extra devices mentioned in
Chapter 22.

Run this program

10” FOR n-0 TO 7: REM half-row number
28 LET a=2B4+256*(255-2 7 n)
38 PRINT AT 0,O; IN a: GO TO 38

and play around by pressing keys. When you get bored with each half-row, press
BREAK and then type

NEXT n

The control, data and address busses are all exposed at the back of the Spectrum,
so you can do almost anything with a Spectrum that you can with a 280. Sometimes,
though, the Spectrum hardware might get in the way. Here is a diagram of the
exposed connections at the back:

COMPONENT SIDE

A15A13 D7 SLOdDl D2 IX D5 D3 D4
INT NMIALT IORO

MREQ RD WA -5V
WA~,2;12VM,RFSH

ABA16 1

A14A12 5V SVSLOTOV 0V CK AC :’ 42 A3
IOROG!vVIDEO

Y v u RESETA A6 A5 %oMtgSACKm All
BUSRO

Unterseite

160

- -

- -

CHAPTER

i

Chapter 24

The memory
Summary
CLEAR

Deep inside the computer, everything is stored as bytes, i.e. numbers between 0 and
255. You may think you have stored away the price of wool or the address of your
fertilizer suppliers, but it has all been converted into collections of bytes and bytes are
what the computer sees.

Each place where a byte can be stored has an address, which is a number between
0 and FFFFh (so an address can be stored as two bytes), so you might think of the
memory as a long row of numbered boxes, each of which can contain a byte. Not all
the boxes are the same, however. In the standard 16K RAM machine, the boxes from
8000h to FFFFh are simply missing altogether. The boxes from 4000h to 7FFFh are
RAM boxes, which means you can open the lid and alter the contents, and those
from 0 to 3FFFh are ROM boxes, which have glass tops but cannot be opened. You
just have to read whatever was put in them when the computer was made.

ROM RAM Not used
----*- r -7 <

0 \ 4000h 8000h FFFFh
= 16384 =32768 =65535

To inspect the contents of a box, we use the PEEK function: its argument is the
address of the box, and its result is the contents. For instance, this program prints out
the first 21 bytes in ROM (and their addresses):

10 PRINT “Address”; TAB 8; “Byte”
20 FOR a=@ TO 20
30 PRINT a; TAB 8; PEEK a
40 NEXT a

All these bytes will probably be quite meaningless to you, but the processor chip
understands them to be instuctions telling it what to do.

To change the contents of a box (if it is RAM), we use the POKE statement. It has
the form

POKE address, new contents

163

Chapter 24

where ‘address’ and ‘new contents’ stand for numeric expressions. For instance, if
you say

POKE 31000.57

the byte at address 31000 is given the new value 57 - type
/

PRINT PEEK 31000

to prove this. (Try poking in other values, to show that there is no cheating.) The new
value must be between -255 and +255, and if it is negative then 256 is added to it.

The ability to poke gives you immense power over the computer if you know how
to wield it; and immense destructive possibilities if you don’t. It is very easy, by
poking the wrong value in the wrong address, to lose vast programs that took you
hours to type in. Fortunately, you won’t do the computer any permanent damage.

We shall now take a more detailed look at how the RAM is used but don’t bother to
read this unless you’re interested.

The memory is divided into different areas (shown on the big diagram) for storing
different kinds of information. The areas are only large enough for the information
that they actually contain, and if you insert some more at a given point (for instance
by adding a program line or variable) space is made by shifting up everything above
that point. Conversely, if you delete information then everything is shifted down.

The display file stores the television picture. It is rather curiously laid out, so you
probably won’t want to PEEK or POKE in it. Each character position on the screen has
an 8x8 square of dotsand each dot can be either 0 (paper) or 1 (ink): and by using
binary notation we can store the pattern as 8 bytes, one for each row. However,
these 8 bytes are not stored together. The corresponding rows in the 32 characters
of a single line are stored together as a scan of 32 bytes, because this is what the
electron beam in the television needs as it scans from the left hand side of the screen
to the other. Since the complete picture has 24 lines of 8 scans each, you might
expect the total of 172 scans to be stored in order, one after the other; you’d be
wrong. First come the top scans of lines 0 to 7. then the next scans of lines 0 to 7.
and so on to the bottom scans of. lines 0 to 7; then the same for lines 8 to 15; and
then the same for lines 16 to 23. The upshot of all this is that if you’re used to a
computer that uses PEEK and POKE on the screen, you’ll have to start using
SCREEN$ and PRINT AT instead, or PLOT and POiNT. .,

The attributes are the colours and so on for each character position, using the
format of ATM. These are stored line by line in the order you’d expect.

The printer buffer stores the characters destined for the printer.
The system variables contain various pieces of information that tell the computer

what sort of state the computer is in. They are listed fully in the next chapter, but for
the moment note that there are some (called CHANS, PROG, VARS, E-LINE and so
on) that contain the-addresses of the boundaries between the various areas in
memory. These are not BASIC variables, and their names will not be recognized by
the computer.

164

Dtsplay Fala Attributes Printer Buffer System Variables

--..m

t t t 1 t
16384 22526 23296 23552 23734

- I

Mmodrwe maps
Channel

60h BASIC program Variables 60h
Command or

-.--

23734 CHANS

---_

,NPUT ds,a NL Temporal Calculator
Spare

Machw GOSUB
workspace stack stack stack

? 3Eh User Defmed Graphics

-w-s

t
WORKSP t t RAM UDG P-RAMT

TOP

Chapter 24

The Microdrive maps are only used with the Microdrive. Normally there is nothing
there.

The channel information contains information about the input and output devices,
namely the keyboard (with the lower half of the screen), the upper half of the screen,
and the printer.

Each line of BASIC program has the form:

More significant byte
I
I Less significant byte

ti

--’

Line number Length of
text + ENTER

Text

I--

ENTER

Note that, in contrast with all other cases of two-byte numbers in the 280, the line
number here is stored with its more significant byte first: that is to say, in the order
that you write them down in.

A numerical constant in the program is followed by its binary form, using the
character CHRC 14 followed by five bytes for the number itself.

The variables have different formats according to their different ratures. The
letters in the names should be imagined as starting off in lower casa.

Number whose name is one letter only:

Sign bit

1

011

L

Exponent byte

Letter-60h Value

166

Chapter 24

Number whose name IS longer than one letter:

IIII lllllII
101 0 1 ~5 bytes’

IIIIIII IIIIIII z--z--z 3

Letter-60h 2nd character Last character Value

Array of numbers:

100 2 bytes 1 byte 2 bytes

LetterB0h Total No. of 1 st dim.

length of dimensions
elements &
dimensions
+I for no.
of dimensions

Last dim. Elements

The order of the elements is:
first, the elements for which the first subscript is 1
next, the elements for which the first subscript is 2
next, the elements for which the first subscript is 3
and so on for all possible values of the first subscript.

The elements with a given first subscript are ordered in the same way using the
second subscript, and so on down to the last.

As an example, the elements of the 3*6 array b in Chapter 12 are stored in the
order b(1,3) b(1.2) b(1.3) b(1.4) b(1.5) b(1.6) b(2,l) b(2,2) b(2.6) b(3.1) b(3.2) . .
bW3.

Control variable of a FORNEXT loop:

Less significant byte

i , More significant byte

+ i t
I I I I I I

111

I I I

5 bytes 5 bytes 5 bytes 2 bytes 1 byte

I
‘P-v--

Letter-60h Value Limit Step Looping line Statement
number

within line

167

Chapter 24

String:

111111
010 2 bytes

1111111
---’

Letter 60h Number of
characters

Text of string (may be empty)

Array of characters:

110

Letter-60h Total No. of dims. 1st dim.

number
of elements
& dims. +l
for no. of
dims.

Last dim. Elements

The calculator is the part of the BASIC system that deals with arithmetic, and the
numbers on which it is operating are held mostly in the calculator stack.

The spare part contains the space so far unused.
The machine stack is the stack used by the 280 processor to hold return addresses

and so on.
The GOSUB stack was mentioned in Chapter 5.
The byte pointed to by RAMTOP has the highest address used by the BASIC

system. Even NEW, which clears the RAM out, only does so as far as this - so it
doesn’t change the user-defined graphics. You can change the address RAMTOP by
putting a number in a clear statement:

CLEAR new RAMTOP

This
(i) clears out all the variables

(ii) clears the display file (like CLS)
(iii) resets the PLOT position to the bottom left-hand corner
(iv) does RESTORE
(v) clears the GOSUB stack and puts it at the new RAMTOP - assuming that this

168

Chapter 24

lies between the calculator stack and the physical end of RAM; otherwise it leaves
RAMTOP as it was.

RUN also does CLEAR, although it never changes RAMTOP.
Using CLEAR in this way, you can either move RAMTOP up to make more room

for the BASIC by ovewriting the user-defined graphics, or you can move it down to
make more RAM that is preserved from NEW.

Type NEW, then CLEAR 23808 to get some idea of what happens to the machine
when it fills up.

One of the first things you will notice if you start typing in a program is that after a
while the computer stops accepting any more and buzzes at you. It means the
computer is chock-a-block and you will have to empty it slightly. There are also two
error messages with roughly the same meaning, 4 Memory full and G No room for
line.

The buzz also occurs when you type in a line longer than 23 lines - then your typing
is not being ignored, though you cannot see it; but the buzz sounds to discourage you
from doing any more.

You can adjust the length of the buzz by poking a number into address 23608. The
usual length has number 64.

Any number (except 0) can be written uniquely as
fmxZe

where + is the sign,
m is the mantissa, and lies between i and 1 (it cannot be 1).

and e is the exponent, a whole number (possibly negative).
Suppose you write m in the binary scale. Because it is a fraction, it will have a

binarypoint (like the decimal point in the scale of ten) and then a binary fraction (like a
decimal fraction): so in binary,
a half is written .I
a quarter is written .01
three quarters is written .l 1
a tenth is written .000110011001100110011 and so on. With our number m,
because it is less than 1, there are no bits before the binary point, and because it is at
least f, the bit immediately after the binary point is a 1.

To store the number in the computer, we use five bytes, as follows:
(i) write the first eight bits of the mantissa in the second byte (we know that the first

bit is 1). the second eight bits in the third byte, the third eight bits in the fourth byte
and the fourth eight bits in the fifth byte,
(ii) replace the first bit in the second byte - which we know is 1 - by the sign: 0 for

plus, 1 for minus,
(iii) write the exponent + 128 in the first byte. For instance, suppose our number is
l/10

Thus the mantissa m is .11001100110011001100110011001100 in binary (since

169

Chapter 24

the 33rd bit is 1, we shall round the 32nd up from 0 to l), and the exponent e is -3.
Applying our three rules gives the five bytes

zero written here to show + sign

.

0111 1101 0;00 1100 1100 1100 1100 1100 1100 1101

-3+128 mantissa 4/5 except that the first bit should be 1 for exponent

There is an alternative way of storing whole numbers between -65535 and
-165535:
(i) the first byte is 0,

(ii) the second byte is 0 for a positive number, FFh for a negative one,
(iii) the third and fourth bytes are the less and more significant bytes of the number
(or the number +I31072 if it is negative),
(iv) the fifth byte is 0.

170

Appendix 9

Reports
These appear at the bottom of the screen whenever the computer stops executing
some BASIC, and explain why it stopped, whether for a natural reason, or because an
error occurred.

The report has a code number or letter so that you can refer to the table here, a
brief message explaining what happened and the line number and statement number
within that line where it stopped. (A command is shown as line 0. Within a line,
statement 1 is at the beginning, statement 2 comes after the first colon or THEN, and
so on.)

The behaviour! of CONTINUE depends very much on the reports. Normally,
CONTINUE goes to the line and statement specified in the last report, but there are
exceptions with reports 0, 9 and D (also see Appendix C).

Here is a table showing all the reports. It also tells you in what circumstances the
report can occur, and this refers you to Appendix C. For instance error A Invalid
argument can occur with SCM, IN, ACS and ASN and the entries for these in
Appendix C tell you exactly what arguments are invalid.

Code Meaning Situations

OK Anv
Successful completion, or jump to a line number
bigger than any existing. This report does not
change the line and statement jumped to by
CONTINUE.

NEXT without FOR NEXT
The control variable does not exist (it has not been
set up by a FOR statement). but there is an ordinary
variable with the same name.

Variable not found Any
For a simple variable this will happen if the variable
is used before it has been assigned to in a LET,
READ or INPUT statement or loaded from tape or
set up in a FOR statement. For a subscripted
variable it will happen if the variable is used before it
has been dimensioned in a DIM statement or
loaded from tape.

Subscript wrong
A subscript is beyond the dimension of the array, or
there are the wrong number of subscripts. I f the
subscript is negative or bigger than 65535, then
error B will result.

Subscripted variables,
Substrings

LET, INPUT, FOR. DIM.
GO SUB, LOAD,

189

Out of memory
There is not enough room in the computer for what

Appendix B

Code Meaning

5

6

7

8

you are tn/ing to do. If the computer really seems to
be stuck in this state, you may have to clear out the
command line using DELETE and then delete a
program line or two (with the intention of putting
them back after-wards) to give yourself room to
manoeuvre with - say - CLEAR.

Out of screen
An INPUT statement has tried to generate more
than 23 lines in the lower half of the screen. Also
occurs with PRINT AT 22,

Number too big
Calculations have led to a number greater than
about 1 038.

RETURN without GO SUB
There has been one more RETURN than there
were GO SUBS.

End of file

STOP statement
After this, CONTINUE will not repeat the STOP,
but carries on with the statement after.

Invalid argument
The argument for a function is no good for some
reason.

Integer out of range
When an integer is required, the floating point
argument is rounded to the nearest integer. I f this is
outside a suitable range then error B results.

For array access, see also Error 3.

Nonsense in BASIC
The text of the (string) argument does not form a
valid expression.

BREAK - CONT repeats
BREAK was pressed during some peripheral
operation.
The behaviour of CONTINUE after this report is
normal in that it repeats the statement. Compare
with report L.

Situations

MERGE. Sometimes
during expression
evaluation

INPUT, PRINT AT

Any arithmetic

RETURN

Microdrive, etc.
operations

STOP

SQR, LN, ASN, ACS,
USR (with string
argument)

RUN, RANDOMIZE,
POKE, DIM, GO TO,
GO SUB, LIST, LLIST,
PAUSE, PLOT, CHR$,
PEEK, USR (with
numeric argument)
Array access

UAL. UAW

LOAD, SAVE. VERIFY,
MERGE, LPRINT,
LLIST, COPY. Also
when the computer
asks scroll? and you
type N, SPACE or
STOP

190

Code Meaning

M

N

0

Out of DATA
You have tried to READ past the end of the DATA
list.

invalid file name
SAVE with name empty or longer than 10
characters.

No room for line
There is not enough room left in memory to
accommodate the new program line.

STOP in INPUT
Some INPUT data started with STOP, or - for
INPUT LINE - was pressed.
Unlike the case with report 9, after report H
CONTINUE will behave normally, by repeating the
INPUT statement.

FOR without NEXT
There was a FOR loop to be executed no times (e.g.
FOR n=l TO 0) and the corresponding NEXT
statement could not be found.

Invalid I/O device

Invalid colour
The number specified is not an appropriate value.

BREAK into program
BREAK pressed, this is detected between two
statements. The line and statement number in the
report refer to the statement before BREAK was
pressed, but CONTINUE goes to the statement
after (allowing for any jumps to be done), so it does
not repeat any statements.

RAMTOP no good
The number specified for RAMTOP is either too big
or too small.

Statement lost
Jump to a statement that no longer exists.

Invalid stream

Appendix B

Situations

READ

SAVE

Entering a line into the
program

INPUT

FOR

Microdrive, etc.
operations

INK, PAPER, BORDER,
FLASH, BRIGHT,
INVERSE, OVER; also
after one of the
corresponding control
characters

Any

CLEAR; possibly in
RUN

RETURN, NEXT,
CONTINUE

Microdrive, qtc,
operations

191

Appendix B

Code Meaning Situations

P FN without DEF FN
User-defined function

Q Parameter error FN
Wrong number of arguments, or one of them is the
wrong type (string instead of number or vice versa).

R Tape loading error VERIFY LOAD or
A file on tape was found but for some reason could MERGE
not be read in, or would not verify.

192

Appendix C

A description of the 2X Spectrum for
reference
The first section of this appendix is a repeat of that part of the Introduction
concerning the keyboard and screen.

The keyboard
ZX Spectrum characters comprise not only the single symbols (letters, digits, etc),
but also the compound tokens (keywords, function names, etc) and all these are
entered from the keyboard rather than being spelled out. To obtain all these functions
and commands some keys have five or more distinct meanings, given partly by
shifting the keys (i.e. pressing either the CAPS SHIFT key or the SYMBOL SHIFT key
at the same time as the required one) and partly by having the machine in different
mudes.

The mode is indicated by the cursor, a flashing letter that shows where the next
character from the keyboard will be inserted.

K (for keywords) mode automatically replaces L mode when the machine is
expecting a command or program line (rather than INPUT data), and from its position
on the line it knows it should expect a line number or a keyword. This is at the
beginning of the line, or just after THEN, or just after : (except in a string). I f
unshifted, the next key will be interpreted as either a keyword (written on the keys),
or a digit.

L (for letters) mode normally occurs at all other times. If unshifted, the next key will
be interpreted as the main symbol on that key, in lower case for letters.

In both K and L modes, SYMBOL SHIFT and a key will be interpreted as the
subsidiary red character on the key and CAPS SHIFT with a digit key will be
interpreted as the control function written in white above the key. CAPS SHIFT with
other keys does not affect the keywords in K mode, and in L mode it converts lower
case to capitals.

C (for capitals) mode is a variant of L mode in which all letters appear as capitals.
CAPS LOCK causes a change from L mode to C mode or back again.

E (for extended) mode is used for obtaining further characters, mostly tokens. It
occurs after both shift keys are pressed together, and lasts for one key depression
only. In this mode, a letter gives one character or token (shown in green above it) if
unshifted, and another (shown in red below it) if pressed with either shift. A digit key
gives a token if pressed with SYMBOL SHIFT; otherwise it gives a colour control
sequence.

G (for graphics) mode occurs after GRAPHlCS (CAPS SHIFT and 9) is pressed, and
lasts until it is pressed again. A digit key will give a mosaic graphic, quit GRAPHICS or
DELETE, and each of the letter keys apart from V, W, X, Y and Z, will give a
user-defined graphic.

I f any key is held down for more than about 2 or 3 seconds, it will start repeating.
Keyboard input appears in the bottom half of the screen as it is typed, each

character (single symbol or compound token) being inserted just before the cursor.
The cursor can be moved left with CAPS SHIFT and 5, or right with CAPS SHIFT and

193

Appendix C

8. The character before the cursor can be deleted with DELETE (CAPS SHIFT and 0).
(Note: the whole line can be deleted by typing EDlT (CAPS SHIFT and 1) followed by
ENTER.)

When ENTER is pressed, the line is executed, entered into the program, or used as
INPUT data as appropriate, unless it contains a syntax error. In this case a flashing q
appears next to the error.

As program lines are entered, a listing is displayed in the top half of the screen. The
manner in which the listing is produced is rather complicated, and explained more
fully in Chapter 2. The last line entered is called the currenrline and is indicated by the
symbolm, but this can be changed by using the keys w (CAPS SHIFT and 6) and 6
(CAPS SHIFT and 7). I f EDlT (CAPS SHIFT and 1) is pressed, the current line is
brought down to the bottom part of the screen and can be edited.

When a command is executed or a program run, output is displayed in the top half
of the screen and remains until a program line is entered, or ENTER is pressed with
an empty line, or 4 or + is pressed. In the bottom part appears a report giving a code
(digit or letter) referring you to Appendix B. a brief verbal summary of what Appendix
B says, the number of the line containing the last statement executed (or 0 for a
command) and the position of the statementwithin the line. The report remains on
the screen until a key is pressed (and indicates K mode).

In certain circumstances, CAPS SHIFT with the SPACE key acts as a BREAK,
stopping the computer with report D or L. This is recognised

(i) at the end of a statement while a program is running, or
(ii) while the computer is using the cassette recorder or printer.

The television screen
This has 24 lines, each 32 characters long, and is divided into two parts. The top part
is at most 22 lines and displays either a listing or program output. When printing in
the top part has reached the bottom, it all scrolls up one line; if this would involve
losing a line that you have not had a chance to see yet, then the computer stops with
the message scroll?. Pressing the keys N, SPACE or STOP will make the program
stop with report D BREAK - CONT repeats; any other key will let the scrolling
continue. The bottom part is used for inputting commands, program lines, and INPUT
data, and also for displaying reports. The bottom part starts of as two lines (the upper
one blank), but it expands to accommodate whatever is typed in. When it reaches the
current print position in the top half, further expansions will make the top half scroll

up.
Each character position has altributes specifying its paper (background) and ink

(foreground) colours, a two-level brightness, and whether it flashes or not. The
available colours are black, blue, red, magenta, green, yellow and white.

The edge of the screen can be set to any of the colours using the border
statement.

A character position is divided into 8x8 pixels and high resolution graphics are
obtained by setting the pixels individually to show either the ink or paper colour for

194

Appendix C

that character position.
The attributes at a character position are adjusted whenever a character is written

there or a pixel is plotted. The exact manner of the adjustment is determined by the
printing parameters, of which there are two sets (called permanent and temporary) of
six: the PAPER, INK, FLASH, BRIGHT, INVERSE and OVER parameters. Permanent
parameters for the top part are set up by PAPER, INK. etc. statements, and last until
further notice. (Initially they are black ink on white paper. With normal brightness, no
flashing, normal video and no overprinting). Permanent parameters for the bottom
part use the border colour as the paper colour, with a black or white contrasting ink
colour, normal brightness, no flashing, normal video and no overprinting.

Temporary parameters are set up by PAPER, INK, etc. items, which are embedded
in PRINT, LPRINT, INPUT, PLOT, DRAW and CIRCLE statements, and also by
PAPER, INK, etc control characters when they are printed to the television -they are
followed by a further byte to specify the parameter value. Temporary parameters last
only to the end of the PRINT (or whatever) statement, or, in INPUT statements, until
some INPUT data is needed from the keyboard, when they are replaced by the
permanent parameters.

PAPER and INK parameters are in the range 0 to 9. Parameters 0 to 7 are the
colours used when a character is printed:

0 black
1 blue
2 red
3 magenta
4 green
5 cyan
6 yellow
7 white

Parameter 8 (‘transparent’) specifies that the colour on the screen is to be left
unchanged when a character is printed.

Parameter 9 (‘contrast’) specifies that the colour in question (paper or ink) is to be
made either white or black to show up against the other colour.

FLASH and BRIGHT parameters are 0, 1 or 8: 1 means that flashing or brightness
is turned on, 0 that it is turned off, and 8 (‘transparent’) that it is left unchanged at any
character position.

OVER and INVERSE parameters are 0 or 1.

OVER 0 new characters obliterate old ones
OVER 1 the bit patterns of the old and new characters are combined using an

‘exclusive or’ operation (overprinting)
UWERSE 0 new characters are printed as ink colour on paper colour (normal video)
INVERSE 1 new characters are printed as paper colour on ink colour (inverse video)

195

Appendix C

When a TAB control character is received by the television, two more bytes are
expected to specify a tab stop n (less significant byte first). This is reduced modulo 32
to no (say), and then sufficient spaces are printed to move the printing position into
column no.

When a comma control character is received, then sufficient spaces (at least one)
are printed to move the printing position into column 0 or column 16.

When an ENTER control character is received, the printing position is moved on to
the next line.

The printer
Output to the ZX printer is via a buffer one line (32 characters) long, and a line is sent
to the printer

(i) when printing spills over from one line to the next,
(ii) when an ENTER character is received,
(iii) at the end of the program, if there is anything left unprinted,
(iv) when a TAB control or comma control moves the printing position on to a new

line.

TAB controls and comma controls output spaces in the same way as on the
television.

The AT control changes the printing position using the column number, and
ignores the line number.

The printer is affected by INVERSE and OVER controls (and also statements) in
the same way as the screen is, but not by PAPER, INK, FLASH or BRIGHT.

The printer will stop with error B if BREAK is pressed.
If the printer is absent the output will simply be lost.

196

Appendix C

The BASIC
Numbers are stored to an accuracy of 9 or 10 digits. The largest number you can get
is about 1038, and the smallest (positive) number is about 4*10-3g.

A number is stored in the ZX Spectrum in floating point binary with one exponent
byte e (l<=e<=255), and four mantissa bytes m (f<=mcl). This represents the
number m+2e-128.

Since $c=mcl, the most significant bit of the mantissa m is always 1. Therefore
in actual fact we can replace it with a bit to show the sign - 0 for positive numbers, 1
for negative.

Small integers have a special representation in which the first byte is 0, the second
is a sign byte (0 or FFh) and the third and fourth are the integer in twos complement
form, the less significant byte first.

Numeric variables have names of arbitran/ length, starting with a letter and
continuing with letters and digits. Spaces and colour controls are ignored and all
letters are converted to lower-case letters.

Control variables of FOR-NEXT loops have names a single letter long.
Numeric arrays have names a single letter long, which may be the same as the

name of a simple variable. They may have arbitrarily many dimensions of arbitrary
- size. Subscripts start at 1.

Strings are completely flexible in length. The name of a string consists of a single
letter followed by $.

String arrays can have arbitrarily many dimensions of arbitrary size. The name is a
single letter followed by $ and may not be the same as the name of a string. All the
strings in a given array have the same fixed length, which is specified as an extra,
final dimension in the DIM statement. Subscripts start at 1.

Slicing: Substrings of strings may be specified using slicers. A slicer can be

(9 empty
or
(ii) numerical expression

or
(iii) optional numerical expression TO optional numerical expression

and is used in expressing a substring either by

(a) string expression (slicer)
(b) string array variable (subscript,..., subscript, slicer)

which means the same as

string array variable (subscript....., subscript) (slicer)

In (a), suppose the string expression has the value s$.
If the slicer is empty, the result is s$ considered as a substring of itself.

197

Appendix C

If the slicer is a numerical expression with value m, then the result is the mth
character of s$ la substring of length 1).

I f the slicer has the form (iii), then suppose the first numerical expression has the
value m (the default value is 1). and the second, n (the default value is the length of
s$).

I f 1 <=m<=n<=the length of s$ then the result is the substring of s$ starting with
the mth character and ending with the nth.

If 0<=n<m then the result is the empty string.
Otherwise, error 3 results.
Slicing is performed before functions or operations are evaluated, unless brackets

dictate otherwise.
Substrings can be assigned to (see LET).
If a string quote is to be written in a string literal, then it must be doubled.

Functions
The argument of a function does not need brackets if it is a constant or a (possibly
subscripted or sliced) variable.

Function

ABS

ACS

AND

ASN

ATN

AlTR

BIN

198

Type of argument
(x1

number

number

binary operation,
right operand always
a number.
Numeric left operand:

String left operand:

number

number

two arguments, x and
y. both numbers;
enclosed in brackets

Result

Absolute magnitude

Arccosine in radians.
Error A if x not in the range -1 to +I

A AND B = ;.;;;z;’
I

A$ AND B =
A$ if Bo0
,,,I if BcO

Arcsine in radians.
Error A if x not in the range -1 to +l

Arctangent in radians

A number whose binary form codes the
attributes of line x. column y on the television.
Bit 7 (most significant) is 1 for flashing, 0 for not
flashing. Bit 6 is 1 for bright, 0 for normal. Bits 5
to 3 are the paper colour. Bits 2 to 0 are the ink
colour.

Error B unless 0<=xc=23 and 0<=y<=31
This is not really a function, but an alternative
notation for numbers: BIN followed by a
sequence of 0s and 1 s is the number with such a
representation in binary

Appendix C

Function

CHRS

cos
EXP
FN

number (in radians)

number

The code of the first character in x (or 0 if x is the
empty string)

Cosine x

ex

IN number

FN followed by a letter calls up a userdefined
function (see DEF). The arguments must be
enclosed in brackets; even if there are no
arguments the brackets must still be present.

The result of inputting at processor level from
port x (0c=xc=FFFFh) (loads the bc register
pair with x and does the assembly language
instruction in a(c))

INKEYS none

INT
LEN

LN

number

string

number

Reads the keyboard. The result is the character
representing (in q or R mode) the key pressed
if there is exactly one, else the empty string.

Integer part (always rounds down)

Length

Natural logarithm (to base e).
Error A if xc=0

NOT
OR

0 if x00, 1 if x=0. NOT has priority 4

aORb=
1 if bo0
a if b=0

OR has priority 2

PEEK

number

binary operation,
both operands
numbers

number

PI
POINT

none

The value of the byte in memory whose address
is x (rounded to the nearest integer).

Error B if x is not in the range 0 to 65535

x (3.14159265...)

Two arguments, x and 1 if the pixel at (x,y) is ink colour. 0 if it is paper
y, both numbers; colour.
enclosed in brackets Error B unless 0<=xc=255 and 0<=y

<=175

RND none The next pseudorandom number in a sequence
generated by taking the powers of 75 modulo
65537, subtracting 1 and dividing by 65536.

0sy<1

SCREENS Two arguments, x and The’ character that appears, either normally or
y. both numbers; inverted, on the television at line x, column y.
enclosed in brackets Gives the empty string, if the character is not

199

Type of argument

number

string

Result

The character whose code is x, rounded to the
nearest integer

Appendix C

Function Type of argument

SGN number

SIN

SQR

number (in radians)

number

STR$ number

TAN

USR

number (in radians)

number

USR

VAL

string

WALS string

number

Result
recognised.

Error B unless 0<=x<=23 and 0<=y<=31

Signum: the sign (-1 for negative, 0 for zero or
+l for positive) of x

Sine x

Square root.
Error A if xc0

The string of characters that would be displayed
if x were printed

Tangent

Calls the machine code subroutine whose
starting address is x. On return, the result is the
contents of the bc register pair

The address of the bit pattern for the user-
defined graphic corresponding to x.

Error A if x is not a single letter between a and
u, or a user-defined graphic

Evaluates x (without its bounding quotes) as a
numerical expression.

Error C if x contains a syntax error, or gives a
string value. Other errors possible, depending on
the expression

Evaluates x (without its bounding quotes) as a
string expression.

Error C if x contains a syntax error or gives a
numeric value. Other errors possible, as for VAL

Negation

The following are binary operations:

+

l

I

t
=

>
<
<=
>=
<>

200

Addition (on numbers), or concatenation (on strings)
Subtraction
Multiplication
Division
Raising to a power. Error B if the left operand is negative
Equals
Greater than Both operands must be of the
Less than same type. The result is a
Less than or equal to number 1, if the comparison
Greater than or equal to holds and 0 if it does not
Not equal to

Appendix C

Functions and operations have the following priorities:

Operation
Subscripting and slicing
All functions except NOT andunary minus

t
Unary minus (i.e. minus just used to

negate something)
*, I
+, - (minus used to subtract one number
from another)
=, >, <, <=, >=, <>
NOT
AND
OR

Priority
12
11
10

9
8

Statements
In this list,
a represents a single letter
V represents a variable
x. y. z represent numerical expressions
m. n represent numerical expressions that are rounded to the nearest integer

;
represents an expression
represents a string valued expression

S represents a sequence of statements separated by colons :
C represents a sequence of colour items, each terminated by commas, or

semi-colons ;. A colour item has the form of a PAPER, INK, FLASH,
BRIGHT, INVERSE or OVER statement.

Note that arbitrary expressions are allowed everywhere (except for the line number
at the beginning of a statement).

All statements except INPUT, DEF and DATA can be used either as commands or
in programs (although they be more sensible in one than the other). A command or
program line can have several statements, separated by colons (:). There is no
restriction on whereabouts in a line any particular statement can occur-although see
IF and REM.

BEEP x, y

BORDER m

Sounds a note through the loudspeaker for x seconds
at a pitch y semitones above middle C (or below if y is
negative)

Sets the colour of the border of the screen and also the
paper colour for the lower part of the screen.

Error K if m not in the range 0 to 7

201

Appendix C

CAT Does not work without Microdrive, etc

CIRCLE x. Y, z Draws an arc of a circle, tentre (x,y), radius z

CLEAR Deletes all variables, freeing the space they occupied.

CLEAR l-l

CLOSE #

CLS

CONTINUE

Sets brightness of characters subsequently printed.
n=0 for normal, 1 for bright, 8 for transparent.

Error K if n not 0, 1 or 8

Does RESTORE and CLS, resets the PLOT position
to the bottom left-hand corner and clears the GO SUB
stack

Like CLEAR, but if possible changes the system
variable RAMTOP to n and puts the new GO SUB
stack there

Does not work without Microdrive, etc

(Clear Screen). Clears the display file

Continues the program, starting where it left off last
time it stopped with report other than 0. If the report
was 9 or L. then continues with the following
statement (taking jumps into account); otherwise
repeats the one where the error occurred.

If the last report was in a command line then
CONTINUE will attempt to continue the command line
and will either go into a loop if the error was in 0:1,
give report 0 if it was in 0:2, or give error N if it was 0:3
or greater.

CONTINUE appears as CONT on the keyboard

COPY

DATA el. e2. e3# . .

DEF FN a(arl,...,ork)=e

Sends a copy of the top 22 lines of display to the
printer, if attached; otherwise does nothing. Note that
COPY can not be used to print the automatic listings
that appear on the screen.

Report D if BREAK pressed

Part of the DATA list. Must be in a program

User-defined function definition; must be in a
program. Each of a: and e1 to (Yk is either a single letter
or a single letter followed by ‘$’ for string argument or
result.

DELETE f

DIM a(nl,...,nk)

DIM d$(nl....,nk)

202

Takes the form DEF FN arO=e if no arguments

Does not work without Microdrive, etc

Deletes any array with the name 0~. and sets up an
array (Y of numbers with k dimensions m,...,nk.
Initialises all the values to 0

Deletes any array or string with the name 4, and sets

Appendix C

up an array of characters with k dimensions nl,...,nk.
Initialises all the values to ” “. This can be considered
as an array of strings of fixed length nk, with k-l
dimensions nI ,..., nk-l.

Error 4 occurs if there is no room to fit the array in.
An array is undefined until it is dimensioned in a DIM
statement

DRAW x.y

DRAW x,y,z

ERASE
FLASH

FOR a=x TO y

DRAW x,y,0

Draws a line from the current plot position moving x
horizontally and y vertically relative to it while turning
through an angle z.

Error B if it runs off the screen
Does not work without Microdrive, etc.
Defines whether characters will be flashing or steady.
n=0 for steady, n=l for flash, n=8 for no change.

FOR a[=x TO y STEP 1

FOR (Y=X TO y STEP z

FORMAT f

GOSUB n

GOTOn

IF x THEN s

INK n

INPUT .

Deletes any simple variable ar and sets up a control
variable with value x, limit y, step z, and looping
address referring to the statement after the FOR
statement. Checks if the initial value is greater (if
step>=(b) or less (if step<(b) than the limit, and if so
then skips to statement NEXT (Y, giving error 1 if there
is none. See NEXT.

Error 4 occurs if there is no room for the control
variable

Does not work without the Microdrive, etc

Pushes the line number of the GOSUB statement
onto a stack; then as GO TO n.

Error 4 can occur if there are not enough RETURNS

Jumps to line n (or, if there is none, the first line after
that)

I f x true (non-zero) then s is executed. Note that s
comprises all the statements to the end of the line.
The form ‘IF x THEN line number’ is not allowed

Sets the ink (foreground) colour of characters
subsequently printed. n is in the range 0 to 7 for a
colour, n=8 for transparent or 9 for contrast. See The
television screen - Appendix B.

Error K if n not in the range 0 to 9

The I...’ is a sequence of INPUT items, separated as in
a PRINT statement by commas, semicolons or
apostrophes. An INPUT item can be

203

Appendix C

INVERSE n

LET v=e

LIST

LIST n

LLIST

LLIST n

LOAD f

LOAD f DATA ()

LOAD f DATA $0

LOAD f CODE m,n

204

(i) Any PRINT item not beginning with a letter
(ii) A variable name, or

(iii) LINE, then a string type variable name.
The PRINT items and separators in (i) are treated

exactly as in PRINT, except that everything is printed
in the lower part of the screen.

For (ii) the computer stops and waits for input of an
expression from the keyboard; the value of this is
assigned to the variable. The input is echoed in the
usual way and syntax errors give the flashing g. For
string type expressions, the input buffer is initialised to
contain two string quotes (which can be erased if
necessary). I f the first character in the input is STOP,
the program stops with error H. (iii) is like (ii) except
that the input is treated as a string literal without
quotes, and the STOP mechanism doesn’t work; to
stop it you must type w instead

Controls inversion of characters subsequently printed.
If n=0, characters are printed in normal video, as ink
colour on paper colour.

I f n= 1, characters are printed in inverse video, i.e.
paper colour on ink colour. See The television screen -
Appendix B.

Error K if n is not 0 or 1

Assigns the value of e to the variable v. LET cannot be
omitted. A simple variable is undefined until it is
assigned to in a LET, READ or INPUT statement. I f v is
a subscripted string variable, or a sliced string variable
(substring), then the assignment is Procrustean (fixed
length): the string value of e is either truncated or filled
out with spaces on the right, to make it the same
length as the variable v

LIST 0

Lists the program to the upper part of the screen,
starting at the first line whose number is at least n, and
makes n the current line

LLIST 0

Like LIST, but using the printer

Loads program and variables

Loads a numeric array

Loads character array $

Loads at most n bytes, starting at address m

Appendix C

LOAD f CODE m

LOAD f CODE
LOAD f SCREENS

LPRINT

MERGE f

MOVE f,,f2

NEW

NEXT a

OPEN #

OUT m,n

OVER n

PAPER n

PAUSE n

Loads bytes starting at address m

Loads bytes back to the address they were saved from
LOAD f CODE 16384.6912.

Searches for file of the right sort on cassette tape
and loads it, deleting previous versions in memory.
See Chapter 20

Like PRINT but using the printer

Like LOAD f, but does not delete old program lines and
variables except to make way for new ones with the
same line number or name

Does not work without the Microdrive. etc

Starts the BASIC system off anew, deleting program
and variables, and using the memory up to and
including the byte whose address is in the system
variable RAMBOT and preserves the system variables
UDG, P RAMT, RASP and PIP

(i) Finds the control variable IX
(ii) Adds its step to its value

(iii) I f the step>=0 and the value>the limit; or if the
step<0 and the value<the limit, then jumps to the
looping statement.

Error 2 if there is no variable (Y.
Error 1 if there is one, but it’s not (Y control variable

Does not work without the Microdrive, etc

Outputs byte n at port m at the processor level. (Loads
the bc register pair with m, the a register with n, and
does the assembly language instruction: out (c),a.)
0<=m<=65535, -255<=n<=255, else error B

Controls overprinting for characters subsequently
printed.

If n=0. characters obliterate previous characters at
that position.

If n=l, then new characters are mixed in with old
characters to give ink colour wherever either (but not
both) had ink colour, and paper colour if they were both
paper or both ink colour. See The television screen -
Appendix B.

Error K if n not 0 or 1
Like INK, but controlling the paper (background) colour

Stops computing and displays the display file for n
frames (at 50 frames per second or 60 frames per
second in North America) or until a key is pressed.

205

Appendix C

PLOT c; m,n

POKE m,n

PRINT

0<=n<=65535. else error B. If n=0 then the pause is
not timed, but lasts until a key is pressed

Prints an ink spot (subject to OVER and INVERSE) at
the pixel ([ml, In\); moves the PLOT position.

Unless the colour items c specify otherwise, the ink
colour at the character position containing the pixel is
changed to the current permanent ink colour, and the
other (paper colour, flashing and brightness) are left
unchanged.
0c=lm)<=255, 0<=(n/<=175, else error B

Writes the value n to the byte in store with address m.
0c=m<=65535, -255c=n<=255. else error B

The I...’ is a sequence of PRINT items, separated by
commas ,, semicolons ; or apostrophes ’ and they are
written to the display file for output to the television.

A semicolon ; between two items has no effect: it is
used purely to separate the items. A comma, outputs
the comma control character, and an apostrophe ’
outputs the ENTER character.

At the end of the PRINT statement, if it does not
end in a semicolon, or comma, or apostrophe, an
ENTER character is output.

A PRINT item can be
(i) empty, i.e. nothing.
(ii) a numerical expression

First a minus sign is printed if the value is
negative. Now let x be the modulus of value.

If xc=1 0-5 or x>= 1 013, then it is printed using
scientific notation. The mantissa part has up to
eight digits (with no trailing zeros), and the
decimal point (absent if only one digit) is after the
first. The exponent part is E, followed by + or -,
followed by one or two digits.

Otherwise x is printed in ordinary decimal
notation with up to eight significant digits, and no
trailing zeros after the decimal point. A decimal
point right at the beginning is always followed by a
zero, so for instance .03 and 0.3 are printed as
such.

0 is printed as a single digit 0.
(iii) a string expression

The tokens in the string are expanded, possibly
with a space before or after.

Control characters have their control effect.

206

Appendix C

Unrecognized characters print as 7.
(iv) AT m,n

Outputs an AT control character followed by a
byte for m (the line number) and a byte for n (the
column number).

(v) TAB n
Outputs a TAB control character followed by

two bytes for n (less significant byte first), the
TAB stop.

(vi) A colour item, which takes the form of a PAPER,
INK. FLASH, BRIGHT, INVERSE or OVER
statement

RANDOMIZE

RANDOMIZE n

RANDOMIZE 0

Sets the system variable (called SEED) used to
generate the next value of RND. If no0, SEED is
given the value n; if n=0 then it is given the value of
another system variable (called FRAMES) that counts
the frames so far displayed on the television, and so
should be fairly random.

RANDOMIZE appears as RAND on the keyboard.
Error B occurs if n is not in the range 0 to 65535

READ vl, ~2, vk Assigns to the variables using successive expressions
in the DATA list.

Error C if an expression is the wrong type.
Error E if there are variables left to be read when the

DATA list is exhausted

REM . .

RESTORE

RESTORE n

RUN

RUN n

SAVE f

No effect. I...’ can be any sequence of characters
except ENTER. This can include :, so no statements
are possible after the REM statement on the same line

RESTORE 0

Restores the DATA pointer to the first DATA
statement in a line with number at least n: the next
READ statement will start reading there

Takes a reference to a statement off the GO SUB
stack, and jumps to the line after it.

Error 7 occurs when there is no statement reference
on the stack. There is some mistake in your program;
GO SUBS are not properly balanced by RETURNS

RUN 0

CLEAR, and then GO TO n

Saves the program and variables

207

Appendix C

SAVE f LINE m

SAVE f DATA 0

SAVE f DATA $0

SAVE f CODE m,n

SAVE f SCREENS

STOP

VERIFY

Saves the program and variables so that if they are
loaded there is an automatic jump to line m

Saves the numeric array

Saves the character array $

Saves n bytes starting at address m

SAVE f CODE 16364,6912.
Saves information on cassette, giving it the name f.
Error F if f is empty or has length eleven or more.

See Chapter 20

Stops the program with report 9. CONTINUE will
resume with the following statement

The same as LOAD except that the data is not loaded
into RAM, but compared against what is already there.

Error R if one of the comparisons shows different
bytes

208

Appendix D

Example programs
This appendix contains some example programs to demonstrate the abilities of the
ZX Spectrum.

The first of these programs requires a date to be input and gives the day of the
week which corresponds to this date.

16 REM convert date to day
20 DIM d$(7,6): REM days of week
30 FOR n=l TO 7: READ d$(n): NEXT n
46 DIM m(12): REM lengths of months
50 FOR n=l TO 12: READ m(n): NEXT n

100 REM input date
118 INPUT “day?“;day
120 INPUT “month7”;month
130 INPUT “year (26th century only)?“;year
148 IF year<1961 THEN PRINT “28th century starts at 1901”:

GO TO 100
156 IF year>2606 THEN PRINT “28th century ends at 2666”:

GO TO 186
160 IF month<1 THEN GO TO 210
176 IF month>12 THEN GO TO 216
188 IF year/4-INT(year/4)=8 THEN LET m(2)=29: REM leap year
196 IF day>m(month) THEN PRINT “This month has only “;

m(month);” days.“: GO TO 566
266 IF day>0 THEN GO TO 366
210 PRINT “Stuff and nonsense. Give me a real date.”
220 GO TO 560
366 REM convert date to number of days since start of century
310 LET y=year-1861
326 LET b=365*y+lNT (y/4): REM number of days to start of year
330 FOR n=l TO month-l: REM add on previous months
340 LET b=b+m(n): NEXT n
356 LET b=b+day
460 REM convert to day of week
416 LET b=b-7* INT (b/7)+1
426 PRINT day;“/“;month;“/“;year
430 FOR n=6 TO 3 STEP -1: REM remove trailing spaces
446 IF d$(b,n) <> ” “ THEN GO TO 466
450 NEXT n

’ 466 LET e$=d$(b, TO n)
470 PRINT” is a “; e$; “day’
560 LET m(2)=28: REM restore February
510 INPUT “again)“, a$
520 IF a$=“,” THEN GO TO 546

209

Appendix D

530 IF aS C> “N” THEN GO TO 100
1880 REM days of week
1810 DATA “Mon”, “Tues”, “Wednes”
1020 DATA “Thurs”, “Fri”, “Satur”, “Sun”
1188 REM lengths of months
1110 DATA 31,28,31,38,31,38
1120 DATA 31,31,30,31,30,31

This program handles yards, feet and inches.
18 INPUT “yards?“,yd,“feet?“,ft, “inches?“,in
40 GO SUB 2888: REM print the values
50 PRINT “‘ = “;
78 GO SUB 1000: REM the adjustment
88 GO SUB 2000: REM print the adjusted values
90 PRINT

180 GO TO 10
1088 REM subroutine to adjust yd, ft. in to the normal form for

yards, feet and inches

1010 LET in=35*yd+l2*ft+in: REM now everything is in inches
1830 LET s=SGN in: LET in=ABS in: REM we work with in

positive, holding its sign in s
1880 LET ft=INT (in112): LET in=(in-12*ft)*s: REM now in is ok
1080 LET yd=INT (ft/3)*s: LET ft=ft*s-3’yd: RETURN
2888 REM subroutine to print yd, ft and in
2010 PRINT yd;“yd”;ft;“ft”;in;“in”;: RETURN

Here is a program to throw coins for the I Ching. (Unfortunatety it produces the
patterns upside down, but you might not worry about this.)

5 RANDOMME
18 FOR m=l TO 8: REM for 8 throws i
20 LET c-0: REM initialize coin total to 0
30 FOR n=l TO 3: REM for 3 coins
40 LET c=c+Z+INT (2*RND)
50 NEXT n
80 PRINT ” “;
70 FOR n=l TO 2: REM 1st for the thrown hexagram, 2nd for

the changes
80 PRINT “-“;
SO IF c=7 THEN PRINT “-“;

188 IF c=8 THEN PRINT ” “;
118 IF c=8 THEN PRINT “X”; : LET c=7
120 IF c=S THEN PRINT “8”;: .LET c=8
130 PRINT “- “;
140 NEXT n
150 PRINT
180 INPUT aS
170 NEXT m: NEW

210

Appendix D

To use this, type it in and run it, and then press ENTER five times to get the two
hexagrams. Look these up in a copy of the Chinese Book of Changes. The text will
describe a situation and the courses of action appropriate to it, and you must ponder
deeply to discover the parallels between that and your own life. Press ENTER a sixth
time, and the program will erase itself - this is to discourage you from using it
frivolously.

Many people find the texts are always more apt than they would expect on
grounds of chance; this may or may not be the case with your ZX Spectrum. In
general, computers are pretty godless creatures.

Here is a program to play ‘Pangolins’. You think up an animal, and the computer
tries to guess what it is, by asking you questions that can be answered ‘yes’ or ‘no’. I f
it’s never heard of your animal before, it asks you to give it some question that it can
use next time to find out whether someone’s given it your new animal.

5 REM pangolins
18 LET nq=lW: REM number of questions and animals
15 DIM qS(nq.50): DIM a(nq,21: DIM 18(l)
20 LET qf=8
30 FOR n=l TO qf/2-1
48 READ q$(n): READ a(n.1): READ a(%21
50 NEXT n
80 FOR n=n TO qf-1
70 READ q$(nI: NEXT n

100 REM start playing
110 PRINT “Think of an animal.“,“Press any key to continue.”
128 PAUSE 8
130 LET c=l: REM start with 1st question
140 IF a(c,lI=O THEN GO TO 388
150 LET p$=q$(c): GO SUB 810
180 PRINT “7”: GO SUB 1888
178 LET in=1 : IF r$=“y” THEN GO TO 210
180 IF r8=“,.. THEN GO TO 218
180 LET in=2: IF R=“n” THEN GO TO 210
288 IF r8o”N” THEN GO TO 150
210 LET c=a(c,in): GO TO 148

300 REM animal
310 PRINT “Are you thinking of’
32. LET pS=q((c): GO SUB 888: PRINT “7”
330 GO SUB 1888
348 IF R=“y” THEN GO TO 488
350 IF r$=“Y” THEN GO TO 488
388 IF r8=“n” THEN GO TO 588
370 IF r8=“N” THEN GO TO 588

211

Appendix D

388 PRlNT”Answer me properly when I’m”,“talking to you.“: GO
TO 368

480 REM guessed it
418 PRINT “I thought as much.“: GO TO 888

500 REM new animal
518 IF qf>nq-1 THEN PRINT “I’m sure your animal is very”,

“interesting, but I don’t have”,“room for it just now.“: GO TO 800
520 LET q$(qf)=q$(c): REM move old animal
538 PRINT “What is it, then?“: INPUT q$(qf+l)
548 PRINT “Tell me a question which dist-“,“inguishes

between ‘*
558 LET p$=q$(qf): GO SUB 880: PRINT ‘* and”
588 LET p$=q$(qf+l): GO SUB 980: PRINT ” ”
570 INPUT s8: LET b=LEN s8
588 IF s8(b)=“,.. THEN LET b=b-1
590 LET q$(cI=sS(TO b): REM insert question
808 PRINT “What is the answer for”
818 LET p$=q$(qf+l): GO SUB 988: PRINT “7”
828 GO SUB 1888
630 LET in=l: LET io=2: REM answers for new and old animals
648 IF r8=“y” THEN GO TO 788
850 IF r8=“Y” THEN GO TO 788
668 LET in=2: LET io=l
670 IF rS=“n” THEN GO TO 788
688 IF r8=“N” THEN GO TO 788
698 PRINT “That’s no good. “: GO TO 688

788 REM update answers
710 LET a(c,in)=qf+l : LET afc,ioI=qf
728 LET qf=qf+2: REM next free animal space
730 PRINT “That fooled me.”

880 REM again?
810 PRINT “Do you want another go?“: GO SUB 1888
820 IF r8=“,” THEN GO TO 188
830 IF r$=“Y” THEN GO TO 188
848 STOP

988 REM print without trailing spaces
985 PRINT ” “;
910 FOR n=58 TO 1 STEP -1
820 IF p$(n)o” ” THEN GO TO 948

212

Appendix D

930 NEXT n
940 PRINT p$(TO n);: RETURN

1000 REM get reply
1010 INPUT r9: IF r9=“” THEN RETURN
1020 LET r$=rS(l): RETURN

2069 REM initial animals
2010 DATA “Does it live in the sea”,4,2
2029 DATA “Is it scaly”,35
2030 DATA “Does it eat ants”,6,7
2649 DATA “a whale”, “a blancmange”, “a pangolin”, “an ant”

Here is a program to draw a Union Flag.

5 REM union flag
10 LET r=2: LET w=7: LET b=l
20 BORDER 0: PAPER b: INK w: CLS
30 REM black in bottom of screen
40 INVERSE 1
50 FOR n=46 TO 0 STEP -9
69 PLOT PAPER 0;7,n: DRAW PAPER 0;241,9
70 NEXT n: INVERSE 9

199 REM draw in white parts
105 REM St. George
110 FOR n=O TO 7
120 PLOT 194+n,175: DRAW 6-35
136 PLOT 161-n.175: DRAW 9-35
149 PLOT 151-n,46: DRAW 636
156 PLOT 194+n,46: DRAW 635
169 NEXT n
296 FOR n=O TO 11
210 PLOT 0,139-n: DRAW 1116
220 PLOT 255,139-n: DRAW -1116
230 PLOT 255,64+n: DRAW -111.0
249 PLOT 0,94+n: DRAW 111.0
256 NEXT n
399 REM St. Andrew
310 FOR n=O TO 35
320 PLOT 1+2*n,175-n: DRAW 326
330 PLOT 224-2%,175-n: DRAW 16.0
346 PLOT 254-2*n,49+n: DRAW -329
356 PLOT 17+2*n,46+n: DRAW 16.0
369 NEXT n
370 FOR n=O TO 19

213

Appendix D

388 PLOT 185+2*n,l40+n: DRAW 32,8
380 PLOT 288+2*n,83-n: DRAW 18,O
490 PLOT 39-2*n,83-n: DRAW 32,8
410 PLOT 54-2%,140+n: DRAW -18,0
420 NEXT n
425 REM fill in extra bits
430 FOR n=8 TO 15
440 PLOT 255,188+n: DRAW 2*n-38.0
450 PLOT 0,83-n: DRAW 31-2*n,b
480 NEXT n
470 FOR n=0 TO 7
480 PLOT 8,180+n: DRAW 14-2*n,0
485 PLOT 255,83-n: DRAW 2*n-15.8
490 NEXT n
508 REM red stripes
518 INVERSE 1
520 REM St. George
530 FOR n=98 TO 120 STEP 8
540 PLOT PAPER r;7,n: DRAW PAPER r;241,0
558 NEXT n
588 FOR n=112 TO 138 STEP 8
578 PLOT PAPER r;n,188: DRAW PAPER r;8,-113
58# NEXT n
888 REM St. Patrick
818 PLOT PAPER r;170,148: DRAW PAPER r;70,35
828 PLOT PAPER r;179,140: DRAW PAPER r;70,35
830 PLOT PAPER r;l99,83: DRAW PAPER r;58,-28
848 PLOT PAPER r;l84,83: DRAW PAPER r;70,-35
858 PLOT PAPER r;88,83: DRAW PAPER r;-70,-35
888 PLOT PAPER r;72,83: DRAW PAPER r;-70,-35
878 PLOT PAPER r;58,148: DRAW PAPER r;-5828
888 PLOT PAPER r;71,148: DRAW PAPER r;-70,35
898 INVERSE 8: PAPER 0: INK 7

If you’re not British, have a go at drawing your own flag. Tricolours are fairly easy,
although some of the colours - for instance the orange in the Irish flag - might
present difficulties. If you’re an American, you might be able to fit the character l in.

Here is a program to play hangman. One player enters a word, and the other
guesses.

’ 5 REM Hangman
18 REM set up screen
20 INK 0: PAPER 7: CLS
38 LET x=248: GO SUB 1888: REM draw man

214

Appendix D

48 PLOT 238,128: DRAW 46: REM mouth
100 REM set up word
110 INPUT w$: REM word to guess
128 LET b=LEN w8: LET v6=” ”
138 FOR n=2 TO b: LET v$=vS+” ”
140 NEXT n: REM v$=word guessed so far
150 LET c=O: LET d=0: REM guess & mistake counts
160 FOR n=0 TO b-l
170 PRINT AT 2&n;“-“;
180 NEXT n: REM write -‘s instead of letters
280 INPUT “Guess a letter: “;g$
210 IF g$=“” THEN GO TO 200
228 LET g$=g$(l): REM 1st letter only
230 PRINT AT 8,c;gS
248 LET c=c+l: LET u$=v$
250 FOR n=l TO b: REM update guessed word
260 IF wS(n)=g$ THEN LET vS(nl=g$
270 NEXT n
288 PRINT AT 18,8;v$
290 IF vS=w6 THEN GO TO 580: REM word guessed
300 IF v$c>US THEN GO TO 288: REM guess was right
488 REM draw next part of gallows
418 IF d=8 THEN GO TO 698: REM hanged
428 LET d=d+l
430 READ xCy8,x.y
448 PLOT xO,y8: DRAW x,y
450 GO TO 2.0
588 REM free man-
510 OVER 1: REM rub out man
520 LET x=248: GO SUB 1888
530 PLOT 238,128: DRAW 49: REM mouth
548 OVER 0: REM redraw man
558 LET x=146: GO SUB 1888
568 PLOT 143,129: DRAW 66, PU2: REM smile
570 GO TO 888
688 REM hang man
610 OVER 1: REM rub out floor
620 PLOT 255,65: DRAW -48.0
630 DRAW 8-48: REM open trapdoor
648 PLOT 238,128: DRAW 46: ‘REM rub out mouth
650 REM move limbs
655 REM arms
668 PLOT 255,117: DRAW -15,-15: DRAW -15.15
670 OVER 8
680 PLOT 236.81: DRAW 4,21: DRAW 4,-21

215

Appendix D

696 OVER 1: REM legs
700 PLOT 255,66: DRAW -15.15: DRAW -15,-15
719 OVER 0
720 PLOT 236.60: DRAW 4,21: DRAW 4,-21
730 PLOT 237,127: DRAW 6.0, -PU2: REM frown
746 PRINT AT 19,0;w6
900 INPUT “again? “;a$
619 IF a$=“” THEN GO TO 659
820 LET a$=a$(l)
830 IF a$=%” THEN STOP
840 IF aS(l)=“N” THEN STOP
850 RESTORE : GO TO 5

1099 REM draw man at column x
1010 REM head
1026 CIRCLE x,132,8
1036 PLOT x+4,134: PLOT ~-4,134: PLOT x,131
1640 REM body
1050 PLOT x,123: DRAW 9,-20
1055 PLOT x,161: DRAW 0,-19
1060 REM legs
1070 PLOT x-15.66: DRAW 15,15: DRAW 15,-15
1080 REM arms
1090 PLOT x-15.117: DRAW 15,-15: DRAW 15,15
1100 RETURN
2066 DATA 120,65,135,9,184,65,6,91
2010 DATA 168,65,16,16,184,81,16,-16
2020 DATA 184,156,68,0,184,146,16,16
2030 DATA 264,156,-20,-20,246,156,0,-16

216

Appendix E

Binary and hexadecimal
This appendix describes how computers count, using the binary system.

Most European languages count using a more or less regular pattern of tens - in
English, for example, although it starts off a bit erratically, it soon settles down into
regular groups:

twenty, twenty one, twenty two......twenty nine
thirty, thirty one, thirty two,.....thirty nine
forty, forty one, forty two ,........ forty nine

and so on, and this is made even more systematic with the Arabic numerals that we
use. However, the only reason for using ten is that we happen to have ten fingers and
thumbs.

Instead of using the decimalsystem, with ten as its base, computers use a form of
binary called hexadecimal (or hex, for short), based on sixteen. As there are only ten
digits available in our number system we need six extra digits to do the counting. So
we use A, B, C, D, E and F. And what comes after F? Just as we, with ten fingers,
write 10 for ten, so computers write 10 for sixteen. Their number system starts off:

Hex English
0 nought
1 one
2 two

9 nine

just as ours does, but then it carries on

A
B
C
D
E
F
10
11

ten
eleven
twelve
thirteen
fourteen
fifteen
sixteen
seventeen

1’9 twenty five
IA twenty six
18 twenty seven

1’F thirty one
20 thirty two

217

Appendix E

21 thirty three

9E one hundred and fi f ty eight
9F one hundred and fi f ty nine
A0 one hundred and sixty
Al one hundred and sixty one

B4 one hundred and eighty

FE two hundred and fi f ty four
FF two hundred and fi f ty five
100 two hundred and fi f ty six

If you are using hex notation and you want to make the fact quite plain, then write
‘h’ at the end of the number, and say ‘hex’. For instance, for one hundred and fi f ty
eight, write ‘9Eh’ and say ‘nine E hex’.

You will be wondering what all this has to do with computers. In fact, computers
behave as though they had only two digits, represented by a low voltage, or off (0).
and a high voltage, or on (1). This is called the binary system, and the two binary digits
are called bits: so a bit is either 0 or 1.

In the various systems, counting starts off

English Decimal
nought 0
one 1
tW0 2
three 3
four 4
five 5
six 6
seven 7
eight 8
nine 9
ten 10
eleven 11
twelve 12
thirteen 13
fourteen 14
fifteen 15
sixteen 16

Hexadecimal Binary
0 0 or 0000
1 1 or 0001
2 10 or 0010
3 11 or 0011
4 100 or 0100
5 101 or 0101
6 110or0110
7 111 or0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111

10 10000

The important point is that sixteen is equal to two raised to the fourth power, and
this makes converting between hex and binary very easy.

To convert hex to binary, change each hex digit into four bits, using the table above.

218

Appendix E

To convert binary to hex, divide the binary number into groups of four bits, starting
on the right, and then change each group into the corresponding hex digit.

For this reason, although strictly speaking computers use a pure binary system,
humans often write the numbers stored inside a computer using hex notation.

The bits inside the computer are mostly grouped into sets of eight, or byres. A
single byte can represent any number from nought to two hundred and fi f ty five
(11111 111 binary or FF hex), or alternatively any character in the ZX Spectrum
character set. Its value can be written with two hex digits.

Two bytes can be grouped together to make what is technically called a word. A
word can be written using sixteen bits or four hex digits, and represents a number
from 0 to (in decimal) 2’6-1 =65535.

A byte is always eight bits, but words vary in length from computer to computer.
The BIN notation in Chapter 14 provides a means of writing numbers in binary on

the ZX Spectrum: ‘BIN 0’ represents nought, ‘BIN 1’ represents one, ‘BIN 10’
represents two, and so on.

You can only use 0’s and l’s for this, so the number must be a non-negative whole
number; for instance you can’t write ‘BIN -11’ for minus three - you must write
‘-BIN 11’ instead. The number must also be no greater than decimal 65535 - i.e. it
can’t have more than sixteen bits.

AlTR really was binary. If you convert the result from ATTR into binary, you can
write it in eight bits.
The first is 1 for flashing, 0 for steady.
The second is 1 for bright, 0 for normal.
The next three are the code for the paper colour, written in binary.
The last three are the code for the ink colour, written in binary.

The colour codes also use binary: each code written in binary can be written in
three bits, the first for green, the second for red and the third for blue.

Black has no light at all, so all the bits are 0 (off). Therefore the code for black is 000
in binary, or nought.

The pure colours, green, red and blue have just one bit 1 (on) out of the three. Their
codes are 100, 010 and or four, two and one.

The other colours are of these, so their codes in binary have two or more
bits 1.

219

Index

Index
This index includes the keys on the keyboard and how to obtain them (the mode -13,
0, q , q or q - and which shift key where appropriate).

Usually an entry is referenced only once per chapter, so having found one
reference, look through the rest of the chapter including the exercises.

A
ASS
accuracy
ACS
addition of strings
address

- of a byte
port address
return address

alphabetical order
AND
apostrophe
argument
arithmetic expression
array

string array
ASCII
ASN
assembler
assembly language
assign
AT
ATN
AlTR
attributes
automatic listing

B
background
BASIC
BEEP
BIN

0, on G.

0. shifted W.

q . 0 ora, SYMBOL SHIFT Y.

01 shifted Q.

59
47
70

53, 58
143

143, 163
159

37
25, 95

85
17, 101
57, 159

45
79, 142

80
91
70

179
179

52
a, 0 orfl, SYMBOL SHIFT I. 101, 196
0, shifted E. 65, 70
0, shifted L. 116, 164, 219

110, 195
19

0, shifted Z.
0, on B

110
7, 26. 51

7, 130, 135
93, 124

221

Index

binary
- operation
- scale
- system

bit
BORDER
bottom of screen
bracket
BREAK
BRIGHT
brightness
buffer
byte

i mode
call
capitals

- mode
CAPS LOCK
CAPS SHIFT
cassette recorder
CAT
character

- set
control character

CHR$
CIRCLE
CLEAR
click
CLOSE #
CLS
CODE
code

machine code
colon
colour

ink colour
paper colour
primary colours
- codes

comma
command
comparison

222

b on B

CAPS SHIFT and SPACE.

0. shifted B.

mar 0, CAPS SHIFT 2.

0. SYMBOL SHIFT 9.

on U.
I: shifted H.
q 0nX

3; ,“,‘;,BOL SHIFT 5.

0, on I.

93, 166, 197, 217
198
169
218
159

7,113
9

53, 57
8, 19. 34, 151

110, 125
110

164. 196
143. 159, 163

8
37

8
8
8

7, 19, 91
8, 19, 141

155
7, 91

91, 183
94, 105, 114
91, 105, 114

121, 195
168
137
155

25, 37, 103
91, 143

91, 143, 219
179

17, 26
109,195
92, 109
92, 109

111
219

17,41
7, 25

25

condition
CONTINUE
contrast
control

- character
- variable

coordinate
COPY
cos
counting variable
current line
cursor

q cursor

I

cursor
cursor

I
cursor
cursor

hidden cursor
program cursor (I)

D
data
DATA

- list
- statement

decimal system
DEF FN
degree
DELETE

DIM
dimension
dots
double quotes
DRAW
duration

i mode
EDIT
element

I3, on C

1, on Z.
0, on W.

25
19, 26, 33

111
193

105, 114
32

121
151

67
32

8, 14
7. 14, 193

8
8
8

7, 16
14
15

8, 14

0; on D.

0, SYMBOL SHIFT 1.

q orBon0.t3.0.BorB.
CAPS SHIFT 0.

0, on D.

Q on W.

13
41, 79, 142

41
41

217
60
70

8, 15, 91, 193
79
79

110
47

121, 195
135

q . fl or a, CAPS SHIFT 1.
8

8, 14
79, 121

223

Index

empty string
ENTER
ERASE
EXP
exponent
exponential growth
expression

arithmetic expression
logical expression
mathematical expression
numeric expression
string expression

extended mode

F
false
FLASH
floating point
FN
foreground
FOR
FOR - NEXT loop
FORMAT
function

00, SY”;;‘.““’ SHIFT 7.
, on

0, shifted V.

0, SYMBOL SHIFT 2.

13, on F.

0, SYMBOL SHIFT 0.

mode
GO SUB

stack
GO TO
graph
graphics

- symbol

13. on H.

I3. on G.

- mode
user-defined graphics

GRAPHICS B, q arm, CAPS SHIFT 0.

47, 198
8, 14, 194

155
65

46, 166
66

45
85
45

41, 46, 58, 101, 197
41,53, 101. 197

8, 67, 114

25, 85
109,122
46, 197

60
110

31. 38, 197
31,41, 197

155
7. 57, 198

8, 193
37, 168
37, 168

16. 25, 31, 37
125

8, 121
91

8, 91, 193
8, 92

8, 91. 119. 193

H
hex

224

217

hexadecimal
hidden cursor

217
15

I
IF
IN
initial value
INK
ink colour
INKEY$
INPUT

- data
- item

INT
integer
INVERSE
inverse
I/O ports
item

INPUT item
PRINT item

ii mode

W
keyboard
keyword

- mode

k mode
LEFT$
LEN
LET
letter mode
limit
LINE
line

- number

[3, on U.
0, shifted I.

0, shifted X.

1. on R.

D, shifted M.

8, on K.
H, on L.

13, SYMBOL SHIFT 3.

25, 31, 85
159

32
109.122,195

92, 109
131

7, 16, 25, 31. 195
103
104

59, 73
59

112.122,195
67

159
101
104
101

7
135

7,115,193
7, 193
7. 193

7, 193
61
57

7, 13, 31, 38
7, 193

32
105, 144, 181

7
13, 26

225

Index

current line
program line
top line

LIST
listing

automatic listing
LLIST
LN
LOAD
logarithmic function
logical expression
loop

-ing
FOR - NEXT loop

lower case
LPRINT

q , on K.

0, on V.
0, on Z.
13, on J.

0, on C.

M
machine code
mantissa
mathematical expressions
memory

- address
menu
MERGE
Microdrive
MID$
mnemonics
mode

capitals mode
extended mode
graphics mode
keyword mode
letter mode

modulo
MOVE
music

N
name

- of a variable

226

0. shifted T.

0. SYMBOL SHIFT 6.

8, 14
7, 13

20
15

8. 13
19

151
67

141, 181
67
85

33, 197
32

31,41, 197
7

151,195

179
47, 166

45
159, 163

159
147
147
155

61
179, 183

7
8
8

8, 91, 193
7, 193
7. 193

103
155
135

45
45

- of a program
nesting
network
NEW
NEXT
NOT
null string
numeric

- expression
- variable

0
octave

OPEN #
operation

arithmetic operation
binary operation

OR
OUT
OVER
overprinting

P
PAPER
paper colour
PAUSE
PEEK
PI
pitch
pixel
PLOT
POINT
POKE
port address
power
primary colours
PRINT

- item
- position
- separators

printer

141
33

155
1, , On on :I’ 31,41. 16, 197 25

q . 0 arm, SYMBOL SHIFT S. 85
47

41. 46, 58, 101, 197
32

0, SYMBOL SHIFT 4

q . fl ora, SYMBOL SHIFT U.

0, shifted C.

0, on M.

13, on Cl.
8, SY;BOL SHIFT 8.

, on

Q, on P.

135

155
45
45

198
85

159
112,122,195

113

7,109.122.195
92, 109

129
94, 129, 163

67
135
121

121, 195
123. 164

94, 124, 159, 163
159

65
111

7, 13, 25,31,37, 195
101

9
101

8, 19, 151, 196

227

Index

priority 45, 65, 85, 201
processor 159
Procrustean assignment 52, 80
program 7, 13, 141

- cursor 8, 14
- line 7, 13

pseudorandom 117
punctuation 17

cl
quote

double quotes
string quotes

R
radian
RAM
RAMTOP
RANDOMIZE
random
READ
recursive
register
relation
REM
repeat
report
RESTORE
result
RETURN
return address
RIGHT$
RND
ROM
rounding
RS232
RUN

S
SAVE

228

13, on T.

0, on A.

Q, on E.

0, on S.

Q, on Y.

a, on T.

(3, on R.

(3. on S. 141. 180

18,47
47

18.47

70
159,163

168
73
73
41
38

179
25, 85, 95
16. 25, 31

8
8, 16, 26, 189

41
57
37
37
61
73

159,163
47, 97

155
14

Index

scientific notation
screen

- full
bottom of screen
top of screen

SCREENS
scroll?
scrolling
semicolon
SGN
shift

-ed key
CAPS SHIFT
SYMBOL SHIFT

sign, signum
simple variable
SIN
slice
slicer
SPACE
space
SQR
stack

calculator stack
GO SUB stack
machine stack

statement
stave
STEP
STOP
STRS
string

- addition
- array
- expression
- input
- quote
- slicing
- variable

subroutine
subscript

ed variable
substring
symbol
SYMBOL SHIFT

0, shifted K.

0, on F.

0, on 0.

0. on H.

8, fl arm, SYMBOL SHIFT D.
f 0 “:a, SYMBOL SHIFT A.

, on

46
8

20
8
8

143,164
8. 20, 104

20, 103
17
59

7
7

7, 19, 91
7, 25. 32

59
79
67

51, 81, 197
197

8
45
60

37, 168
168

37, 168
168

41
135

32
8, 16, 25, 34

58
51

53, 58
80

41,51, 101, 197
18
18
51
18
37

51, 79
79
51

7
7, 25, 32

229

Index

syntax error 8
system variable 164, 173

T
TAB
TAN
television
THEN
TL$
TO
token
top line
trigonometrical function
true

U
undefined variable
USR

0, on P.
0, on E.

[3, fl arm, SYMBOL SHIFT G.

[3. 0 orB , SYMBOL SHIFT F.

f3. on L.

0, on J.
a, shifted J.

q r shifted R.

v
WAL
VALS
value

initial value
variable

- name
control variable
counting variable
numeric variable
simple variable
string variable
subscripted variable
system variable
undefined variable

VERIFY

X
x-axis
x-coordinate

230

103, 196
67

8. 109
7. 25. 85

61
32, 51

7, 91
20
65

25, 85

19
93, 124, 180

58
59

32
15,31, 141

45
32
32
32
79
18
79

164, 173
19

141

68
119

index

Y
y-axis
y-coordinate

68
119

Z
280 179

P
%
&

*

+

-

<
=

ICI, q arm, SYMBOL SHIFT 1.
q , q arm, SYMBOL SHIFT P.
q , 0 arm, SYMBOL SHIFT 3.
13. fl arm, SYMBOL SHIFT 4.
m. q arm, SYMBOL SHIFT 5.
[3. q arm, SYMBOL SHIFT 6.
[3. q arm, SYMBOL SHIFT 7.
[3. fl arm, SYMBOL SHIFT 8.
[3. q ora, SYMBOL SHIFT 9.
[3. q orB, SYMBOL SHIFT B.
[3. q ora, SYMBOL SHIFT K.
q . q org. SYMBOL SHIFT H.

, SYMBOL SHIFT J.
, SYMBOL SHIFT M.
, SYMBOL SHIFT V.
, SYMBOL SHIFT Z.
, SYMBOL SHIFT 0.

SYMBOL SHIFT R.
’ SYMBOL SHIFT L.
: SYMBOL SHIFT T.

p, q ora, SYMBOL SHIFT C.

a
, q ora, SYMBOL SHIFT 2.
, shifted Y.

q , shifted D.
0, shifted U.
q . q ora, SYMBOL SHIFT H.
q , q arm, SYMBOL SHIFT 0.
13. q arm, SYMBOL SHIFT X.
0, shifted F.

Ii
, shifted S.
, shifted G.

0, shifted A.

1

, shifted P.
, q ora, SYMBOL SHIFT Q.

q , q ora, SYMBOL SHIFT E.

18
16

18

17
16
16
16
14
16
16
58
16
17
17
25
13
25
47

. 65

25
25

231

Index

<>

4

*
w

4

P , q arm, SYMBOL SHIFT W
, q arm, CAPS SHIFT 5.

[3, q arm, CAPS SHIFT 8.
a q orB , CAPS SHIFT 6.
(3. q ora, CAPS SHIFT 7.

Printed by
The Leagrave Press Ltd

Luton and London

25

14
8
8

232

Sinclair Research Limited

6 King’s Parade,
Cambridge CB2 1 SN
hgland

	ZX Spectrum - BASIC progamming
	Contents
	Chapter 1 - Introduction
	Chapter 2 - Basic Programming Concepts
	Chapter 3 - Decisions
	Chapter 4- Looping
	Chapter 5 - Subroutines
	Chapter 6 - Read, Data, Restore
	Chapter 7 - Expessions
	Chapter 8 - Strings
	Chapter 9 - Functions
	Chapter 10 - Mathematical functions
	Chapter 11 - Random numbers
	Chapter 12 - Arrays
	Chapter 13 - Conditions
	Chapter 14 - The Character Set
	Chapter 15 - More about PRINT and INPUT
	Chapter 16 - Colours
	Chapter 17 - Graphics
	Chapter 18 - Motion
	Chapter 19 - BEEP
	Chapter 20 - Tape storage
	Chapter 21 - The ZX printer
	Chapter 22 - Other Equipment
	Chapter 23 - IN and OUT
	Chapter 24 - The memory
	Appendices
	App B - Reports
	App C - A description of the ZX Spectrum for reference
	App D - Example programs
	App E - Binary and hexadecimal
	Index

